A Comprehensive Appraisal of Chalcones and Their Heterocyclic Analogs as Antimicrobial Agents

Page: [2755 - 2781] Pages: 27

  • * (Excluding Mailing and Handling)

Abstract

Owing to the growing demand for compelling antimicrobial agents, chalcones and their heterocyclic derivatives have engrossed prodigious attention of medicinal chemists as an effective clinical template for the synthesis of such agents on account of their structural diversity and molecular flexibility. Chalcones are considered as a fortunate scaffold in the field of both synthetic as well as natural product chemistry. They are reflected as a remarkable section of logically occurring pharmacophores that possess a comprehensive scale of biological activities, such as anti-cancer, anti-malarial, anti-viral and anti-inflammatory, rendering them with a high degree of assortment and noble therapeutic profile. They act as a crucial intermediate for the synthesis of novel heterocyclic skeletons holding biodynamic behavior. This review emphasizes on different aspects of chalcones including their natural sources, recent synthetic methodologies and evaluation of their anti-microbial potential. It is expected as a persuasive compilation on chalcones that may benefit the experts to design potent and less toxic chalcone referents as medicinal agents.

Keywords: Chalcones, clasien-schmidt condensation, drug-resistant infections, anti-microbial, heterocyclic, biological activity.

Graphical Abstract

[1]
Sharma, A.; Singh, S.; Utreja, D. Recent advances in synthesis and antifungal activity of 1,3,5-triazines. Curr. Org. Synth., 2016, 13, 484-503.
[http://dx.doi.org/10.2174/1570179412666150905002356]
[2]
Jain, N.; Utreja, D.; Dhillon, N.K. A convenient one pot synthesis and antinemic studies of nicotinic acid derivatives. Russ. J. Org. Chem., 2019, 55, 845-851.
[http://dx.doi.org/10.1134/S1070428019060150]
[3]
Kaur, K.; Utreja, D.; Garg, A.; Sharma, V.K. Synthesis and antifungal activity of sulfonamides Schiff bases and their metal complexes. Plant Dis. Res., 2016, 31(2), 171-173.
[4]
Henry, E.J.; Bird, S.J.; Gowland, P.; Collins, M.; Cassella, J.P. Ferrocenyl chalcone derivatives as possible antimicrobial agents. J. Antibiot., 2020, 73, 299-308.
[http://dx.doi.org/10.1038/s41429-020-0280-y]
[5]
Sashidhara, K.V.; Rao, K.B.; Kushwaha, P.; Modukuri, R.K.; Singh, P.; Soni, I.; Shukla, P.K.; Chopra, S.; Pasupuleti, M. Novel chalcone-thiazole hybrids as potent inhibitors of drug resistant Staphylococcus aureus. ACS Med. Chem. Lett., 2015, 6(7), 809-813.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00169 PMID: 26191371]
[6]
Vibha, V.; Utreja, D.; Kaur, J.; Kaur, M. Antifungal activity of dihydropyrimidinones synthesized by using magnesium ferrite nanoparticles as efficient heterogeneous catalyst. Agri. Res. J., 2018, 55(2), 313-317.
[http://dx.doi.org/10.5958/2395-146X.2018.00056.X ]
[7]
Ocampo, J.A.; Carrilo, R.; Kae, H.; Ashburn, B.O. Synthesis and antimicrobial evaluation of a series of chlorinated chalcone derivatives. Int. J. Pharm. Pharm. Res, 2018, 13(3), 112-119.
[8]
Jain, P.; Utreja, D.; Sharma, P. An efficacious synthesis of N-1, C-3 substituted indole derivatives and their antimicrobial studies. J. Heterocycl. Chem., 2019, 57(1), 1-8.
[http://dx.doi.org/10.1002/jhet.3799]
[9]
Kakkar, S.; Tahlan, S.; Lim, S.M.; Ramasamy, K.; Mani, V.; Shah, S.A.A.; Narasimhan, B. Benzoxazole derivatives: design, synthesis and biological evaluation. Chem. Cent. J., 2018, 12(1), 92.
[http://dx.doi.org/10.1186/s13065-018-0459-5 PMID: 30101384]
[10]
Utreja, D.; Kaur, J.; Kaur, K.; Jain, P. 1,3,5-Triazine: synthesis and antibacterial activity. Mini Rev. Org. Chem., 2020, 17, 1-51.
[http://dx.doi.org/10.2174/1570193X17666200129094032]
[11]
Shaik, A.B.; Yejella, R.P.; Shaik, S. Synthesis, antimicrobial, and computational evaluation of novel isobutylchalcones as antimicrobial agents. Int. J. Med. Chem., 2017, 20176873924
[http://dx.doi.org/10.1155/2017/6873924 PMID: 29441207]
[12]
Mohammed, J.H. Biological activities importance of chalcone derivatives. Int. J. Chem. Biomol. Sci., 2015, 1, 107-112.
[13]
Yerragunta, V.; Kumaraswamy, T.; Suman, D.; Anusha, V. A review on chalcones and its importance. Pharmatutor., 2013, 1, 54-59.
[14]
Vibha, U.D.; Kaur, J. Quinolinium chlorochromate: an excellent reagent for N3-C4 dehydrogenation of dihydropyrimidinones and their antifungal evaluation. Ind. J. Heterocycl. Chem., 2019, 29(1), 11-20.
[15]
Kar, S.; Mishra, R.K.; Pathak, A.; Dikshit, A.; Rao, G.N. In silico modeling and synthesis of phenyl and thienyl analogs of chalcones for potential leads as anti-bacterial agents. J. Mol. Struct., 2017, 1156, 433-440.
[http://dx.doi.org/10.1016/j.molstruc.2017.12.002]
[16]
Kaur, G.; Utreja, D.; Kaur, J. Synthesis of metal complexes of Schiff bases of halogenated anilines and their antifungal activity. Plant Dis. Res., 2017, 32(2), 228-231.
[17]
Dawar, M.; Utreja, D.; Rani, R.; Kaur, K. Synthesis and evaluation of isatin derivatives as antifungal agents. Lett. Org. Chem., 2020, 17, 199-205.
[http://dx.doi.org/10.2174/1570178616666190724120308]
[18]
Sashidhara, K.V.; Kumar, M.; Modukuri, R.K.; Sonkar, R.; Bhatia, G.; Khanna, A.K.; Rai, S.; Shukla, R. Synthesis and anti-inflammatory activity of novel biscoumarin-chalcone hybrids. Bioorg. Med. Chem. Lett., 2011, 21(15), 4480-4484.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.002 PMID: 21723119]
[19]
Djemoui, A.; Naouri, A.; Ouahrani, M.R.; Djemoui, D.; Lahecen, S.; Lahrech, M.B.; Boukenna, L.; Albuquerque, H.M.T.; Saher, L.; Rocha, D.H.A.; Monteiro, F.L.; Helguero, L.A.; Bachari, K.; Talhi, O.; Silva, A.M.S. A step-by-step synthesis of triazole-benzimidazole-chalcone hybrids: anticancer activity in human cells. J. Mol. Struct., 2019, 1204127487
[http://dx.doi.org/10.1016/j.molstruc.2019.127487]
[20]
Gouhar, R.S.; Fathalla, O.A.; El-Karim, S.S.A. Synthesis and anticancer screening of some novel substituted pyrazole derivatives. Pharma Chem., 2013, 5(6), 225-233.
[21]
Kurt, B.Z.; Kandas, N.O.; Dag, A.; Sonmez, F.; Kucukislamoglu, M. Synthesis and biological evaluation of novel coumarin-chalcone derivatives containing urea moiety as potential anticancer agents. Arab. J. Chem., 2020, 13, 1120-1129.
[http://dx.doi.org/10.1016/j.arabjc.2017.10.001]
[22]
Kaur, J.; Utreja, D. Ekta; Jain, N.; Sharma, S. Ekta, Jain, N.; Sharma, S. Recent developments in the synthesis and antimicrobial activity of indole and its derivatives. Curr. Org. Synth., 2019, 16(1), 17-37.
[http://dx.doi.org/10.2174/1570179415666181113144939 PMID: 31965921]
[23]
Castaño, L.F.; Cuartas, V.; Bernal, A.; Insuasty, A.; Guzman, J.; Vidal, O.; Rubio, V.; Puerto, G.; Lukáč, P.; Vimberg, V.; Balíková-Novtoná, G.; Vannucci, L.; Janata, J.; Quiroga, J.; Abonia, R.; Nogueras, M.; Cobo, J.; Insuasty, B. New chalcone-sulfonamide hybrids exhibiting anticancer and antituberculosis activity. Eur. J. Med. Chem., 2019, 176, 50-60.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.013 PMID: 31096118]
[24]
Matos, M.J.; Vazquez-Rodriguez, S.; Uriarte, E.; Santana, L. Potential pharmacological uses of chalcones: a patent review (from June 2011-2014). Expert Opin. Ther. Pat., 2015, 25(3), 351-366.
[http://dx.doi.org/10.1517/13543776.2014.995627] [PMID: 25598152]
[25]
Rammohan, A.; Bhaskar, B.V.; Venkateshwarlu, N.; Gu, W.; Zyryanov, G.V. Design, synthesis, docking and biological evaluation of chalcones as promising antidiabetic agents. Bioorg. Chem., 2020, 95103527
[http://dx.doi.org/10.1016/j.bioorg.2019.103527] [PMID: 31911298]
[26]
Fathimunnisa, M.; Manikandan, H.; Sivakumar, D. An efficient, solvent free synthesis of some chalcone derivatives and their biological evaluation. Asian J. Chem., 2018, 30(4), 807-810.
[http://dx.doi.org/10.14233/ajchem.2018.21016]
[27]
Ekta, U.D.; Dhillon, N.K. Synthesis of metal complexes of Schiff bases and their nematicidal activity against root knot nematode Meloidogyne incognita. Lett. Org. Chem., 2014, 11(2), 116-125.
[http://dx.doi.org/10.2174/15701786113106660076]
[28]
Kaur, J.; Utreja, D.; Dhillon, N.K.; Sharma, S. Synthesis of series of triazine derivatives and their evaluation against root knot nematode Meloidogyne incognita. Lett. Org. Chem., 2018, 15(10), 870-877.
[http://dx.doi.org/10.2174/1570178615666180330155049]
[29]
El-Messery, S.M.; Habib, E.E.; Al-Rashood, S.T.A.; Hassan, G.S. Synthesis, antimicrobial, anti-biofilm evaluation, and molecular modelling study of new chalcone linked amines derivatives. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 818-832.
[http://dx.doi.org/10.1080/14756366.2018.1461855 PMID: 29722582]
[30]
Ramadan, E.S.; Sharshira, E.M.; Sokkary, R.I.E.; Morsy, N. Synthesis and antimicrobial evaluation of some heterocyclic compounds from 3-aryl-1-phenyl-1H-pyrazole-4-carbaldehydes. Z. Naturforsch, 2018, 73(6), 389-397.
[http://dx.doi.org/10.1515/znb-2018-0009]
[31]
Sayed, M.; El-Dean, A.M.K.; Ahmed, M.; Hassanien, R. Synthesis, characterization, and screening for anti-inflammatory and antimicrobial activity of novel indolyl chalcone derivatives. J. Heterocycl. Chem., 2018, 55(5), 1166-1175.
[http://dx.doi.org/10.1002/jhet.3149]
[32]
Madawali, I.M.; Kalyane, N.V.; Gaviraj, E.N.; Shivakumar, B. Synthesis and antimicrobial activity of some new pyrimidines of 6-chloro benzimidazoles. Orient. J. Chem., 2018, 34(3), 1633-1637.
[http://dx.doi.org/10.13005/ojc/340358]
[33]
Pujari, V.K.; Vinnakota, S.; Kakarla, R.K.; Maroju, S.; Ganesh, A.; Pervaram, S. Microwave assisted synthesis and antimicrobial activity of (E)-1-2/3/4-[(1-aryl-1H-1,2,3-triazol-4-yl)methoxy]phenyl-3-(2-morpholinoquin-olin-3-yl)prop-2-en-1-ones1. Russ. J. Gen. Chem., 2018, 88(7), 1502-1507.
[http://dx.doi.org/10.1134/S1070363218070241]
[34]
Jeon, K.H.; Yu, H.B.; Kwak, S.Y.; Kwon, Y.; Na, Y. Synthesis and topoisomerases inhibitory activity of heteroaromatic chalcones. Bioorg. Med. Chem., 2016, 24(22), 5921-5928.
[http://dx.doi.org/10.1016/j.bmc.2016.09.051 PMID: 27707625]
[35]
Goyal, A.; Utreja, D.; Garg, A.; Sharma, V.K. Synthesis and antifungal activity of sulfonamides Schiff bases and their metal complexes. Agri. Res. J., 2018, 55(2), 377-379.
[36]
Lahsasni, S.A.; Al Korbi, F.H.; Aljaber, N.A.A. Synthesis, characterization and evaluation of antioxidant activities of some novel chalcones analogues. Chem. Cent. J., 2014, 8, 32.
[http://dx.doi.org/10.1186/1752-153X-8-32 PMID: 24883080]
[37]
Kaur, G.; Utreja, D.; Dhillon, N.K.; Jain, N. Synthesis and evaluation of pyrazole derivatives as potent antinemic agents. Russ. J. Org. Chem., 2020, 56(1), 113-118.
[http://dx.doi.org/10.1134/S1070428020010182]
[38]
Anamika, U.D.; Ekta, J.N.; Sharma, S. Advances in synthesis and potentially bioactive of coumarin derivatives. Curr. Org. Chem., 2018, 22, 2507-2534.
[http://dx.doi.org/10.2174/1385272822666181029102140 ]
[39]
Utreja, D. Synthesis of Schiff bases of coumarin and their antifungal activity. Ind. J. Heterocycl. Chem., 2018, 28(4), 433-439.
[40]
Utreja, D.; Sharma, S.; Goyal, A.; Kaur, K.; Kaushal, S. Synthesis and biological activity of quaternary quinolinium salts: a review. Curr. Org. Chem., 2019, 23, 2271-2294.
[http://dx.doi.org/10.2174/1385272823666191023122704]
[41]
Pandya, M.; Kapadiya, K.; Pandit, C.; Purohit, D. Synthesis of halogenated chalcones, pyrazolines and microbial evaluation of derived scaffolds. J. Sci. Ind. Res., 2016, 76, 173-178.
[42]
Chaudhari, P.P.; Rajput, S.S. Clean synthesis and antimicrobial interpretation of azo (dipyrano) and bis-chalcones derivatives from N-phenyl pyrolidine-2,5-dione and N-phenyl piperidine-2,6-dione. Heterocyclic. Letters., 2018, 8(1), 133-144.
[43]
Li, Y.; Sun, B.; Zhai, J.; Fu, L.; Zhang, S.; Zhang, J.; Liu, H.; Xie, W.; Deng, H.; Chen, Z.; Sang, F. Synthesis and antibacterial activity of four natural chalcones and their derivatives. Tetrahedron Lett., 2019, 60(43)151165
[http://dx.doi.org/10.1016/j.tetlet.2019.151165]
[44]
Utreja, D. Vibha, Singh, S.; Kaur, M. Schiff bases and their metal complexes as anti-cancer agents: a review. Curr. Bioact. Compd., 2015, 11(4), 215-230.
[http://dx.doi.org/10.2174/1573407212666151214221219]
[45]
Kaur, K.; Utreja, D.; Sharma, P.; Bedi, S.; Grewal, I.S. Isolation and derivatization of terpenoids from essential oil of Cyperus scariosus and their biological study. Indian J. Weed Sci., 2019, 51(1), 40-44.
[http://dx.doi.org/10.5958/0974-8164.2019.00009.1]
[46]
Ali, R.; Rahim, A.; Islam, A. Synthesis and antimicrobial activity of 7-hydroxy-3′, 4′-methylenedioxy- and 7-benzyloxy-3′, 4′-methylenedioxy flavanones. J. Sci. Res, 2017, 9(3), 297-306.
[http://dx.doi.org/10.3329/jsr.v9i3.31229]
[47]
Burmaoglu, S.; Ozcan, S.; Balcioglu, S.; Gencel, M.; Noma, S.A.A.; Essiz, S.; Ates, B.; Algul, O. Synthesis, biological evaluation and molecular docking studies of bis-chalcone derivatives as xanthine oxidase inhibitors and anticancer agents. Bioorg. Chem., 2019, 91103149
[http://dx.doi.org/10.1016/j.bioorg.2019.103149 PMID: 31382060]
[48]
Bagyaraj, E.; Moorthi, K.; Aboobuckersithique, M. Novel chalcones of 3-[4-(4-[4-acetylphenoxy]-6-([nitrophenyl]amino)-1,3,5triazin-2-yl)oxy)phenyl]-1-(2,4-dichlorophenyl)prop-2-en-1-one for biological applications: synthesis, characterization and antimicrobial studies. Chem. Xpress, 2017, 10(1), 1-10.
[49]
Shorey, S.; Choudhary, P.C.; Intodia, K. Solvent free synthesis of methylthio/methylsulfonyl chalcones as potential anti-microbial agents. Chem. Sci. Trans., 2018, 7(2), 221-228.
[50]
Sribalan, R.; Banuppriya, G.; Kirubavathi, M.; Jayachitra, A.; Padmini, V. Multiple biological activities and molecular docking studies of newly synthesized 3-(pyridin-4-yl)-1H-pyrazole-5-carboxamide chalcone hybrids. Bioorg. Med. Chem. Lett., 2016, 26(23), 5624-5630.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.075 PMID: 27825544]
[51]
Bairam, R.; Murthy, S. Synthesis characterization and biological evaluation of some novel substituted -1,3-thaizine congeners. J. Innov. Pharm. Sci., 2019, 3(1), 33-39.
[52]
Tutar, U.; Kocyigit, U.M.; Gezegen, H. Evaluation of antimicrobial, antibiofilm and carbonic anhydrase inhibition profiles of1, 3‐bis‐chalcone derivatives. J. Biochem. Mol. Toxicol., 2018, 33(4)e22281
[http://dx.doi.org/10.1002/jbt.22281] [PMID: 30597695]
[53]
Ketabforoosh, S.H.M.E.; Kheirollahi, A.; Safavi, M.; Esmati, N.; Ardestani, S.K.; Emami, S.; Firoozpour, L.; Shafiee, A.; Foroumadi, A. Synthesis and anti-cancer activity evaluation of new dimethoxylated chalcone and flavanone analogs. Arch. Pharm. (Weinheim), 2014, 347(11), 853-860.
[http://dx.doi.org/10.1002/ardp.201400215 PMID: 25201534]
[54]
Fandakli, S.; Kahriman, N.; Yucel, T.B.; Karaoglu, S.A.; Yayli, N. Biological evaluation and synthesis of new pyrimidine-2(1H)-ol/-thiol derivatives derived from chalcones using the solid phase microwave method. Turk. J. Chem., 2018, 42, 520-535.
[http://dx.doi.org/10.3906/kim-1711-9]
[55]
Khan, S.A.; Asiri, A.M.; Al-Ghamdi, N.S.M.; Asad, M.; Zayed, M.E.M.; Elroby, S.A.K.; Aqlam, F.M.; Wani, M.Y.; Sharma, K. Microwave assisted synthesis of chalcone and its polycyclic heterocyclic analogues as promising antibacterial agents: in vitro, in-silico and DFT studies. J. Mol. Struct., 2019, 1190, 77-85.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.046]
[56]
Thirunarayanan, G.; Vijayakumar, S. Solvent-free synthesis and antimicrobial potential of some (2E)-4-methoxyphenyl chalcones. Pharma Chem., 2018, 10(10), 43-47.
[57]
Sivasankerreddy, L.; Nagamani, B.; Rajkumar, T.; Babu, M.S.; Subbaiah, N.Y.; Harika, M.S.; Nageswarao, R. Novel diazenyl containing phenyl styryl ketone derivatives as antimicrobial agents. Antiinfect. Agents, 2019, 17(1), 28-38.
[http://dx.doi.org/10.2174/2211352516666180927111546 PMID: 31328083]
[58]
Zhang, B.; Duan, D.; Ge, C.; Yao, J.; Liu, Y.; Li, X.; Fang, J. Synthesis of xanthohumol analogues and discovery of potent thioredoxin reductase inhibitor as potential anticancer agent. J. Med. Chem., 2015, 58(4), 1795-1805.
[http://dx.doi.org/10.1021/jm5016507 PMID: 25629304]
[59]
Wang, Q.; Ding, Z.H.; Liu, J.K.; Zheng, Y.T. Xanthohumol, a novel anti-HIV-1 agent purified from Hops Humulus lupulus. Antiviral Res., 2004, 64(3), 189-194.
[http://dx.doi.org/10.1016/S0166-3542(04)00201-3] [PMID: 15550272]
[60]
Božić, D.D.; Milenković, M.; Ivković, B.; Ćirković, I. Antibacterial activity of three newly-synthesized chalcones & synergism with antibiotics against clinical isolates of methicillin-resistant Staphylococcus aureus. Indian J. Med. Res., 2014, 140(1), 130-137.
[PMID: 25222788]
[61]
Xu, Y.; Wu, J.; Liao, S.; Sun, Z. Treating tuberculosis with high doses of anti-TB drugs: mechanisms and outcomes. Ann. Clin. Microbiol. Antimicrob., 2017, 16(1), 67.
[http://dx.doi.org/10.1186/s12941-017-0239-4 PMID: 28974222]
[62]
Chu, W.C.; Bai, P.Y.; Yang, Z.Q.; Cui, D.Y.; Hua, Y.G.; Yang, Y.; Yang, Q.Q.; Zhang, E.; Qin, S. Synthesis and antibacterial evaluation of novel cationic chalcone derivatives possessing broad spectrum antibacterial activity. Eur. J. Med. Chem., 2018, 143, 905-921.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.009 PMID: 29227931]
[63]
Tajuddeen, N.; Isah, M.B.; Suleiman, F.R.; Heerden, V.; Ibrahim, M.A. The chemotherapeutic potential of chalcones against leishmaniases: a review. Int. J. Antimicrob. Agents, 2018, 51, 311-318.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.06.010]
[64]
Yuan, X.; Li, D.; Zhao, H.; Jiang, J.; Wang, P.; Ma, X.; Sun, X.; Zheng, Q. Licochalcone A- induced human bladder cancer T24 cells apoptosis triggered by mitochondria dysfunction and endoplasmic reticulum stress. BioMed Res. Int., 2013, 2013474272
[http://dx.doi.org/10.1155/2013/474272]
[65]
Kolbe, L.; Immeyer, J.; Batzer, J.; Wensorra, U.; tom Dieck, K.; Mundt, C.; Wolber, R.; Stäb, F.; Schönrock, U.; Ceilley, R.I.; Wenck, H. Anti-inflammatory efficacy of Licochalcone A: correlation of clinical potency and in vitro effects. Arch. Dermatol. Res., 2006, 298(1), 23-30.
[http://dx.doi.org/10.1007/s00403-006-0654-4 PMID: 16552540]
[66]
Kaur, J.; Utreja, D.; Dhillon, N.K.; Sharma, S. Synthesis of indole derivatives and their evaluation against root knot nematode Meloidogyne incognita. Lett. Org. Chem., 2019, 16(9), 759-767.
[http://dx.doi.org/10.2174/1570178616666190219131042]
[67]
Zhou, J.X.; Wink, M. Evidence for anti-inflammatory activity of isoliquiritigenin, 18β glycyrrhetinic acid, ursolic acid, and the traditional Chinese medicine plants Glycyrrhiza glabra and Eriobotrya japonica, at the molecular level. Medicines (Basel), 2019, 6(55), 1-15.
[http://dx.doi.org/10.3390/medicines6020055]
[68]
Lin, P.H.; Chiang, Y.F.; Shieh, T.M.; Chen, H.Y.; Shih, C.K.; Wang, T.H.; Wang, K.L.; Huang, T.C.; Hong, Y.H.; Li, S.C.; Hsia, S.M. Dietary compound isoliquiritigenin, an antioxidant from licorice, suppresses triple-negative breast tumor growth via apoptotic death program activation in cell and xenograft animal models. Antioxidants, 2020, 9(3), 1-16.
[http://dx.doi.org/10.3390/antiox9030228 PMID: 32164337]
[69]
Chavan, B.B.; Gadekar, A.S.; Mehta, P.P.; Vawhl, P.K.; Kolsure, A.K.; Chabukswar, A.R. Synthesis and medicinal significance of chalcones-a review. Asian. J. Biomed. Pharm. Sci., 2016, 6, 1-7.
[70]
Radwan, M.A.A.; Alshubramy, M.A.; Motaal, M.A.; Hemdan, B.A.; El-Kady, D.S. Synthesis, molecular docking and antimicrobial activity of new fused pyrimidine and pyridine derivatives. Bioorg. Chem., 2019, 96103516
[http://dx.doi.org/10.1016/j.bioorg.2019.103516] [PMID: 31991322]
[71]
Arif, R.; Rana, M.; Yasmeen, S. Amaduddin, Khan, M.S.; Abid, M.; Khan, M.S.; Rahisuddin. Facile synthesis of chalcone derivatives as antibacterial agents: Synthesis, DNA binding, molecular docking, DFT and antioxidant studies. J. Mol. Struct., 2020, 1208127905
[http://dx.doi.org/10.1016/j.molstruc.2020.127905]
[72]
Sivakumar, P.M.; Prabhakar, P.K.; Doble, M. Synthesis, antioxidant evaluation and quantitative structure-activity relationship studies of chalcones. Med. Chem. Res., 2010, 20, 482-492.
[http://dx.doi.org/10.1007/s00044-010-9342-1]
[73]
Zhang, E.H.; Wang, R.F.; Guo, S.Z.; Liu, B. An update on antitumor activity of naturally occurring chalcones. Evid. Based Complementary Altern. Med., 2013, 2013815621
[http://dx.doi.org/10.1155/2013/815621]
[74]
Kalirajan, R.; Sivakumar, S.U.; Jubie, S.; Gowramma, B.; Suresh, B. Synthesis and biological evaluation of some heterocyclic derivatives of chalcones. Int. J. Chemtech Res., 2009, 1, 27-34.
[75]
Kucerova-Chlupacova, M.; Vyskovska-Tyllova, V.; Richterova-Finkova, L.; Kunes, J.; Buchta, V.; Vejsova, M.; Paterova, P.; Semelkova, L.; Jandourek, O.; Opletalova, V. Novel halogenated pyrazine based chalcones as potential antimicrobial drugs. Molecules, 2016, 21(11), 1-16.
[http://dx.doi.org/10.3390/molecules21111421 PMID: 27801810]
[76]
Wu, W.; Liu, Y.; Ye, H.; Li, Z. Millepachine showed novel antitumor effects in cisplatin-resistant human ovarian cancer through inhibiting drug efflux function of ATP-binding cassette transporters. Phytotherapy. Res., 2018, 32(12), 2428-2435.
[http://dx.doi.org/10.1002/ptr.6180]
[77]
Roemer, T.; Krysan, D.J. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb. Perspect. Med., 2014, 4(5), 19703.
[http://dx.doi.org/10.1101/cshperspect.a019703]
[78]
Patel, A.; Panchal, I.; Parmar, I.; Mishtry, B. Synthesis of new flavonoid and chalcone derivatives as antimicrobial agent by green chemistry approach. Int. J. Pharm. Sci. Res., 2017, 8(6), 2725-2730.
[79]
Patel, N.B.; Patel, J.C.; Barat, G.G. Synthesis and antimicrobial activity of 2-[2-(2, 6-dichloro phenyl)amino] benzyl-3-(5-substituted phenyl-4,5-dihydro-1H-pyrazol-3yl-amino)-6,8-dibromoquinazolin-4(3H)ones. J. Young Pharm., 2010, 2, 173-182.
[http://dx.doi.org/10.4103/0975-1483.63165]
[80]
Mayekar, A.N.; Li, H.; Yathirajan, H.S.; Narayana, B.; Kumari, N.S. Synthesis, characterization and antimicrobial study of some new cyclohexanone derivatives. Int. J. Chem., 2010, 2(2), 114-123.
[http://dx.doi.org/10.5539/ijc.v2n2p114]
[81]
Patel, N.B.; Barat, G.G. Synthesis of chalcone containing pyrazolyl quinazolin-4(3H) ones and their in vitro microbial studies. Int. J. Chem. Sci, 2010, 8(2), 1287-1300.
[82]
Venkatesan, P.; Maruthavanan, T. Piperidine-mediated synthesis of thiazolyl chalcones and their derivatives as potent antimicrobial agents. Nat. Prod. Res., 2012, 26(3), 223-234.
[http://dx.doi.org/10.1080/14786419.2010.536161 PMID: 21834630]
[83]
Sudhir, P.; Rajashree, C.; Ashok, B. Synthesis and biological evaluation of mannich bases of isoxazoline derivatives as novel antimicrobial agents. Eur. J. Chem., 2011, 9(4), 1760-1772.
[http://dx.doi.org/10.1155/2012/386428 ]
[84]
Yadav, J.S.; Srivastava, Y.K. A facile synthesis and antimicrobial activity of some new 2-substituted benzimidazole derivatives carrying pyridine. Der. Chemica. Sinica, 2011, 2(1), 1-7.
[85]
Patil, S.G.; Utale, P.S.; Ghosle, S.B.; Thakur, S.D.; Pande, S.V. Synthesis, characterization and anti-microbial activity of 6-bromo-4-methoxy-4-(subs-tituted phenyl) iminoflavone. J. Chem. Pharm. Res., 2012, 4(1), 501-507.
[86]
Tran, T.D.; Nguyen, T.T.N.; Do, T.H.; Huynh, T.N.P.; Tran, C.D.; Thai, K.M. Synthesis and antibacterial activity of some heterocyclic chalcone analogues alone and in combination with antibiotics. Molecules, 2012, 17(6), 6684-6696.
[http://dx.doi.org/10.3390/molecules17066684 PMID: 22728362]
[87]
Bandgar, B.P.; Jalde, S.S.; Adsul, L.K.; Shringare, S.N.; Lonikar, S.V.; Gacche, R.N.; Dhole, N.A.; Nile, S.H.; Shirfule, A.L. Synthesis of new olefin chalcone derivatives as antitumor, antioxidant and antimicrobial agents. Med. Chem. Res., 2012, 21, 4512-4522.
[http://dx.doi.org/10.1007/s00044-012-9979-z]
[88]
Acharya, A.P.; Kamble, R.D.; Patil, S.D.; Hese, S.V.; Dawane, B.S. An efficient and green synthesis of some novel benzodiazepine derivatives and their antimicrobial screening. Der. Chemica. Sinica, 2013, 4(2), 189-193.
[89]
Gharpure, M.; Choudhary, R.; Ingle, V.; Juneja, H. Synthesis of new series of 3-hydroxy/acetoxy-2-phenyl-4H-chromen-4-ones and their biological importance. J. Chem. Sci., 2013, 125(3), 575-582.
[http://dx.doi.org/10.1007/s12039-013-0420-z]
[90]
Adokar, M.R. Synthesis and green bromination of some chalcones and their antimicrobial screening. Int. Res. J. Pharm, 2013, 4(4), 194-196.
[http://dx.doi.org/10.7897/2230-8407.04438]
[91]
Mowlana, M.Y.; Naseer, J.A.; Karthikeyan, R. Synthesis, characterization and biological activity of some heterocyclic chalcone derivatives. Int. J. Biomed. Res., 2014, 5, 751-753.
[92]
Ahmad, A.; Husain, A.; Khan, S.A.; Mujeeb, M.; Bhandari, A. Synthesis, antimicrobial and antitubercular activities of some novel pyrazoline derivatives. J. Saudi Chem. Soc., 2014, 20, 577-584.
[http://dx.doi.org/10.1016/j.jscs.2014.12.004]
[93]
Kulathooran, S.; Selvakumar, B.; Dhamodaran, M. Synthesis and biological activities of novel heterocyclic chalcone derivatives by two different methods using anhydrous potassium carbonate as an efficient catalyst. Pharma Chem., 2014, 6, 240-249.
[94]
Dangi, R.R.; Chundawat, N.S.; Talesera, G.L. A convenient synthesis of ethoxypthalamide derivatized quinazoline assembled pyrimidine and pyridine via common intermediate chalcone & their antimicrobial agents. World J. Chem. Res., 2015, 4(1), 1400-1413.
[95]
Meshram, G.A.; Vala, V.A. Synthesis, characterization and antimicrobial activity of benzimidazole-derived chalcones containing 1,3,4-oxadiazole moiety. Chem. Heterocycl. Compd., 2015, 51(1), 44-50.
[http://dx.doi.org/10.1007/s10593-015-1653-1]
[96]
Uma, P.; Suresh, J.; Selvaraj, R.; Karthik, S.; Arun, A. Quinoline based polymeric drug for biological applications: synthesis, characterization, antimicrobial, and drug releasing studies. J. Biomater. Sci. Polym. Ed., 2015, 26(2), 128-142.
[http://dx.doi.org/10.1080/09205063.2014.985022 PMID: 25429379]
[97]
Dabhi, H.R.; Rana, A.K.; Parmar, K.K.H. Synthesis, characterization and antimicrobial study of some pyrazole compounds derived from chalcone. Arch. Appl. Sci. Res., 2015, 7, 1-5.
[98]
Gupta, D.; Jain, D.K. Chalcone derivatives as potential antifungal agents: synthesis, and antifungal activity. J. Adv. Pharm. Technol. Res., 2015, 6(3), 114-117.
[http://dx.doi.org/10.4103/2231-4040.161507 PMID: 26317075]
[99]
Wei, Z.Y.; Chi, K.Q.; Yu, Z.K.; Liu, H.Y.; Sun, L.P.; Zheng, C.J.; Piao, H.R. Synthesis and biological evaluation of chalcone derivatives containing aminoguanidine or acylhydrazone moieties. Bioorg. Med. Chem. Lett., 2016, 26(24), 5920-5925.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.001 PMID: 27843112]
[100]
Chaitramallu, M.; Shekarachar, D.; Kesagodu, D.; Rekha, N.D.; Ranjini, P. Synthesis of aryl tetralone derivatives by chalcone route. Med. Chem., 2016, 6, 525-530.
[101]
Venkatesh, T.; Bodke, Y.D.; Kenchappa, R.; Telkar, S. Synthesis, antimicrobial & antioxidant activity of chalcone derivatives containing thiobarbitone nucleus. Med. Chem., 2016, 6(7), 440-448.
[http://dx.doi.org/10.4172/2161-0444.1000383]
[102]
Kumari, S.; Paliwal, S.K.; Chauhan, R. An improved protocol for the synthesis of chalcones containing pyrazole with potential antimicrobial and antioxidant activity. Curr. Bioact. Compd., 2016, 14(1), 39-47.
[http://dx.doi.org/10.2174/1573407212666161101152735]
[103]
Patole, S.S.; Rajput, S.S. Microwave assisted solid phase synthesis & characterization of microbially potent 7H-pyrrolo [2,3-C: 5,4-C′] disoxazole derivatives. Eur. J. Biomed. Pharm. Sci., 2017, 4(12), 601-607.
[104]
Raja, C.; Ezhilarasi, M.R.; Prabha, B.; Kulandhaivel, M. Synthesis, spectral characterization and antimicrobial activities of ethyl-2-(4-(naphthalene-1-yl)-6-phenyl-pyrimidin-2-yl-amino) acetate derivatives. Chem. Sci. Trans., 2017, 6(4), 619-629.
[http://dx.doi.org/10.7598/cst2017.1403]
[105]
Shaik, A.R. Synthesis, characterization and biological evolution of nitrogenous heterocyclic ring containing chalcones. Int. J. Pharm. Sci. Rev. Res., 2017, 43(2), 200-207.
[106]
Kandaswamy, N. Synthesis, characterization and antimicrobial evaluation of chalcone coupled bis-coumarin copolyesters. Macromol. Res., 2018, 27, 593-600.
[http://dx.doi.org/10.1007/s13233-019-7082-8]
[107]
Singh, A.; Fong, G.; Liu, J.; Wu, Y.H.; Chang, K.; Park, W.; Kim, J.; Tam, C.; Cheng, L.W.L.; Land, K.M.; Kumar, V. Synthesis and preliminary antimicrobial analysis of isatin-ferrocene and isatin-ferrocenyl chalcone analogs. ACS Omega, 2018, 3(5), 5808-5813.
[http://dx.doi.org/10.1021/acsomega.8b00553 PMID: 30023926]
[108]
Kamble, P.; Wadher, S. Synthesis, in vitro antioxidant and antimicrobial evaluation of 3-hydroxy chromone derivatives. Int. J. Chemtech Res., 2018, 11(2), 63-76.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i3.22984 ]
[109]
Elavarasan, M.; Thendral, M.T.; Shafi, S.S. Synthesis, characterization and antimicrobial activity of some new chalcones. Int. J. Pharm. Sci. Res., 2018, 9(5), 1969-1973.
[http://dx.doi.org/10.1007/s00044-011-9696-z]
[110]
Reda, N.A.A.; Abd, A.S. Synthesis, characterization and biological activity of some chalcone derivatives of cholic acid. Asian J. Chem., 2018, 30(11), 2577-2581.
[http://dx.doi.org/10.14233/ajchem.2018.21666]
[111]
Yusuf, M.; Thakur, S. Bis 4,5-dihydropyrazole derivatives: synthesis, characterization and antimicrobial- antioxidant evaluation. Asian J. Chem., 2018, 30(9), 2097-2102.
[http://dx.doi.org/10.14233/ajchem.2018.21451]
[112]
Neha, B.; Janki, K.; Nirav, D. Synthesis and antimicrobial screening of some chalcones. Int. J. Sci. Res. Rev., 2018, 7(1), 40-45.
[113]
Sie, C.Z.; Ngaini, Z.; Suhaili, N.; Madiahlagan, E. Synthesis of kojic ester derivatives as potential antibacterial agent. Hind. J. Chem, 2018, 20181245712
[http://dx.doi.org/10.1155/2018/1245712]
[114]
Santosh, R.; Selvam, M.K.; Kanekar, S.U.; Nagaraja, G.K. Synthesis, characterization, antibacterial and antioxidant studies of some heterocyclic compounds from triazole-linked chalcone derivatives. Chem. Pub. Soc. Eur., 2018, 3, 6338-6343.
[http://dx.doi.org/10.1002/slct.201800905]
[115]
Rathinamanivannan, S.; Megha, K.; Chinnamanayakar, R.; Kumar, A.; Ezhilarasi, M.R. Synthesis and characterization of 2-pyrazoline derivatives and their in silico and in vitro studies on antimicrobial and anticancer activities. Asian J. Chem., 2019, 31(10), 2191-2196.
[http://dx.doi.org/10.14233/ajchem.2019.22082]
[116]
Irshad, M.; Ali, Q.; Iram, F.; Ahamad, S.A.; Saleem, M.; Saadia, M.; Batool, M.; Kanwal, A.; Tabassum, S. Aurones and analogues: promising heterocyclic scaffolds for development of antioxidant and antimicrobial agents. Russ. J. Gen. Chem., 2019, 89(7), 1519-1527.
[http://dx.doi.org/10.1134/S1070363219070235]
[117]
Chinnamanayakar, R.; Ezhilarasi, M.R. Synthesis and characterization of 2-phenyl pyrazoline derivatives and evaluation of their activities against antimicrobial and breast cancer cell line in vitro and in silico studies. Asian J. Chem., 2019, 31(6), 1311-1320.
[http://dx.doi.org/10.14233/ajchem.2019.21915]
[118]
Prithvirajan, B.; Jas, M.J.S.; Marimuthu, G. Synthesis, characterization and in vitro antimicrobial evaluation of chalconeimine derivatives as potential inhibitors against enzymes produced from Staphylococcus aureus: a computational approach. Asian J. Chem., 2019, 31(10), 2157-2164.
[http://dx.doi.org/10.14233/ajchem.2019.22028]