[1]
Mankoff, D.A. A definition of molecular imaging. J. Nucl. Med., 2007, 48, 18-21.
[3]
Strub, S. Je n’ai Vraiment Pas de Chance; Pastel, 1994.
[16]
Herschman, H.R. Molecular imaging: looking at problems, seeing solutions. Science, 2003, 302, 605-608.
[19]
Yadollahpour, A.; Asl, H.M.; Rashidi, S. Applications of nanoparticles in magnetic resonance imaging: a comprehensive review. Asian J. Pharm., 2017, 11, S7-S13.
[20]
Yadollahpour, A.; Hosseini, S.A.A.; Jalilifar, M.; Rashidi, S.; Rai, B.M.M. Magnetic nanoparticle-based drug and gene delivery: a review of recent advances and clinical applications. Int. J. Pharm. Technol., 2016, 8, 11451-11466.
[22]
Durairaj, B.; Santhi, R.; Hemalatha, A. Isolation of chitosan from fish scales of catla catla and synthesis, characterization and screening for larvicidal potential of chitosan-based silver nanoparticles. Drug Invent. Today, 2018, 10, 1357-1362.
[27]
Hood, J.D.; Bednarski, M.; Frausto, R.; Guccione, S.; Reisfeld, R.A.; Xiang, R.; Cheresh, D.A. Tumor regression by targeted gene delivery to the neovasculature. Science, 2002, 296, 2404-2407.
[41]
Drexler, K.E.; Wejnert, J. Nanotechnology and policy. Jurimetrics, 2004, 45(1), 1-22.
[43]
Singh, M.; Singh, S.; Prasad, S.; Gambhir, I.S. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig. J. Nanomater. Biostruct., 2008, 3, 115-122.
[44]
Yadollahpour, A.; Jalilifar, M.; Rashidi, S. A review of the feasibility and clinical applications of magnetic nanoparticles as contrast agents in magnetic resonance imaging. Int. J. Pharm. Technol., 2016, 8, 14737-14748.
[45]
Ganguly, S.; Mukhopadhayay, S.K. Nano science and nanotechnology: journey from past to present and prospect in veterinary science and medicine. Inter. J. NanoSc. Nanotech, 2011, 2, 79-83.
[47]
Yadollahpour, A.; Venkateshwarlu, G. Applications of gadolinium nanoparticles in magnetic resonance imaging: a review on recent advances in clinical imaging. Int. J. Pharm. Technol., 2016, 8, 11379-11393.
[49]
Chalfie, M.; Tu, Y.; Euskirchen, G.; Ward, W.; Prasher, D. Green fluorescent protein as a marker for gene expression. Science, 1994, 263, 802-805.
[52]
Haemisch, Y. Molecular imaging with pet: new insights into the molecular basis of health and disease. Medicamundi, 2003, 47, 18-27.
[54]
Schwann, T. Microscopical researches into the accordance in the structure and growth of animals and plants. Sydenham Society: London, 1969, 1810-1882.
[56]
Sweetha, G.; Abraham, A.; Dhanraj, M.; Jain, A.R. Fabrication and evaluation of polylactic acid membrane for drug delivery system. Drug Invent. Today, 2018, 10, 433-436.
[57]
Velraj, M.; Shruthi, V.; Murugavel, S.; Shanmugam, R. Evaluation of Quercetin-loaded Poly-lactide-co-glycolide Acid Silver Nanoparticles from the Ethanolic Extract of Mallotus Philippensis Fruits. Drug Invent. Today, 2018, 10, 253-256.
[75]
Hermanson, G.T. Bioconjugate Techniques; Academic Press: London, 2013.
[81]
Kishore, M.; Abdulqader, A.T.; Shihab Ahmad, H.; Hanumantharao, Y. Anticancer and antibacterial potential of green silver nanoparticles synthesized from maytenus senegalensis (l.) leaf extract and their characterization. Drug Invent. Today, 2018, 10, 554-561.
[92]
Golub, T.R.; Slonim, D.K.; Tamayo, P.; Huard, C.; Gaasenbeek, M.; Mesirov, J.P.; Coller, H.; Loh, M.L.; Downing, J.R.; Caligiuri, M.A.; Bloomfield, C.D.; Lander, E.S. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999, 286, 531-537.
[102]
Levy, Laurent; Sahoo, Yudhisthira; Kim, Kyoung-Soo; Bergey, Earl.J. Prasad, P.N Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications. Chem. Mater., 2002, 14(9), 3715-3721.
[106]
Lu, Yu. Yin, Yadong; Brian, T.; Xia, Y. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol−gel approach. Nano Letters., 2002, 2(3), 183-186.
[111]
Bruchez, M., Jr; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281, 2013-2016.
[121]
Dmitri, V.; Talapin Andrey, L.; Rogach Andreas, K.; Markus, H.; Weller, H. Highly luminescent monodisperse cdse and cdse/zns nanocrystals synthesized in a hexadecylamine−trioctylphosphine oxide−trioctylphospine mixture. Nano Letters., 2001, 1(4), 207-211.
[122]
Peng, X.; Michael Schlamp, C.; Kadavanich Andreas, C.; Alivisatos, A. P Epitaxial growth of highly luminescent cdse/cds core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc., 1997, 119(30), 7019-7029.
[124]
Dabbousi, B.O.; Rodriguez-Viejo, J.; Mikulec, F.V.; Heine, J.R.; Mattoussi, H.; Ober, R.; Jensen, K.F.; Bawendi, M.G. (Cdse)zns core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B, 1997, 101(46), 9463-9475.
[128]
Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271, 933-937.
[130]
Schmid, G. Nanoparticles From Theory to Application; Wiley-VCH: Hoboken, 2011.
[132]
Chan, W.C.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281, 2016-2018.
[134]
William Yu, W. Qu, Lianhua; Guo, Wenzhuo; Peng, X Experimental determination of the extinction coefficient of cdte, cdse, and cds nanocrystals. Chem. Mater., 2003, 15(14), 2854-2860.
[135]
Leatherdale, C.A.; Woo, W-K.; Mikulec, F.V.; Bawendi, M.G. On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B, 2002, 106(31), 7619-7622.
[141]
Lakowicz, J.R.; Masters, B.R. Principles of fluorescence spectroscopy. J. Biomed. Opt., 2008, 13, 029901.
[142]
Giepmans, B.N.G.; Adams, S.R.; Ellisman, M.H.; Tsien, R.Y. The Fluorescent Toolbox for Assessing Protein Location and Function. Science, 2006, 312, 217-224.
[145]
Wolfgang, J.; Daniele, G.; Daniela, Z.; Anke, S.; Teresa, P.; Christine, M.; Shara, C.; Markus, S.; Richard, E.; Zev, B.; Carlos, B.; Carolyn, R.; Paul Alivisatos, A. Conjugation of dna to silanized colloidal semiconductor nanocrystalline quantum dots. Chem. Mater., 2002, 14(5), 2113-2119.
[151]
Mattoussi, Hedi; Matthew, Mauro J.; Anderson, G.P; Sundar, V.C; Mikulec, F.V; Bawendi, M.G Self-Assembly of CdSe−ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein. J. Am. Chem. Soc., 2000, 122(49), 12142-12150.
[156]
Hoshino, A.; Fujioka, K.; Oku, T.; Suga, M.; Sasaki, Y.F.; Ohta, T.; Yasuhara, M.; Suzuki, K.; Yamamoto, K. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Letters, 2004, 4(11), 2163-2169.
[159]
Dubertret, B.; Skourides, P.; Norris, D.J.; Noireaux, V.; Brivanlou, A.H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles.Science; , 2002, 298, pp. 1759-1762.
[178]
Andrews, D.L.; Demidov, A.A. Resonance Energy Transfer; Wiley & Sons: Hoboken, 1999.
[202]
Servati, A. Nanoparticles for Simultaneous Near-Infrared and Magnetic Biomolecular Imaging. Ph.D. thesis, UCL (University Coll. London), 2012.
[210]
Yi, G.; Lu, H.; Zhao, S.; Ge, Y.; Yang, W.; Chen, D.; Guo, L.H. Synthesis, characterization, and biological application of size-controlled nanocrystalline nayf4:yb,er infrared-to-visible up-conversion phosphors. Nano Letters., 2004, 4(11), 2191-2196.
[215]
Wei, Yang; Lu, Fengqi; Zhang, Xinrong Chen, D. Synthesis of oil-dispersible hexagonal-phase and hexagonal-shaped NaYF4:Yb,Er nanoplates. Chem. Mater., 2006, 18(24), 5733-5737.
[216]
Mai, Hao-Xin.; Zhang, Ya-Wen. Sun, L.D; Yan, C.H. Size- and phase-controlled synthesis of monodisperse nayf4:yb,er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy. J. Phys. Chem., 2007, 111(37), 13730-13739.
[222]
Yi, Guangshun Sun, B; Yang, F; Chen, D; Zhou, Y; Cheng, J. Synthesis and characterization of high-efficiency nanocrystal up-conversion phosphors: ytterbium and erbium codoped lanthanum molybdate. Chem. Mater., 2002, 14(7), 2910-2914.
[227]
Li, C.; Yang, J.; Quan, Z.; Yang, P.; Kong, D. Different microstructures of β-nayf4 fabricated by hydrothermal process: effects of ph values and fluoride sources. Chem. Mater., 2007, 19(20), 4933-4942.