Nanomedicine and Early Cancer Diagnosis: Molecular Imaging using Fluorescence Nanoparticles

Page: [2737 - 2761] Pages: 25

  • * (Excluding Mailing and Handling)

Abstract

Incorporating nanotechnology into fluorescent imaging and magnetic resonance imaging (MRI) has shown promising potential for accurate diagnosis of cancer at an earlier stage than the conventional imaging modalities. Molecular imaging (MI) aims to quantitatively characterize, visualize, and measure the biological processes or living cells at molecular and genetic levels. MI modalities have been exploited in different applications including noninvasive determination and visualization of diseased tissues, cell trafficking visualization, early detection, treatment response monitoring, and in vivo visualization of living cells. High-affinity molecular probe and imaging modality to detect the probe are the two main requirements of MI. Recent advances in nanotechnology and allied modalities have facilitated the use of nanoparticles (NPs) as MI probes. Within the extensive group of NPs, fluorescent NPs play a prominent role in optical molecular imaging. The fluorescent NPs used in molecular and cellular imaging can be categorized into three main groups including quantum dots (QDs), upconversion, and dyedoped NPs. Fluorescent NPs have great potential in targeted theranostics including cancer imaging, immunoassay- based cells, proteins and bacteria detections, imaging-guided surgery, and therapy. Fluorescent NPs have shown promising potentials for drug and gene delivery, detection of the chromosomal abnormalities, labeling of DNA, and visualizing DNA replication dynamics. Multifunctional NPs have been successfully used in a single theranostic modality integrating diagnosis and therapy. The unique characteristics of multifunctional NPs make them potential theranostic agents that can be utilized concurrently for diagnosis and therapy. This review provides the state of the art of the applications of nanotechnologies in early cancer diagnosis focusing on fluorescent NPs, their synthesis methods, and perspectives in clinical theranostics.

Keywords: Molecular imaging, Theranostics, Nanotechnology, Fluorescent nanoparticles, Cancer, Early diagnosis.

Graphical Abstract

[1]
Mankoff, D.A. A definition of molecular imaging. J. Nucl. Med., 2007, 48, 18-21.
[2]
Peterson, T.E.; Manning, H.C. Molecular imaging: 18F-FDG PET and a whole lot more. J. Nucl. Med. Technol., 2009, 37(3), 151-161.
[http://dx.doi.org/10.2967/jnmt.109.062729] [PMID: 19692452]
[3]
Strub, S. Je n’ai Vraiment Pas de Chance; Pastel, 1994.
[4]
Pysz, M.A.; Gambhir, S.S.; Willmann, J.K. Molecular imaging: current status and emerging strategies. Clin. Radiol., 2010, 65(7), 500-516.
[http://dx.doi.org/10.1016/j.crad.2010.03.011] [PMID: 20541650]
[5]
Sarafraz, M.; Heidari, M.; Bayat, A.; Hanafi, M.G.; Fahimi, A.; Farasat, M.; Saki, N.; Molaei, J. Role of hrct imaging in predicting the visibility of round window (rw) on patients underwent cochlear implant surgery. Clin. Epidemiol. Glob. Health, 2020, 8, 432-436.
[http://dx.doi.org/10.1016/j.cegh.2019.10.003]
[6]
Haubner, R.; Wester, H.J.; Burkhart, F.; Senekowitsch-Schmidtke, R.; Weber, W.; Goodman, S.L.; Kessler, H.; Schwaiger, M. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J. Nucl. Med., 2001, 42(2), 326-336.
[PMID: 11216533]
[7]
Kelloff, G.J.; Hoffman, J.M.; Johnson, B.; Scher, H.I.; Siegel, B.A.; Cheng, E.Y.; Cheson, B.D.; O’shaughnessy, J.; Guyton, K.Z.; Mankoff, D.A.; Shankar, L.; Larson, S.M.; Sigman, C.C.; Schilsky, R.L.; Sullivan, D.C. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin. Cancer Res., 2005, 11(8), 2785-2808.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2626] [PMID: 15837727]
[8]
Yu, Y.; Annala, A.J.; Barrio, J.R.; Toyokuni, T.; Satyamurthy, N.; Namavari, M.; Cherry, S.R.; Phelps, M.E.; Herschman, H.R.; Gambhir, S.S. Quantification of target gene expression by imaging reporter gene expression in living animals. Nat. Med., 2000, 6(8), 933-937.
[http://dx.doi.org/10.1038/78704] [PMID: 10932234]
[9]
Blankenberg, F.G.; Tait, J.F.; Strauss, H.W. Apoptotic cell death: its implications for imaging in the next millennium. Eur. J. Nucl. Med., 2000, 27(3), 359-367.
[http://dx.doi.org/10.1007/s002590050046] [PMID: 10774891]
[10]
Blankenberg, F.G.; Katsikis, P.D.; Tait, J.F.; Davis, R.E.; Naumovski, L.; Ohtsuki, K.; Kopiwoda, S.; Abrams, M.J.; Darkes, M.; Robbins, R.C.; Maecker, H.T.; Strauss, H.W. In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc. Natl. Acad. Sci. USA, 1998, 95(11), 6349-6354.
[http://dx.doi.org/10.1073/pnas.95.11.6349] [PMID: 9600968]
[11]
Vaupel, P.; Harrison, L. Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist, 2004, 9(Suppl. 5), 4-9.
[http://dx.doi.org/10.1634/theoncologist.9-90005-4] [PMID: 15591417]
[12]
Shields, A.F.; Grierson, J.R.; Dohmen, B.M.; Machulla, H-J.; Stayanoff, J.C.; Lawhorn-Crews, J.M.; Obradovich, J.E.; Muzik, O.; Mangner, T.J. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat. Med., 1998, 4(11), 1334-1336.
[http://dx.doi.org/10.1038/3337] [PMID: 9809561]
[13]
Czernin, J.; Weber, W.A.; Herschman, H.R. Molecular imaging in the development of cancer therapeutics. Annu. Rev. Med., 2006, 57, 99-118.
[http://dx.doi.org/10.1146/annurev.med.57.080904.190431] [PMID: 16409139]
[14]
Torigian, D.A.; Huang, S.S.; Houseni, M.; Alavi, A. Functional imaging of cancer with emphasis on molecular techniques. CA Cancer J. Clin., 2007, 57(4), 206-224.
[http://dx.doi.org/10.3322/canjclin.57.4.206] [PMID: 17626118]
[15]
Yang, Y-J.; Ryu, J-S.; Kim, S-Y.; Oh, S.J. Im, K.C.; Lee, H.; Lee, S.W.; Cho, K.J.; Cheon, G.J.; Moon, D.H. Use of 3′-deoxy-3′-[18F]fluorothymidine PET to monitor early responses to radiation therapy in murine SCCVII tumors. Eur. J. Nucl. Med. Mol. Imaging, 2006, 33(4), 412-419.
[http://dx.doi.org/10.1007/s00259-005-0011-4] [PMID: 16404598]
[16]
Herschman, H.R. Molecular imaging: looking at problems, seeing solutions. Science, 2003, 302, 605-608.
[17]
Massoud, T.F.; Gambhir, S.S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev., 2003, 17(5), 545-580.
[http://dx.doi.org/10.1101/gad.1047403] [PMID: 12629038]
[18]
Ali, Y.; Zohre, R.; Mostafa, J.; Samaneh, R. Dye-doped fluorescent nanoparticles in molecular imaging: a review of recent advances and future opportunities. Mat. Sci. Res., 2014, 11(2), 102-113.
[http://dx.doi.org/10.13005/msri/110203]
[19]
Yadollahpour, A.; Asl, H.M.; Rashidi, S. Applications of nanoparticles in magnetic resonance imaging: a comprehensive review. Asian J. Pharm., 2017, 11, S7-S13.
[20]
Yadollahpour, A.; Hosseini, S.A.A.; Jalilifar, M.; Rashidi, S.; Rai, B.M.M. Magnetic nanoparticle-based drug and gene delivery: a review of recent advances and clinical applications. Int. J. Pharm. Technol., 2016, 8, 11451-11466.
[21]
Ali, Y.; Zohre, R.; Mostafa, J.; Samaneh, R. Applications of upconversion nanoparticles in molecular imaging: a review of recent advances and future opportunities. Biosci. Biotechnol. Res. Asia, 2015, 12, 131-140.
[http://dx.doi.org/10.13005/bbra/1615]
[22]
Durairaj, B.; Santhi, R.; Hemalatha, A. Isolation of chitosan from fish scales of catla catla and synthesis, characterization and screening for larvicidal potential of chitosan-based silver nanoparticles. Drug Invent. Today, 2018, 10, 1357-1362.
[23]
Wickline, S.A.; Neubauer, A.M.; Winter, P.M.; Caruthers, S.D.; Lanza, G.M. Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J. Magn. Reson. Imaging, 2007, 25(4), 667-680.
[http://dx.doi.org/10.1002/jmri.20866] [PMID: 17347992]
[24]
Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater., 2005, 4(6), 435-446.
[http://dx.doi.org/10.1038/nmat1390] [PMID: 15928695]
[25]
Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol., 2004, 22(1), 47-52.
[http://dx.doi.org/10.1038/nbt927] [PMID: 14704706]
[26]
Gao, X.; Cui, Y.; Levenson, R.M.; Chung, L.W.K.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol., 2004, 22(8), 969-976.
[http://dx.doi.org/10.1038/nbt994] [PMID: 15258594]
[27]
Hood, J.D.; Bednarski, M.; Frausto, R.; Guccione, S.; Reisfeld, R.A.; Xiang, R.; Cheresh, D.A. Tumor regression by targeted gene delivery to the neovasculature. Science, 2002, 296, 2404-2407.
[28]
Weissleder, R.; Mahmood, U. Molecular imaging. Radiology, 2001, 219(2), 316-333.
[http://dx.doi.org/10.1148/radiology.219.2.r01ma19316] [PMID: 11323453]
[29]
Wang, D.S.; Dake, M.D.; Park, J.M.; Kuo, M.D. Molecular imaging: a primer for interventionalists and imagers. J. Vasc. Interv. Radiol., 2009, 20(7)(Suppl.), S505-S522.
[http://dx.doi.org/10.1016/j.jvir.2009.04.042] [PMID: 19560036]
[30]
Sheth, R.A.; Mahmood, U. Optical molecular imaging and its emerging role in colorectal cancer. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 299(4), G807-G820.
[http://dx.doi.org/10.1152/ajpgi.00195.2010] [PMID: 20595618]
[31]
Dzik-Jurasz, A.S.K. Molecular imaging in vivo: an introduction. Br. J. Radiol., 2003, 76(Spec No 2), S98-S109.
[http://dx.doi.org/10.1259/bjr/25833499] [PMID: 15572339]
[32]
Bremer, C.; Ntziachristos, V.; Weissleder, R. Optical-based molecular imaging: contrast agents and potential medical applications. Eur. Radiol., 2003, 13(2), 231-243.
[http://dx.doi.org/10.1007/s00330-002-1610-0] [PMID: 12598985]
[33]
Cassidy, P.J.; Radda, G.K. Molecular imaging perspectives. J. R. Soc. Interface, 2005, 2(3), 133-144.
[http://dx.doi.org/10.1098/rsif.2005.0040] [PMID: 16849174]
[34]
Jiang, S.; Gnanasammandhan, M.K.; Zhang, Y. Optical imaging-guided cancer therapy with fluorescent nanoparticles. J. R. Soc. Interface, 2010, 7(42), 3-18.
[http://dx.doi.org/10.1098/rsif.2009.0243] [PMID: 19759055]
[35]
Tahmasebi, P.; Chaleshtori, M.H.; Abdollahnejad, F.; Alavi, Z.; Sadeghian, L.; Talebi, F.; Mohammadi-Asl, J.; Saki, N.; Kazemi Nezhad, S.R.; Tabatabaiefar, M.A. Frequency of gjb2 mutations in families with autosomal recessive non-syndromic hearing loss in khuzestan province. Genetika, 2018, 50, 837-846.
[http://dx.doi.org/10.2298/GENSR1803837T]
[36]
Soheila, N.; Nastaran, R.; Maryam, S.; Nader, S. The diagnostic value of the p53 tumor marker as a prognostic factor in patients with squamous cell carcinoma of the larynx. Biomed. Pharmacol. J., 2015, 8, 9-14.
[http://dx.doi.org/10.13005/bpj/549]
[37]
He, M.; Crow, J.; Roth, M.; Zeng, Y.; Godwin, A.K. Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip, 2014, 14(19), 3773-3780.
[http://dx.doi.org/10.1039/C4LC00662C] [PMID: 25099143]
[38]
Rodríguez-Antona, C.; Taron, M. Pharmacogenomic biomarkers for personalized cancer treatment. J. Intern. Med., 2015, 277(2), 201-217.
[http://dx.doi.org/10.1111/joim.12321] [PMID: 25338550]
[39]
Nikakhlagh, S.; Ranjbari, N.; Khorami, E.; Saki, N. Association between serum levels of interleukin-6 and stage of laryngeal cancer. Iran. J. Otorhinolaryngol., 2015, 27(80), 199-205.
[PMID: 26082901]
[40]
Langer, R.; Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nature, 1976, 263(5580), 797-800.
[http://dx.doi.org/10.1038/263797a0] [PMID: 995197]
[41]
Drexler, K.E.; Wejnert, J. Nanotechnology and policy. Jurimetrics, 2004, 45(1), 1-22.
[42]
Phelps, M.E. Positron emission tomography provides molecular imaging of biological processes. Proc. Natl. Acad. Sci. USA, 2000, 97(16), 9226-9233.
[http://dx.doi.org/10.1073/pnas.97.16.9226] [PMID: 10922074]
[43]
Singh, M.; Singh, S.; Prasad, S.; Gambhir, I.S. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig. J. Nanomater. Biostruct., 2008, 3, 115-122.
[44]
Yadollahpour, A.; Jalilifar, M.; Rashidi, S. A review of the feasibility and clinical applications of magnetic nanoparticles as contrast agents in magnetic resonance imaging. Int. J. Pharm. Technol., 2016, 8, 14737-14748.
[45]
Ganguly, S.; Mukhopadhayay, S.K. Nano science and nanotechnology: journey from past to present and prospect in veterinary science and medicine. Inter. J. NanoSc. Nanotech, 2011, 2, 79-83.
[46]
Yadollahpour, A.; Rashidi, S. Magnetic nanoparticles: a review of chemical and physical characteristics important in medical applications. Orient. J. Chem., 2015, 31, 25-30.
[http://dx.doi.org/10.13005/ojc/31.Special-Issue1.03]
[47]
Yadollahpour, A.; Venkateshwarlu, G. Applications of gadolinium nanoparticles in magnetic resonance imaging: a review on recent advances in clinical imaging. Int. J. Pharm. Technol., 2016, 8, 11379-11393.
[48]
Yadollahpour, A. Magnetic nanoparticles in medicine: a review of synthesis methods and important characteristics. Orient. J. Chem., 2015, 31, 271-277.
[http://dx.doi.org/10.13005/ojc/31.Special-Issue1.33]
[49]
Chalfie, M.; Tu, Y.; Euskirchen, G.; Ward, W.; Prasher, D. Green fluorescent protein as a marker for gene expression. Science, 1994, 263, 802-805.
[50]
Wolf, F.; Li, W.; Li, F.; Li, C-Y. Novel luciferase-based reporter system to monitor activation of ErbB2/Her2/neu pathway noninvasively during radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 2011, 79(1), 233-238.
[http://dx.doi.org/10.1016/j.ijrobp.2010.08.001] [PMID: 20934271]
[51]
Sharma, P.; Brown, S.; Walter, G.; Santra, S.; Moudgil, B. Nanoparticles for bioimaging. Adv. Colloid Interface Sci., 2006, 123-126, 471-485.
[http://dx.doi.org/10.1016/j.cis.2006.05.026] [PMID: 16890182]
[52]
Haemisch, Y. Molecular imaging with pet: new insights into the molecular basis of health and disease. Medicamundi, 2003, 47, 18-27.
[53]
He, X.; Wang, K.; Cheng, Z. In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2010, 2(4), 349-366.
[http://dx.doi.org/10.1002/wnan.85] [PMID: 20564463]
[54]
Schwann, T. Microscopical researches into the accordance in the structure and growth of animals and plants. Sydenham Society: London, 1969, 1810-1882.
[55]
Bünzli, J-C.G. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev., 2010, 110(5), 2729-2755.
[http://dx.doi.org/10.1021/cr900362e] [PMID: 20151630]
[56]
Sweetha, G.; Abraham, A.; Dhanraj, M.; Jain, A.R. Fabrication and evaluation of polylactic acid membrane for drug delivery system. Drug Invent. Today, 2018, 10, 433-436.
[57]
Velraj, M.; Shruthi, V.; Murugavel, S.; Shanmugam, R. Evaluation of Quercetin-loaded Poly-lactide-co-glycolide Acid Silver Nanoparticles from the Ethanolic Extract of Mallotus Philippensis Fruits. Drug Invent. Today, 2018, 10, 253-256.
[58]
Santra, S.; Wang, K.; Tapec, R.; Tan, W. Development of novel dye-doped silica nanoparticles for biomarker application. J. Biomed. Opt., 2001, 6(2), 160-166.
[http://dx.doi.org/10.1117/1.1353590] [PMID: 11375725]
[59]
Zhao, X.; Bagwe, R.P.; Tan, W. Development of Organic-Dye-Doped Silica Nanoparticles in a Reverse Microemulsion. Adv. Mater., 2004, 16, 173-176.
[http://dx.doi.org/10.1002/adma.200305622]
[60]
Champagne, P.O.; Westwick, H.; Bouthillier, A.; Sawan, M. Colloidal stability of superparamagnetic iron oxide nanoparticles in the central nervous system: a review. Nanomedicine (Lond.), 2018, 13(11), 1385-1400.
[http://dx.doi.org/10.2217/nnm-2018-0021] [PMID: 29949472]
[61]
Tiwari, A.; Singh, A.; Debnath, A.; Kaul, A.; Garg, N.; Mathur, R.; Singh, A.; Randhawa, J.K. Multifunctional magneto-fluorescent nanocarriers for dual mode imaging and targeted drug delivery. ACS Appl. Nano Mater., 2019, 2, 3060-3072.
[http://dx.doi.org/10.1021/acsanm.9b00421]
[62]
Sugimoto, T. Preparation of monodispersed colloidal particles. Adv. Colloid Interface Sci., 1987, 28, 65-108.
[http://dx.doi.org/10.1016/0001-8686(87)80009-X]
[63]
Lee, J.E.; Lee, N.; Kim, T.; Kim, J.; Hyeon, T. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc. Chem. Res., 2011, 44(10), 893-902.
[http://dx.doi.org/10.1021/ar2000259] [PMID: 21848274]
[64]
Van Helden, A.K.; Jansen, J.W.; Vrij, A. Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents. J. Colloid Interface Sci., 1981, 81, 354-368.
[http://dx.doi.org/10.1016/0021-9797(81)90417-3]
[65]
Tan, C.G.; Bowen, B.D.; Epstein, N. Production of monodisperse colloidal silica spheres: effect of temperature. J. Colloid Interface Sci., 1987, 118, 290-293.
[http://dx.doi.org/10.1016/0021-9797(87)90458-9]
[66]
van Blaaderen, A.; Vrij, A. Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres. Langmuir, 1992, 8, 2921-2931.
[http://dx.doi.org/10.1021/la00048a013]
[67]
Nyffenegger, R.; Quellet, C.; Ricka, J. Synthesis of fluorescent, monodisperse, colloidal silica particles. J. Colloid Interface Sci., 1993, 159, 150-157.
[http://dx.doi.org/10.1006/jcis.1993.1306]
[68]
Yamauchi, H.; Ishikawa, T.; Kondo, S. Surface characterization of ultramicro spherical particles of silica prepared by w/o microemulsion method. Colloids Surf., 1989, 37, 71-80.
[http://dx.doi.org/10.1016/0166-6622(89)80107-6]
[69]
Bagwe, R.P.; Yang, C.; Hilliard, L.R.; Tan, W. Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir, 2004, 20(19), 8336-8342.
[http://dx.doi.org/10.1021/la049137j] [PMID: 15350111]
[70]
Bagwe, R.P.; Hilliard, L.R.; Tan, W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir, 2006, 22(9), 4357-4362.
[http://dx.doi.org/10.1021/la052797j] [PMID: 16618187]
[71]
Tapec, R.; Zhao, X.J.; Tan, W. Development of organic dye-doped silica nanoparticles for bioanalysis and biosensors. J. Nanosci. Nanotechnol., 2002, 2(3-4), 405-409.
[http://dx.doi.org/10.1166/jnn.2002.114] [PMID: 12908270]
[72]
Santra, S.; Yang, H.; Dutta, D.; Stanley, J.T.; Holloway, P.H.; Tan, W.; Moudgil, B.M.; Mericle, R.A. TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem. Commun. (Camb.), 2004, (24), 2810-2811.
[http://dx.doi.org/10.1039/b411916a] [PMID: 15599418]
[73]
Wang, L.; Lofton, C.; Popp, M.; Tan, W. Using luminescent nanoparticles as staining probes for Affymetrix GeneChips. Bioconjug. Chem., 2007, 18(3), 610-613.
[http://dx.doi.org/10.1021/bc060365u] [PMID: 17447724]
[74]
van Blaaderen, A.; Vrij, A. Synthesis and characterization of monodisperse colloidal organo-silica spheres. J. Colloid Interface Sci., 1993, 156, 1-18.
[http://dx.doi.org/10.1006/jcis.1993.1073]
[75]
Hermanson, G.T. Bioconjugate Techniques; Academic Press: London, 2013.
[76]
Roy, I.; Ohulchanskyy, T.Y.; Bharali, D.J.; Pudavar, H.E.; Mistretta, R.A.; Kaur, N.; Prasad, P.N. Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc. Natl. Acad. Sci. USA, 2005, 102(2), 279-284.
[http://dx.doi.org/10.1073/pnas.0408039101] [PMID: 15630089]
[77]
Zhu, S-G.; Xiang, J-J.; Li, X-L.; Shen, S-R.; Lu, H.B.; Zhou, J.; Xiong, W.; Zhang, B-C.; Nie, X-M.; Zhou, M.; Tang, K.; Li, G-Y. Poly(L-lysine)-modified silica nanoparticles for the delivery of antisense oligonucleotides. Biotechnol. Appl. Biochem., 2004, 39(Pt 2), 179-187.
[http://dx.doi.org/10.1042/BA20030077] [PMID: 15032738]
[78]
Wang, L.; Wang, K.; Santra, S.; Zhao, X.; Hilliard, L.R.; Smith, J.E.; Wu, Y.; Tan, W. Watching silica nanoparticles glow in the biological world. Anal. Chem., 2006, 78, 646-654.
[http://dx.doi.org/10.1021/ac0693619]
[79]
Kneuer, C.; Sameti, M.; Bakowsky, U.; Schiestel, T.; Schirra, H.; Schmidt, H.; Lehr, C.M. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjug. Chem., 2000, 11(6), 926-932.
[http://dx.doi.org/10.1021/bc0000637] [PMID: 11087343]
[80]
Luo, D.; Han, E.; Belcheva, N.; Saltzman, W.M.A. A self-assembled, modular DNA delivery system mediated by silica nanoparticles. J. Control. Release, 2004, 95(2), 333-341.
[http://dx.doi.org/10.1016/j.jconrel.2003.11.019] [PMID: 14980781]
[81]
Kishore, M.; Abdulqader, A.T.; Shihab Ahmad, H.; Hanumantharao, Y. Anticancer and antibacterial potential of green silver nanoparticles synthesized from maytenus senegalensis (l.) leaf extract and their characterization. Drug Invent. Today, 2018, 10, 554-561.
[82]
Barbé, C.; Bartlett, J.; Kong, L.; Finnie, K.; Lin, H.Q.; Larkin, M.; Calleja, S.; Bush, A.; Calleja, G. Silica particles: a novel drug-delivery system. Adv. Mater., 2004, 16, 1959-1966.
[http://dx.doi.org/10.1002/adma.200400771]
[83]
Roy, I.; Ohulchanskyy, T.Y.; Pudavar, H.E.; Bergey, E.J.; Oseroff, A.R.; Morgan, J.; Dougherty, T.J.; Prasad, P.N. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J. Am. Chem. Soc., 2003, 125(26), 7860-7865.
[http://dx.doi.org/10.1021/ja0343095] [PMID: 12823004]
[84]
Lai, C-Y.; Trewyn, B.G.; Jeftinija, D.M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V.S-Y. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc., 2003, 125(15), 4451-4459.
[http://dx.doi.org/10.1021/ja028650l] [PMID: 12683815]
[85]
Jin, S.; Ye, K. Nanoparticle-mediated drug delivery and gene therapy. Biotechnol. Prog., 2007, 23(1), 32-41.
[http://dx.doi.org/10.1021/bp060348j] [PMID: 17269667]
[86]
Kumar, M.N.V.R.; Sameti, M.; Mohapatra, S.S.; Kong, X.; Lockey, R.F.; Bakowsky, U.; Lindenblatt, G.; Schmidt, C.H.; Lehr, C-M. Cationic silica nanoparticles as gene carriers: synthesis, characterization and transfection efficiency in vitro and in vivo. J. Nanosci. Nanotechnol., 2004, 4, 876-881.
[http://dx.doi.org/10.1166/jnn.2004.120] [PMID: 15570975]
[87]
Anderson, W.F. Assessment of adenoviral vector safety and toxicity: report of the National Institutes of Health Recombinant DNA Advisory Committee. Hum. Gene Ther., 2002, 13(1), 3-13.
[http://dx.doi.org/10.1089/10430340152712629] [PMID: 11779411]
[88]
Muruve, D.A. The innate immune response to adenovirus vectors. Hum. Gene Ther., 2004, 15(12), 1157-1166.
[http://dx.doi.org/10.1089/hum.2004.15.1157] [PMID: 15684693]
[89]
Zhao, X.; Tapec-Dytioco, R.; Tan, W. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J. Am. Chem. Soc., 2003, 125(38), 11474-11475.
[http://dx.doi.org/10.1021/ja0358854] [PMID: 13129331]
[90]
Zhou, X.; Zhou, J. Improving the signal sensitivity and photostability of DNA hybridizations on microarrays by using dye-doped core-shell silica nanoparticles. Anal. Chem., 2004, 76(18), 5302-5312.
[http://dx.doi.org/10.1021/ac049472c] [PMID: 15362886]
[91]
Yan, J.; Estévez, M.C.; Smith, J.E.; Wang, K.; He, X.; Wang, L.; Tan, W. Dye-doped nanoparticles for bioanalysis. Nano Today, 2007, 2, 44-50.
[http://dx.doi.org/10.1016/S1748-0132(07)70086-5]
[92]
Golub, T.R.; Slonim, D.K.; Tamayo, P.; Huard, C.; Gaasenbeek, M.; Mesirov, J.P.; Coller, H.; Loh, M.L.; Downing, J.R.; Caligiuri, M.A.; Bloomfield, C.D.; Lander, E.S. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999, 286, 531-537.
[93]
Grifantini, R.; Bartolini, E.; Muzzi, A.; Draghi, M.; Frigimelica, E.; Berger, J.; Ratti, G.; Petracca, R.; Galli, G.; Agnusdei, M.; Giuliani, M.M.; Santini, L.; Brunelli, B.; Tettelin, H.; Rappuoli, R.; Randazzo, F.; Grandi, G. Previously unrecognized vaccine candidates against group B meningococcus identified by DNA microarrays. Nat. Biotechnol., 2002, 20(9), 914-921.
[http://dx.doi.org/10.1038/nbt728] [PMID: 12172557]
[94]
Tan, M.; Wang, G.; Hai, X.; Ye, Z.; Yuan, J. Development of functionalized fluorescent europium nanoparticles for biolabeling and time-resolved fluorometric applications. J. Mater. Chem., 2004, 14, 2896.
[http://dx.doi.org/10.1039/b407535h]
[95]
Houser, C.R. Cholinergic synapses in the central nervous system: studies of the immunocytochemical localization of choline acetyltransferase. J. Electron Microsc. Tech., 1990, 15(1), 2-19.
[http://dx.doi.org/10.1002/jemt.1060150103] [PMID: 2187067]
[96]
Deng, T.; Li, J-S.; Jiang, J-H.; Shen, G-L.; Yu, R-Q. Preparation of near-ir fluorescent nanoparticles for fluorescence-anisotropy-based immunoagglutination assay in whole blood. Adv. Funct. Mater., 2006, 16, 2147-2155.
[http://dx.doi.org/10.1002/adfm.200600149]
[97]
Zhao, X.; Hilliard, L.R.; Mechery, S.J.; Wang, Y.; Bagwe, R.P.; Jin, S.; Tan, W. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc. Natl. Acad. Sci. USA, 2004, 101(42), 15027-15032.
[http://dx.doi.org/10.1073/pnas.0404806101] [PMID: 15477593]
[98]
Wang, L.; Yang, C.; Tan, W. Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Lett., 2005, 5(1), 37-43.
[http://dx.doi.org/10.1021/nl048417g] [PMID: 15792409]
[99]
Wang, L.; Zhao, W.; Tan, W. Bioconjugated silica nanoparticles: development and applications. Nano Res., 2008, 1, 99-115.
[http://dx.doi.org/10.1007/s12274-008-8018-3]
[100]
Kumar, R.; Aadil, K.R.; Ranjan, S.; Kumar, V.B. Advances in nanotechnology and nanomaterials based strategies for neural tissue engineering. J. Drug Deliv. Sci. Technol., 2020, 57, 101617.
[http://dx.doi.org/10.1016/j.jddst.2020.101617]
[101]
Wu, J.; Ye, Z.; Wang, G.; Yuan, J.W.U. Multifunctional nanoparticles possessing magnetic, long-lived fluorescence and bio-affinity properties for time-resolved fluorescence cell imaging. Talanta, 2007, 72(5), 1693-1697.
[http://dx.doi.org/10.1016/j.talanta.2007.03.018] [PMID: 19071818]
[102]
Levy, Laurent; Sahoo, Yudhisthira; Kim, Kyoung-Soo; Bergey, Earl.J. Prasad, P.N Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications. Chem. Mater., 2002, 14(9), 3715-3721.
[103]
Lu, C-W.; Hung, Y.; Hsiao, J-K.; Yao, M.; Chung, T-H.; Lin, Y-S.; Wu, S-H.; Hsu, S-C.; Liu, H-M.; Mou, C-Y.; Yang, C-S.; Huang, D-M.; Chen, Y-C. Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett., 2007, 7(1), 149-154.
[http://dx.doi.org/10.1021/nl0624263] [PMID: 17212455]
[104]
Santra, S.; Bagwe, R.P.; Dutta, D.; Stanley, J.T.; Walter, G.A.; Tan, W.; Moudgil, B.M.; Mericle, R.A. Synthesis and characterization of fluorescent, radio-opaque, and paramagnetic silica nanoparticles for multimodal bioimaging applications. Adv. Mater., 2005, 17, 2165-2169.
[http://dx.doi.org/10.1002/adma.200500018]
[105]
Kircher, M.F.; Mahmood, U.; King, R.S.; Weissleder, R.; Josephson, L. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res., 2003, 63(23), 8122-8125.
[PMID: 14678964]
[106]
Lu, Yu. Yin, Yadong; Brian, T.; Xia, Y. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol−gel approach. Nano Letters., 2002, 2(3), 183-186.
[107]
Yu, W.W.; Chang, E.; Drezek, R.; Colvin, V.L. Water-soluble quantum dots for biomedical applications. Biochem. Biophys. Res. Commun., 2006, 348(3), 781-786.
[http://dx.doi.org/10.1016/j.bbrc.2006.07.160] [PMID: 16904647]
[108]
Frangioni, J.V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol., 2003, 7(5), 626-634.
[http://dx.doi.org/10.1016/j.cbpa.2003.08.007] [PMID: 14580568]
[109]
Kim, S.; Lim, Y.T.; Soltesz, E.G.; De Grand, A.M.; Lee, J.; Nakayama, A.; Parker, J.A.; Mihaljevic, T.; Laurence, R.G.; Dor, D.M.; Cohn, L.H.; Bawendi, M.G.; Frangioni, J.V. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol., 2004, 22(1), 93-97.
[http://dx.doi.org/10.1038/nbt920] [PMID: 14661026]
[110]
Gao, X.; Chan, W.C.W.; Nie, S. Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J. Biomed. Opt., 2002, 7(4), 532-537.
[http://dx.doi.org/10.1117/1.1506706] [PMID: 12421118]
[111]
Bruchez, M., Jr; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281, 2013-2016.
[112]
Sperling, R.A.; Parak, W.J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2010, 368(1915), 1333-1383.
[http://dx.doi.org/10.1098/rsta.2009.0273] [PMID: 20156828]
[113]
Wu, X.; Liu, H.; Liu, J.; Haley, K.N.; Treadway, J.A.; Larson, J.P.; Ge, N.; Peale, F.; Bruchez, M.P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol., 2003, 21(1), 41-46.
[http://dx.doi.org/10.1038/nbt764] [PMID: 12459735]
[114]
Chan, W.C.W.; Maxwell, D.J.; Gao, X.; Bailey, R.E.; Han, M.; Nie, S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol., 2002, 13(1), 40-46.
[http://dx.doi.org/10.1016/S0958-1669(02)00282-3] [PMID: 11849956]
[115]
Bentolila, L.A.; Ebenstein, Y.; Weiss, S. Quantum dots for in vivo small-animal imaging. J. Nucl. Med., 2009, 50(4), 493-496.
[http://dx.doi.org/10.2967/jnumed.108.053561] [PMID: 19289434]
[116]
Henglein, A. Photochemistry of colloidal cadmium sulfide. 2. effects of adsorbed methyl viologen and of colloidal platinum. J. Phys. Chem., 1982, 86, 2291-2293.
[http://dx.doi.org/10.1021/j100210a010]
[117]
Rossetti, R.; Brus, L. Electron-hole recombination emission as a probe of surface chemistry in aqueous cadmium sulfide colloids. J. Phys. Chem., 1982, 86, 4470-4472.
[http://dx.doi.org/10.1021/j100220a003]
[118]
Kortan, A.R.; Hull, R.; Opila, R.L.; Bawendi, M.G.; Steigerwald, M.L.; Carroll, P.J.; Brus, L.E. Nucleation and growth of cdse on zns quantum crystallite seeds, and vice versa, in inverse micelle media. J. Am. Chem. Soc., 1990, 112, 1327-1332.
[http://dx.doi.org/10.1021/ja00160a005]
[119]
Brus, L. Chemical approaches to semiconductor nanocrystals. J. Phys. Chem. Solids, 1998, 59, 459-465.
[http://dx.doi.org/10.1016/S0022-3697(97)00201-1]
[120]
Murray, C.B.; Norris, D.J.; Bawendi, M.G. Synthesis and characterization of nearly monodisperse cde (e = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc., 1993, 115, 8706-8715.
[http://dx.doi.org/10.1021/ja00072a025]
[121]
Dmitri, V.; Talapin Andrey, L.; Rogach Andreas, K.; Markus, H.; Weller, H. Highly luminescent monodisperse cdse and cdse/zns nanocrystals synthesized in a hexadecylamine−trioctylphosphine oxide−trioctylphospine mixture. Nano Letters., 2001, 1(4), 207-211.
[122]
Peng, X.; Michael Schlamp, C.; Kadavanich Andreas, C.; Alivisatos, A. P Epitaxial growth of highly luminescent cdse/cds core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc., 1997, 119(30), 7019-7029.
[123]
Hines, M.A.; Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing zns-capped cdse nanocrystals. J. Phys. Chem., 1996, 100, 468-471.
[http://dx.doi.org/10.1021/jp9530562]
[124]
Dabbousi, B.O.; Rodriguez-Viejo, J.; Mikulec, F.V.; Heine, J.R.; Mattoussi, H.; Ober, R.; Jensen, K.F.; Bawendi, M.G. (Cdse)zns core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B, 1997, 101(46), 9463-9475.
[125]
Ozkan, M. Quantum dots and other nanoparticles: what can they offer to drug discovery? Drug Discov. Today, 2004, 9(24), 1065-1071.
[http://dx.doi.org/10.1016/S1359-6446(04)03291-X] [PMID: 15582795]
[126]
Sapsford, K.E.; Pons, T.; Medintz, I.L.; Mattoussi, H. Biosensing with luminescent semiconductor quantum dots. Sensors (Basel), 2006, 6, 925.
[http://dx.doi.org/10.3390/s6080925]
[127]
Guzelian, A.A.; Banin, U.; Kadavanich, A.V.; Peng, X.; Alivisatos, A.P. Colloidal chemical synthesis and characterization of inas nanocrystal quantum dots. Appl. Phys. Lett., 1996, 69, 1432-1434.
[http://dx.doi.org/10.1063/1.117605]
[128]
Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271, 933-937.
[129]
Sapra, S.; Sarma, D.D. Evolution of the electronic structure with size in ii-vi semiconductor nanocrystals. Phys. Rev. B Condens. Matter Mater. Phys., 2004, 69, 125304.
[http://dx.doi.org/10.1103/PhysRevB.69.125304]
[130]
Schmid, G. Nanoparticles From Theory to Application; Wiley-VCH: Hoboken, 2011.
[131]
Bawendi, M.G.; Steigerwald, M.L.; Brus, L.E. The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annu. Rev. Phys. Chem., 1990, 41, 477-496.
[http://dx.doi.org/10.1146/annurev.pc.41.100190.002401]
[132]
Chan, W.C.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281, 2016-2018.
[133]
Qu, L.; Peng, X. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc., 2002, 124(9), 2049-2055.
[http://dx.doi.org/10.1021/ja017002j] [PMID: 11866620]
[134]
William Yu, W. Qu, Lianhua; Guo, Wenzhuo; Peng, X Experimental determination of the extinction coefficient of cdte, cdse, and cds nanocrystals. Chem. Mater., 2003, 15(14), 2854-2860.
[135]
Leatherdale, C.A.; Woo, W-K.; Mikulec, F.V.; Bawendi, M.G. On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B, 2002, 106(31), 7619-7622.
[136]
Hanaki, K.; Momo, A.; Oku, T.; Komoto, A.; Maenosono, S.; Yamaguchi, Y.; Yamamoto, K. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem. Biophys. Res. Commun., 2003, 302(3), 496-501.
[http://dx.doi.org/10.1016/S0006-291X(03)00211-0] [PMID: 12615061]
[137]
Gao, X.; Nie, S. Molecular profiling of single cells and tissue specimens with quantum dots. Trends Biotechnol., 2003, 21(9), 371-373.
[http://dx.doi.org/10.1016/S0167-7799(03)00209-9] [PMID: 12948664]
[138]
Katz, L.C.; Burkhalter, A.; Dreyer, W.J. Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex. Nature, 1984, 310(5977), 498-500.
[http://dx.doi.org/10.1038/310498a0] [PMID: 6205278]
[139]
Gao, X.; Yang, L.; Petros, J.A.; Marshall, F.F.; Simons, J.W.; Nie, S. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol., 2005, 16(1), 63-72.
[http://dx.doi.org/10.1016/j.copbio.2004.11.003] [PMID: 15722017]
[140]
O’Neil, M.; Marohn, J.; McLendon, G. Dynamics of electron-hole pair recombination in semiconductor clusters. J. Phys. Chem., 1990, 94, 4356-4363.
[http://dx.doi.org/10.1021/j100373a089]
[141]
Lakowicz, J.R.; Masters, B.R. Principles of fluorescence spectroscopy. J. Biomed. Opt., 2008, 13, 029901.
[142]
Giepmans, B.N.G.; Adams, S.R.; Ellisman, M.H.; Tsien, R.Y. The Fluorescent Toolbox for Assessing Protein Location and Function. Science, 2006, 312, 217-224.
[143]
Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307(5709), 538-544.
[http://dx.doi.org/10.1126/science.1104274] [PMID: 15681376]
[144]
Pinaud, F.; Michalet, X.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J.; Iyer, G.; Weiss, S. Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials, 2006, 27(9), 1679-1687.
[http://dx.doi.org/10.1016/j.biomaterials.2005.11.018] [PMID: 16318871]
[145]
Wolfgang, J.; Daniele, G.; Daniela, Z.; Anke, S.; Teresa, P.; Christine, M.; Shara, C.; Markus, S.; Richard, E.; Zev, B.; Carlos, B.; Carolyn, R.; Paul Alivisatos, A. Conjugation of dna to silanized colloidal semiconductor nanocrystalline quantum dots. Chem. Mater., 2002, 14(5), 2113-2119.
[146]
Sandros, M.G.; Gao, D.; Benson, D.E. A modular nanoparticle-based system for reagentless small molecule biosensing. J. Am. Chem. Soc., 2005, 127(35), 12198-12199.
[http://dx.doi.org/10.1021/ja054166h] [PMID: 16131178]
[147]
Ding, S-Y.; Rumbles, G.; Jones, M.; Tucker, M.P.; Nedeljkovic, J.; Simon, M.N.; Wall, J.S.; Himmel, M.E. Bioconjugation of(cdse)zns quantum dots using a genetically engineered multiple polyhistidine tagged cohesin/dockerin protein polymer. Macromol. Mater. Eng., 2004, 289, 622-628.
[http://dx.doi.org/10.1002/mame.200400081]
[148]
Pinaud, F.; King, D.; Moore, H-P.; Weiss, S. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J. Am. Chem. Soc., 2004, 126(19), 6115-6123.
[http://dx.doi.org/10.1021/ja031691c] [PMID: 15137777]
[149]
Jaiswal, J.K.; Mattoussi, H.; Mauro, J.M.; Simon, S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol., 2003, 21(1), 47-51.
[http://dx.doi.org/10.1038/nbt767] [PMID: 12459736]
[150]
Goldman, E.R.; Balighian, E.D.; Mattoussi, H.; Kuno, M.K.; Mauro, J.M.; Tran, P.T.; Anderson, G.P. Avidin: a natural bridge for quantum dot-antibody conjugates. J. Am. Chem. Soc., 2002, 124(22), 6378-6382.
[http://dx.doi.org/10.1021/ja0125570] [PMID: 12033868]
[151]
Mattoussi, Hedi; Matthew, Mauro J.; Anderson, G.P; Sundar, V.C; Mikulec, F.V; Bawendi, M.G Self-Assembly of CdSe−ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein. J. Am. Chem. Soc., 2000, 122(49), 12142-12150.
[152]
Goldman, E.R.; Clapp, A.R.; Anderson, G.P.; Uyeda, H.T.; Mauro, J.M.; Medintz, I.L.; Mattoussi, H. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal. Chem., 2004, 76(3), 684-688.
[http://dx.doi.org/10.1021/ac035083r] [PMID: 14750863]
[153]
Scheuhammer, A.M. The chronic toxicity of aluminium, cadmium, mercury, and lead in birds: a review. Environ. Pollut., 1987, 46(4), 263-295.
[http://dx.doi.org/10.1016/0269-7491(87)90173-4] [PMID: 15092724]
[154]
Çelik, A.; Cömelekoğlu, U.; Yalin, S. A study on the investigation of cadmium chloride genotoxicity in rat bone marrow using micronucleus test and chromosome aberration analysis. Toxicol. Ind. Health, 2005, 21(10), 243-248.
[http://dx.doi.org/10.1191/0748233705th237oa] [PMID: 16463956]
[155]
Nath, R.; Prasad, R.; Palinal, V.K.; Chopra, R.K. Molecular basis of cadmium toxicity. Prog. Food Nutr. Sci., 1984, 8(1-2), 109-163.
[PMID: 6385135]
[156]
Hoshino, A.; Fujioka, K.; Oku, T.; Suga, M.; Sasaki, Y.F.; Ohta, T.; Yasuhara, M.; Suzuki, K.; Yamamoto, K. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Letters, 2004, 4(11), 2163-2169.
[157]
Kirchner, C.; Liedl, T.; Kudera, S.; Pellegrino, T.; Muñoz Javier, A.; Gaub, H.E.; Stölzle, S.; Fertig, N.; Parak, W.J. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett., 2005, 5(2), 331-338.
[http://dx.doi.org/10.1021/nl047996m] [PMID: 15794621]
[158]
Hardman, R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect., 2006, 114(2), 165-172.
[http://dx.doi.org/10.1289/ehp.8284] [PMID: 16451849]
[159]
Dubertret, B.; Skourides, P.; Norris, D.J.; Noireaux, V.; Brivanlou, A.H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles.Science; , 2002, 298, pp. 1759-1762.
[160]
Bakalova, R.; Ohba, H.; Zhelev, Z.; Ishikawa, M.; Baba, Y. Quantum dots as photosensitizers? Nat. Biotechnol., 2004, 22(11), 1360-1361.
[http://dx.doi.org/10.1038/nbt1104-1360] [PMID: 15529155]
[161]
Samia, A.C.S.; Chen, X.; Burda, C. Semiconductor quantum dots for photodynamic therapy. J. Am. Chem. Soc., 2003, 125(51), 15736-15737.
[http://dx.doi.org/10.1021/ja0386905] [PMID: 14677951]
[162]
Folkman, J. What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst., 1990, 82(1), 4-6.
[http://dx.doi.org/10.1093/jnci/82.1.4] [PMID: 1688381]
[163]
Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med., 2000, 6(4), 389-395.
[http://dx.doi.org/10.1038/74651] [PMID: 10742145]
[164]
Vallabhajosula, S. Molecular Imaging : Radiopharmaceuticals for PET and SPECT; Springer-Verlag: Berlin, 2009.
[http://dx.doi.org/10.1007/978-3-540-76735-0]
[165]
Cai, W.; Shin, D.W.; Chen, K.; Gheysens, O.; Cao, Q.; Wang, S.X.; Gambhir, S.S.; Chen, X. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett., 2006, 6(4), 669-676.
[http://dx.doi.org/10.1021/nl052405t] [PMID: 16608262]
[166]
Gerion, D.; Parak, W.J.; Williams, S.C.; Zanchet, D.; Micheel, C.M.; Alivisatos, A.P. Sorting fluorescent nanocrystals with DNA. J. Am. Chem. Soc., 2002, 124(24), 7070-7074.
[http://dx.doi.org/10.1021/ja017822w] [PMID: 12059231]
[167]
Pathak, S.; Choi, S-K.; Arnheim, N.; Thompson, M.E. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc., 2001, 123(17), 4103-4104.
[http://dx.doi.org/10.1021/ja0058334] [PMID: 11457171]
[168]
Xiao, Y.; Barker, P.E. Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Res., 2004, 32(3), e28.
[http://dx.doi.org/10.1093/nar/gnh024] [PMID: 14960711]
[169]
Bentolila, L.A.; Weiss, S. Single-step multicolor fluorescence in situ hybridization using semiconductor quantum dot-DNA conjugates. Cell Biochem. Biophys., 2006, 45(1), 59-70.
[http://dx.doi.org/10.1385/CBB:45:1:59] [PMID: 16679564]
[170]
Ma, L.; Wu, S-M.; Huang, J.; Ding, Y.; Pang, D-W.; Li, L. Fluorescence in situ hybridization (FISH) on maize metaphase chromosomes with quantum dot-labeled DNA conjugates. Chromosoma, 2008, 117(2), 181-187.
[http://dx.doi.org/10.1007/s00412-007-0136-2] [PMID: 18046569]
[171]
Partin, A.W.; Schoeniger, J.S.; Mohler, J.L.; Coffey, D.S. Fourier analysis of cell motility: correlation of motility with metastatic potential. Proc. Natl. Acad. Sci. USA, 1989, 86(4), 1254-1258.
[http://dx.doi.org/10.1073/pnas.86.4.1254] [PMID: 2919174]
[172]
Zeng, Q.; Dong, J-M.; Guo, K.; Li, J.; Tan, H-X.; Koh, V.; Pallen, C.J.; Manser, E.; Hong, W. PRL-3 and PRL-1 promote cell migration, invasion, and metastasis. Cancer Res., 2003, 63(11), 2716-2722.
[PMID: 12782572]
[173]
Yao, J.; Harvath, L.; Gilbert, D.L.; Colton, C.A. Chemotaxis by a CNS macrophage, the microglia. J. Neurosci. Res., 1990, 27(1), 36-42.
[http://dx.doi.org/10.1002/jnr.490270106] [PMID: 2254955]
[174]
Albrecht-Buehler, G. Phagokinetic tracks of 3T3 cells: parallels between the orientation of track segments and of cellular structures which contain actin or tubulin. Cell, 1977, 12(2), 333-339.
[http://dx.doi.org/10.1016/0092-8674(77)90109-X] [PMID: 334371]
[175]
Parak, W.J.; Boudreau, R.; Le Gros, M.; Gerion, D.; Zanchet, D.; Micheel, C.M.; Williams, S.C.; Alivisatos, A.P.; Larabell, C. Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv. Mater., 2002, 14, 882.
[http://dx.doi.org/10.1002/1521-4095(20020618)14:12<882:AID-ADMA882>3.0.CO;2-Y]
[176]
Pellegrino, T.; Parak, W.J.; Boudreau, R.; Le Gros, M.A.; Gerion, D.; Alivisatos, A.P.; Larabell, C.A. Quantum dot-based cell motility assay. Differentiation, 2003, 71(9-10), 542-548.
[http://dx.doi.org/10.1111/j.1432-0436.2003.07109006.x] [PMID: 14686951]
[177]
Albini, A.; Iwamoto, Y.; Kleinman, H.K.; Martin, G.R.; Aaronson, S.A.; Kozlowski, J.M.; McEwan, R.N. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res., 1987, 47(12), 3239-3245.
[PMID: 2438036]
[178]
Andrews, D.L.; Demidov, A.A. Resonance Energy Transfer; Wiley & Sons: Hoboken, 1999.
[179]
Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem., 1978, 47, 819-846.
[http://dx.doi.org/10.1146/annurev.bi.47.070178.004131] [PMID: 354506]
[180]
Clapp, A.R.; Medintz, I.L.; Mauro, J.M.; Fisher, B.R.; Bawendi, M.G.; Mattoussi, H. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J. Am. Chem. Soc., 2004, 126(1), 301-310.
[http://dx.doi.org/10.1021/ja037088b] [PMID: 14709096]
[181]
Kagan, C.R.; Murray, C.B.; Bawendi, M.G. Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys. Rev. B Condens. Matter, 1996, 54(12), 8633-8643.
[http://dx.doi.org/10.1103/PhysRevB.54.8633] [PMID: 9984542]
[182]
Patolsky, F.; Gill, R.; Weizmann, Y.; Mokari, T.; Banin, U.; Willner, I. Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots. J. Am. Chem. Soc., 2003, 125(46), 13918-13919.
[http://dx.doi.org/10.1021/ja035848c] [PMID: 14611202]
[183]
Gill, R.; Willner, I.; Shweky, I.; Banin, U. Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage. J. Phys. Chem. B, 2005, 109(49), 23715-23719.
[http://dx.doi.org/10.1021/jp054874p] [PMID: 16375352]
[184]
Zhang, C-Y.; Yeh, H-C.; Kuroki, M.T.; Wang, T-H. Single-quantum-dot-based DNA nanosensor. Nat. Mater., 2005, 4(11), 826-831.
[http://dx.doi.org/10.1038/nmat1508] [PMID: 16379073]
[185]
Choi, H.S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J.P.; Itty Ipe, B.; Bawendi, M.G.; Frangioni, J.V. Renal clearance of quantum dots. Nat. Biotechnol., 2007, 25(10), 1165-1170.
[http://dx.doi.org/10.1038/nbt1340] [PMID: 17891134]
[186]
Qi, L.; Gao, X. Emerging application of quantum dots for drug delivery and therapy. Expert Opin. Drug Deliv., 2008, 5(3), 263-267.
[http://dx.doi.org/10.1517/17425247.5.3.263] [PMID: 18318649]
[187]
Manabe, N.; Hoshino, A.; Liang, Y.Q.; Goto, T.; Kato, N.; Yamamoto, K. Quantum dot as a drug tracer in vivo. IEEE Trans. Nanobioscience, 2006, 5(4), 263-267.
[http://dx.doi.org/10.1109/TNB.2006.886569] [PMID: 17181025]
[188]
Derfus, A.M.; Chen, A.A.; Min, D-H.; Ruoslahti, E.; Bhatia, S.N. Targeted quantum dot conjugates for siRNA delivery. Bioconjug. Chem., 2007, 18(5), 1391-1396.
[http://dx.doi.org/10.1021/bc060367e] [PMID: 17630789]
[189]
Tan, W.B.; Jiang, S.; Zhang, Y. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials, 2007, 28(8), 1565-1571.
[http://dx.doi.org/10.1016/j.biomaterials.2006.11.018] [PMID: 17161865]
[190]
Jia, N.; Lian, Q.; Shen, H.; Wang, C.; Li, X.; Yang, Z. Intracellular delivery of quantum dots tagged antisense oligodeoxynucleotides by functionalized multiwalled carbon nanotubes. Nano Lett., 2007, 7(10), 2976-2980.
[http://dx.doi.org/10.1021/nl071114c] [PMID: 17725375]
[191]
Jaiswal, J.K.; Simon, S.M. Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol., 2004, 14(9), 497-504.
[http://dx.doi.org/10.1016/j.tcb.2004.07.012] [PMID: 15350978]
[192]
Derfus, A.M.; Chan, W.C.W.; Bhatia, S.N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett., 2004, 4(1), 11-18.
[http://dx.doi.org/10.1021/nl0347334] [PMID: 28890669]
[193]
Nirmal, M.; Dabbousi, B.O.; Bawendi, M.G.; Macklin, J.J.; Trautman, J.K.; Harris, T.D.; Brus, L.E. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature, 1996, 383, 802-804.
[http://dx.doi.org/10.1038/383802a0]
[194]
Hilderbrand, S.A.; Shao, F.; Salthouse, C.; Mahmood, U.; Weissleder, R. Upconverting luminescent nanomaterials: application to in vivo bioimaging. Chem. Commun. (Camb.), 2009, (28), 4188-4190.
[http://dx.doi.org/10.1039/b905927j] [PMID: 19585016]
[195]
Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev., 2004, 104(1), 139-173.
[http://dx.doi.org/10.1021/cr020357g] [PMID: 14719973]
[196]
Reinhardt, M.J.; Joe, A.Y.; Jaeger, U.; Huber, A.; Matthies, A.; Bucerius, J.; Roedel, R.; Strunk, H.; Bieber, T.; Biersack, H-J.; Tüting, T. Diagnostic performance of whole body dual modality 18F-FDG PET/CT imaging for N- and M-staging of malignant melanoma: experience with 250 consecutive patients. J. Clin. Oncol., 2006, 24(7), 1178-1187.
[http://dx.doi.org/10.1200/JCO.2005.03.5634] [PMID: 16505438]
[197]
Chatterjee, D.K.; Rufaihah, A.J.; Zhang, Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials, 2008, 29(7), 937-943.
[http://dx.doi.org/10.1016/j.biomaterials.2007.10.051] [PMID: 18061257]
[198]
Heer, S.; Kömpe, K.; Güdel, H-U.; Haase, M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 Nanocrystals. Adv. Mater., 2004, 16, 2102-2105.
[http://dx.doi.org/10.1002/adma.200400772]
[199]
Abdul Jalil, R.; Zhang, Y. Biocompatibility of silica coated NaYF(4) upconversion fluorescent nanocrystals. Biomaterials, 2008, 29(30), 4122-4128.
[http://dx.doi.org/10.1016/j.biomaterials.2008.07.012] [PMID: 18675453]
[200]
Li, C.; Lin, J. Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J. Mater. Chem., 2010, 20, 6831.
[http://dx.doi.org/10.1039/c0jm00031k]
[201]
Chivian, J.S.; Case, W.E.; Eden, D.D. The photon avalanche: a new phenomenon in Pr 3+-based infrared quantum counters. Appl. Phys. Lett., 1979, 35, 124-125.
[http://dx.doi.org/10.1063/1.91044]
[202]
Servati, A. Nanoparticles for Simultaneous Near-Infrared and Magnetic Biomolecular Imaging. Ph.D. thesis, UCL (University Coll. London), 2012.
[203]
Bloembergen, N. Solid state infrared quantum counters. Phys. Rev. Lett., 1959, 2, 84-85.
[http://dx.doi.org/10.1103/PhysRevLett.2.84]
[204]
Wang, F.; Liu, X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev., 2009, 38(4), 976-989.
[http://dx.doi.org/10.1039/b809132n] [PMID: 19421576]
[205]
Chen, J.; Zhao, J.X. Upconversion nanomaterials: synthesis, mechanism, and applications in sensing. Sensors (Basel), 2012, 12(3), 2414-2435.
[http://dx.doi.org/10.3390/s120302414] [PMID: 22736958]
[206]
Auzel, F.E. Materials and devices using double-pumped-phosphors with energy transfer. Proc. IEEE, 1973, 61, 758-786.
[http://dx.doi.org/10.1109/PROC.1973.9155]
[207]
Yang, L.W.; Han, H.L.; Zhang, Y.Y.; Zhong, J.X. White emission by frequency up-conversion in yb 3+ -ho 3+ -tm 3+ triply doped hexagonal nayf 4 nanorods. J. Phys. Chem. C, 2009, 113, 18995-18999.
[http://dx.doi.org/10.1021/jp9021689]
[208]
Wang, F.; Deng, R.; Wang, J.; Wang, Q.; Han, Y.; Zhu, H.; Chen, X.; Liu, X. Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater., 2011, 10(12), 968-973.
[http://dx.doi.org/10.1038/nmat3149] [PMID: 22019945]
[209]
Du, H.; Zhang, W.; Sun, J. Structure and upconversion luminescence properties of bayf5:yb3+, er3+ nanoparticles prepared by different methods. J. Alloys Compd., 2011, 509, 3413-3418.
[http://dx.doi.org/10.1016/j.jallcom.2010.12.101]
[210]
Yi, G.; Lu, H.; Zhao, S.; Ge, Y.; Yang, W.; Chen, D.; Guo, L.H. Synthesis, characterization, and biological application of size-controlled nanocrystalline nayf4:yb,er infrared-to-visible up-conversion phosphors. Nano Letters., 2004, 4(11), 2191-2196.
[211]
Mahalingam, V.; Naccache, R.; Vetrone, F.; Capobianco, J.A. Sensitized Ce(3+) and Gd(3+) ultraviolet emissions by Tm(3+) in colloidal LiYF(4) nanocrystals. Chemistry, 2009, 15(38), 9660-9663.
[http://dx.doi.org/10.1002/chem.200901371] [PMID: 19637168]
[212]
Boyer, J-C.; Cuccia, L.A.; Capobianco, J.A. Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett., 2007, 7(3), 847-852.
[http://dx.doi.org/10.1021/nl070235+] [PMID: 17302461]
[213]
Yin, A.; Zhang, Y.; Sun, L.; Yan, C. Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals. Nanoscale, 2010, 2(6), 953-959.
[http://dx.doi.org/10.1039/b9nr00397e] [PMID: 20644777]
[214]
Mai, H-X.; Zhang, Y-W.; Si, R.; Yan, Z-G.; Sun, L.D.; You, L-P.; Yan, C-H. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J. Am. Chem. Soc., 2006, 128(19), 6426-6436.
[http://dx.doi.org/10.1021/ja060212h] [PMID: 16683808]
[215]
Wei, Yang; Lu, Fengqi; Zhang, Xinrong Chen, D. Synthesis of oil-dispersible hexagonal-phase and hexagonal-shaped NaYF4:Yb,Er nanoplates. Chem. Mater., 2006, 18(24), 5733-5737.
[216]
Mai, Hao-Xin.; Zhang, Ya-Wen. Sun, L.D; Yan, C.H. Size- and phase-controlled synthesis of monodisperse nayf4:yb,er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy. J. Phys. Chem., 2007, 111(37), 13730-13739.
[217]
Mader, H.S.; Kele, P.; Saleh, S.M.; Wolfbeis, O.S. Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr. Opin. Chem. Biol., 2010, 14(5), 582-596.
[http://dx.doi.org/10.1016/j.cbpa.2010.08.014] [PMID: 20829098]
[218]
Yi, G.S.; Chow, G.M. Synthesis of hexagonal-phase nayf4:yb,er and nayf4:yb,tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater., 2006, 16, 2324-2329.
[http://dx.doi.org/10.1002/adfm.200600053]
[219]
Patra, A.; Friend, C.S.; Kapoor, R.; Prasad, P.N. Effect of crystal nature on upconversion luminescence in er3+:zro2 nanocrystals. Appl. Phys. Lett., 2003, 83, 284-286.
[http://dx.doi.org/10.1063/1.1592891]
[220]
Liu, Y.; Pisarski, W.A.; Zeng, S.; Xu, C.; Yang, Q. Tri-color upconversion luminescence of Rare earth doped BaTiO3 nanocrystals and lowered color separation. Opt. Express, 2009, 17(11), 9089-9098.
[http://dx.doi.org/10.1364/OE.17.009089] [PMID: 19466159]
[221]
Quan, Z.; Yang, D.; Li, C.; Kong, D.; Yang, P.; Cheng, Z.; Lin, J. Multicolor tuning of manganese-doped ZnS colloidal nanocrystals. Langmuir, 2009, 25(17), 10259-10262.
[http://dx.doi.org/10.1021/la901056d] [PMID: 19705902]
[222]
Yi, Guangshun Sun, B; Yang, F; Chen, D; Zhou, Y; Cheng, J. Synthesis and characterization of high-efficiency nanocrystal up-conversion phosphors: ytterbium and erbium codoped lanthanum molybdate. Chem. Mater., 2002, 14(7), 2910-2914.
[223]
Cao, T.; Yang, Y.; Gao, Y.; Zhou, J.; Li, Z.; Li, F. High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging. Biomaterials, 2011, 32(11), 2959-2968.
[http://dx.doi.org/10.1016/j.biomaterials.2010.12.050] [PMID: 21262531]
[224]
Guo, H.; Li, Z.; Qian, H.; Hu, Y.; Muhammad, I.N. Seed-mediated synthesis of NaY F4:Y b, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity. Nanotechnology, 2010, 21(12), 125602.
[http://dx.doi.org/10.1088/0957-4484/21/12/125602] [PMID: 20182011]
[225]
Niu, W.; Wu, S.; Zhang, S.; Li, J.; Li, L. Multicolor output and shape controlled synthesis of lanthanide-ion doped fluorides upconversion nanoparticles. Dalton Trans., 2011, 40(13), 3305-3314.
[http://dx.doi.org/10.1039/c0dt01344g] [PMID: 21359354]
[226]
Yan, Z-G.; Yan, C-H. Controlled synthesis of rare earth nanostructures. J. Mater. Chem., 2008, 18, 5046.
[http://dx.doi.org/10.1039/b810586c]
[227]
Li, C.; Yang, J.; Quan, Z.; Yang, P.; Kong, D. Different microstructures of β-nayf4 fabricated by hydrothermal process: effects of ph values and fluoride sources. Chem. Mater., 2007, 19(20), 4933-4942.
[228]
Li, C.; Quan, Z.; Yang, J.; Yang, P.; Lin, J. Highly uniform and monodisperse β-NaYF(4):Ln(3+) (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: hydrothermal synthesis and luminescent properties. Inorg. Chem., 2007, 46(16), 6329-6337.
[http://dx.doi.org/10.1021/ic070335i] [PMID: 17602610]
[229]
Zhao, J.; Sun, Y.; Kong, X.; Tian, L.; Wang, Y.; Tu, L.; Zhao, J.; Zhang, H. Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+, Er3+ nanocrystals/submicroplates at low doping level. J. Phys. Chem. B, 2008, 112(49), 15666-15672.
[http://dx.doi.org/10.1021/jp805567k] [PMID: 19367869]
[230]
Liu, M.; Wang, S.W.; Zhang, J.; An, L.Q.; Chen, L.D. Upconversion luminescence of y3al5o12 (yag):yb3+, tm3+ nanocrystals. Opt. Mater. (Amst), 2007, 30, 370-374.
[http://dx.doi.org/10.1016/j.optmat.2006.11.060]
[231]
Li, X.; Gai, S.; Li, C.; Wang, D.; Niu, N.; He, F.; Yang, P. Monodisperse lanthanide fluoride nanocrystals: synthesis and luminescent properties. Inorg. Chem., 2012, 51(7), 3963-3971.
[http://dx.doi.org/10.1021/ic200925v] [PMID: 22409422]
[232]
Chen, G.Y.; Liu, Y.; Zhang, Y.G.; Somesfalean, G.; Zhang, Z.G.; Sun, Q.; Wang, F.P. Bright white upconversion luminescence in rare-earth-ion-doped y2o3 nanocrystals. Appl. Phys. Lett., 2007, 91, 133103.
[http://dx.doi.org/10.1063/1.2787893]
[233]
Yang, J.; Zhang, C.; Peng, C.; Li, C.; Wang, L.; Chai, R.; Lin, J. Controllable red, green, blue (RGB) and bright white upconversion luminescence of Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals through single laser excitation at 980 nm. Chemistry, 2009, 15(18), 4649-4655.
[http://dx.doi.org/10.1002/chem.200802106] [PMID: 19296483]
[234]
Li, Z.; Zhang, Y.; Jiang, S. Multicolor core/shell‐structured upconversion fluorescent nanoparticles. Adv. Mater., 2008, 20, 4765-4769.
[http://dx.doi.org/10.1002/adma.200801056]
[235]
Park, Y. Il; Kim, J.H.; Lee, K.T.; Jeon, K.-S.; Na, H. Bin; Yu, J.H.; Kim, H.M.; Lee, N.; Choi, S.H.; Baik, S.-I.; Kim, H.; Park, S.P.; Park, B.-J.; Kim, Y.W.; Lee, S.H.; Yoon, S.-Y.; Song, I.C.; Moon, W.K.; Suh, Y.D.; Hyeon, T. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and t1 magnetic resonance imaging contrast agent. Adv. Mater., 2009, 21, 4467-4471.
[http://dx.doi.org/10.1002/adma.200901356]
[236]
Wu, S.; Han, G.; Milliron, D.J.; Aloni, S.; Altoe, V.; Talapin, D.V.; Cohen, B.E.; Schuck, P.J. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl. Acad. Sci. USA, 2009, 106(27), 10917-10921.
[http://dx.doi.org/10.1073/pnas.0904792106] [PMID: 19541601]
[237]
Zhou, J.; Sun, Y.; Du, X.; Xiong, L.; Hu, H.; Li, F. Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials, 2010, 31(12), 3287-3295.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.040] [PMID: 20132982]
[238]
Hu, H.; Xiong, L.; Zhou, J.; Li, F.; Cao, T.; Huang, C. Multimodal-luminescence core-shell nanocomposites for targeted imaging of tumor cells. Chemistry, 2009, 15(14), 3577-3584.
[http://dx.doi.org/10.1002/chem.200802261] [PMID: 19219877]
[239]
Lim, S.F.; Riehn, R.; Tung, C.K.; Ryu, W.S.; Zhuo, R.; Dalland, J.; Austin, R.H. Upconverting nanophosphors for bioimaging. Nanotechnology, 2009, 20(40), 405701.
[http://dx.doi.org/10.1088/0957-4484/20/40/405701] [PMID: 19738303]
[240]
Xiong, L.; Yang, T.; Yang, Y.; Xu, C.; Li, F. Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials, 2010, 31(27), 7078-7085.
[http://dx.doi.org/10.1016/j.biomaterials.2010.05.065] [PMID: 20619791]
[241]
Hu, H.; Yu, M.; Li, F.; Chen, Z.; Gao, X.; Xiong, L.; Huang, C. Facile epoxidation strategy for producing amphiphilic up-converting rare-earth nanophosphors as biological labels. Chem. Mater., 2008, 20, 7003-7009.
[http://dx.doi.org/10.1021/cm801215t]
[242]
Zijlmans, H.J.M.A.A.; Bonnet, J.; Burton, J.; Kardos, K.; Vail, T.; Niedbala, R.S.; Tanke, H.J. Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology. Anal. Biochem., 1999, 267(1), 30-36.
[http://dx.doi.org/10.1006/abio.1998.2965] [PMID: 9918652]
[243]
Zako, T.; Nagata, H.; Terada, N.; Utsumi, A.; Sakono, M.; Yohda, M.; Ueda, H.; Soga, K.; Maeda, M. Cyclic RGD peptide-labeled upconversion nanophosphors for tumor cell-targeted imaging. Biochem. Biophys. Res. Commun., 2009, 381(1), 54-58.
[http://dx.doi.org/10.1016/j.bbrc.2009.02.004] [PMID: 19351594]
[244]
Wang, M.; Mi, C-C.; Wang, W-X.; Liu, C-H.; Wu, Y-F.; Xu, Z-R.; Mao, C-B.; Xu, S-K. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF(4):Yb,Er upconversion nanoparticles. ACS Nano, 2009, 3(6), 1580-1586.
[http://dx.doi.org/10.1021/nn900491j] [PMID: 19476317]
[245]
Chatterjee, D.K.; Yong, Z. Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells. Nanomedicine (Lond.), 2008, 3(1), 73-82.
[http://dx.doi.org/10.2217/17435889.3.1.73] [PMID: 18393642]
[246]
Oleinick, N.L.; Morris, R.L.; Belichenko, I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem. Photobiol. Sci., 2002, 1(1), 1-21.
[http://dx.doi.org/10.1039/b108586g] [PMID: 12659143]
[247]
Schuller, D.E.; McCaughan, J.S., Jr; Rock, R.P. Photodynamic therapy in head and neck cancer. Arch. Otolaryngol., 1985, 111(6), 351-355.
[http://dx.doi.org/10.1001/archotol.1985.00800080037001] [PMID: 4004631]
[248]
Hur, C.; Nishioka, N.S.; Gazelle, G.S. Cost-effectiveness of photodynamic therapy for treatment of Barrett’s esophagus with high grade dysplasia. Dig. Dis. Sci., 2003, 48(7), 1273-1283.
[http://dx.doi.org/10.1023/A:1024146823549] [PMID: 12870783]
[249]
Skyrme, R.J.; French, A.J.; Datta, S.N.; Allman, R.; Mason, M.D.; Matthews, P.N.A. A phase-1 study of sequential mitomycin C and 5-aminolaevulinic acid-mediated photodynamic therapy in recurrent superficial bladder carcinoma. BJU Int., 2005, 95(9), 1206-1210.
[http://dx.doi.org/10.1111/j.1464-410X.2005.05506.x] [PMID: 15892802]
[250]
Rhodes, L.E.; de Rie, M.; Enström, Y.; Groves, R.; Morken, T.; Goulden, V.; Wong, G.A.E.; Grob, J-J.; Varma, S.; Wolf, P. Photodynamic therapy using topical methyl aminolevulinate vs surgeryfor nodular basal cell carcinoma. Arch. Dermatol., 2004, 140, 17-23.
[http://dx.doi.org/10.1001/archderm.140.1.17] [PMID: 14732655]
[251]
Dougherty, T.J. An update on photodynamic therapy applications. J. Clin. Laser Med. Surg., 2002, 20(1), 3-7.
[http://dx.doi.org/10.1089/104454702753474931] [PMID: 11902352]
[252]
Stummer, W.; Hassan, A.; Kempski, O.; Goetz, C. Photodynamic therapy within edematous brain tissue: considerations on sensitizer dose and time point of laser irradiation. J. Photochem. Photobiol. B, 1996, 36(2), 179-181.
[http://dx.doi.org/10.1016/S1011-1344(96)07367-8] [PMID: 9002256]
[253]
Sharman, W.M.; Allen, C.M.; van Lier, J.E. Role of activated oxygen species in photodynamic therapy. Methods Enzymol., 2000, 319, 376-400.
[http://dx.doi.org/10.1016/S0076-6879(00)19037-8] [PMID: 10907528]
[254]
Yang, Y.; Shao, Q.; Deng, R.; Wang, C.; Teng, X.; Cheng, K.; Cheng, Z.; Huang, L.; Liu, Z.; Liu, X.; Xing, B. In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew. Chem. Int. Ed. Engl., 2012, 51(13), 3125-3129.
[http://dx.doi.org/10.1002/anie.201107919] [PMID: 22241651]
[255]
Wang, J.; Wang, F.; Wang, C.; Liu, Z.; Liu, X. Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals. Angew. Chem. Int. Ed. Engl., 2011, 50(44), 10369-10372.
[http://dx.doi.org/10.1002/anie.201104192] [PMID: 21915972]
[256]
Zhang, P.; Steelant, W.; Kumar, M.; Scholfield, M. Versatile photosensitizers for photodynamic therapy at infrared excitation. J. Am. Chem. Soc., 2007, 129(15), 4526-4527.
[http://dx.doi.org/10.1021/ja0700707] [PMID: 17385866]
[257]
Chen, F.; Zhang, S.; Bu, W.; Chen, Y.; Xiao, Q.; Liu, J.; Xing, H.; Zhou, L.; Peng, W.; Shi, J. A uniform sub-50 nm-sized magnetic/upconversion fluorescent bimodal imaging agent capable of generating singlet oxygen by using a 980 nm laser. Chemistry, 2012, 18(23), 7082-7090.
[http://dx.doi.org/10.1002/chem.201103611] [PMID: 22544381]
[258]
Qiao, X-F.; Zhou, J-C.; Xiao, J-W.; Wang, Y-F.; Sun, L-D.; Yan, C-H. Triple-functional core-shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro. Nanoscale, 2012, 4(15), 4611-4623.
[http://dx.doi.org/10.1039/c2nr30938f] [PMID: 22706800]
[259]
Guo, H.; Qian, H.; Idris, N.M.; Zhang, Y. Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer. Nanomedicine (Lond.), 2010, 6(3), 486-495.
[http://dx.doi.org/10.1016/j.nano.2009.11.004] [PMID: 20044035]
[260]
Wang, C.; Tao, H.; Cheng, L.; Liu, Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials, 2011, 32(26), 6145-6154.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.007] [PMID: 21616529]
[261]
Park, Y.I.; Kim, H.M.; Kim, J.H.; Moon, K.C.; Yoo, B.; Lee, K.T.; Lee, N.; Choi, Y.; Park, W.; Ling, D.; Na, K.; Moon, W.K.; Choi, S.H.; Park, H.S.; Yoon, S.Y.; Suh, Y.D.; Lee, S.H.; Hyeon, T. Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy. Adv. Mater., 2012, 24(42), 5755-5761.
[http://dx.doi.org/10.1002/adma.201202433] [PMID: 22915170]
[262]
Lin, M.; Zhao, Y.; Wang, S.; Liu, M.; Duan, Z.; Chen, Y.; Li, F.; Xu, F.; Lu, T. Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications. Biotechnol. Adv., 2012, 30(6), 1551-1561.
[http://dx.doi.org/10.1016/j.biotechadv.2012.04.009] [PMID: 22561011]
[263]
Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev., 2001, 53(3), 321-339.
[http://dx.doi.org/10.1016/S0169-409X(01)00203-4] [PMID: 11744175]
[264]
Carling, C-J.; Nourmohammadian, F.; Boyer, J-C.; Branda, N.R. Remote-control photorelease of caged compounds using near-infrared light and upconverting nanoparticles. Angew. Chem. Int. Ed. Engl., 2010, 49(22), 3782-3785.
[http://dx.doi.org/10.1002/anie.201000611] [PMID: 20394093]
[265]
Jayakumar, M.K.G.; Idris, N.M.; Zhang, Y. Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc. Natl. Acad. Sci. USA, 2012, 109(22), 8483-8488.
[http://dx.doi.org/10.1073/pnas.1114551109] [PMID: 22582171]