[3]
Kaur, K.; Utreja, D.; Garg, A.; Sharma, V.K. Synthesis and antifungal activity of sulfonamides Schiff bases and their metal complexes. Plant Dis. Res., 2016, 31(2), 171-173.
[7]
Ocampo, J.A.; Carrilo, R.; Kae, H.; Ashburn, B.O. Synthesis and antimicrobial evaluation of a series of chlorinated chalcone derivatives. Int. J. Pharm. Pharm. Res, 2018, 13(3), 112-119.
[12]
Mohammed, J.H. Biological activities importance of chalcone derivatives. Int. J. Chem. Biomol. Sci., 2015, 1, 107-112.
[13]
Yerragunta, V.; Kumaraswamy, T.; Suman, D.; Anusha, V. A review on chalcones and its importance. Pharmatutor., 2013, 1, 54-59.
[14]
Vibha, U.D.; Kaur, J. Quinolinium chlorochromate: an excellent reagent for N3-C4 dehydrogenation of dihydropyrimidinones and their antifungal evaluation. Ind. J. Heterocycl. Chem., 2019, 29(1), 11-20.
[16]
Kaur, G.; Utreja, D.; Kaur, J. Synthesis of metal complexes of Schiff bases of halogenated anilines and their antifungal activity. Plant Dis. Res., 2017, 32(2), 228-231.
[20]
Gouhar, R.S.; Fathalla, O.A.; El-Karim, S.S.A. Synthesis and anticancer screening of some novel substituted pyrazole derivatives. Pharma Chem., 2013, 5(6), 225-233.
[35]
Goyal, A.; Utreja, D.; Garg, A.; Sharma, V.K. Synthesis and antifungal activity of sulfonamides Schiff bases and their metal complexes. Agri. Res. J., 2018, 55(2), 377-379.
[39]
Utreja, D. Synthesis of Schiff bases of coumarin and their antifungal activity. Ind. J. Heterocycl. Chem., 2018, 28(4), 433-439.
[41]
Pandya, M.; Kapadiya, K.; Pandit, C.; Purohit, D. Synthesis of halogenated chalcones, pyrazolines and microbial evaluation of derived scaffolds. J. Sci. Ind. Res., 2016, 76, 173-178.
[42]
Chaudhari, P.P.; Rajput, S.S. Clean synthesis and antimicrobial interpretation of azo (dipyrano) and bis-chalcones derivatives from N-phenyl pyrolidine-2,5-dione and N-phenyl piperidine-2,6-dione. Heterocyclic. Letters., 2018, 8(1), 133-144.
[48]
Bagyaraj, E.; Moorthi, K.; Aboobuckersithique, M. Novel chalcones of 3-[4-(4-[4-acetylphenoxy]-6-([nitrophenyl]amino)-1,3,5triazin-2-yl)oxy)phenyl]-1-(2,4-dichlorophenyl)prop-2-en-1-one for biological applications: synthesis, characterization and antimicrobial studies. Chem. Xpress, 2017, 10(1), 1-10.
[49]
Shorey, S.; Choudhary, P.C.; Intodia, K. Solvent free synthesis of methylthio/methylsulfonyl chalcones as potential anti-microbial agents. Chem. Sci. Trans., 2018, 7(2), 221-228.
[51]
Bairam, R.; Murthy, S. Synthesis characterization and biological evaluation of some novel substituted -1,3-thaizine congeners. J. Innov. Pharm. Sci., 2019, 3(1), 33-39.
[56]
Thirunarayanan, G.; Vijayakumar, S. Solvent-free synthesis and antimicrobial potential of some (2E)-4-methoxyphenyl chalcones. Pharma Chem., 2018, 10(10), 43-47.
[69]
Chavan, B.B.; Gadekar, A.S.; Mehta, P.P.; Vawhl, P.K.; Kolsure, A.K.; Chabukswar, A.R. Synthesis and medicinal significance of chalcones-a review. Asian. J. Biomed. Pharm. Sci., 2016, 6, 1-7.
[74]
Kalirajan, R.; Sivakumar, S.U.; Jubie, S.; Gowramma, B.; Suresh, B. Synthesis and biological evaluation of some heterocyclic derivatives of chalcones. Int. J. Chemtech Res., 2009, 1, 27-34.
[78]
Patel, A.; Panchal, I.; Parmar, I.; Mishtry, B. Synthesis of new flavonoid and chalcone derivatives as antimicrobial agent by green chemistry approach. Int. J. Pharm. Sci. Res., 2017, 8(6), 2725-2730.
[81]
Patel, N.B.; Barat, G.G. Synthesis of chalcone containing pyrazolyl quinazolin-4(3H) ones and their in vitro microbial studies. Int. J. Chem. Sci, 2010, 8(2), 1287-1300.
[84]
Yadav, J.S.; Srivastava, Y.K. A facile synthesis and antimicrobial activity of some new 2-substituted benzimidazole derivatives carrying pyridine. Der. Chemica. Sinica, 2011, 2(1), 1-7.
[85]
Patil, S.G.; Utale, P.S.; Ghosle, S.B.; Thakur, S.D.; Pande, S.V. Synthesis, characterization and anti-microbial activity of 6-bromo-4-methoxy-4-(subs-tituted phenyl) iminoflavone. J. Chem. Pharm. Res., 2012, 4(1), 501-507.
[88]
Acharya, A.P.; Kamble, R.D.; Patil, S.D.; Hese, S.V.; Dawane, B.S. An efficient and green synthesis of some novel benzodiazepine derivatives and their antimicrobial screening. Der. Chemica. Sinica, 2013, 4(2), 189-193.
[91]
Mowlana, M.Y.; Naseer, J.A.; Karthikeyan, R. Synthesis, characterization and biological activity of some heterocyclic chalcone derivatives. Int. J. Biomed. Res., 2014, 5, 751-753.
[93]
Kulathooran, S.; Selvakumar, B.; Dhamodaran, M. Synthesis and biological activities of novel heterocyclic chalcone derivatives by two different methods using anhydrous potassium carbonate as an efficient catalyst. Pharma Chem., 2014, 6, 240-249.
[94]
Dangi, R.R.; Chundawat, N.S.; Talesera, G.L. A convenient synthesis of ethoxypthalamide derivatized quinazoline assembled pyrimidine and pyridine via common intermediate chalcone & their antimicrobial agents. World J. Chem. Res., 2015, 4(1), 1400-1413.
[97]
Dabhi, H.R.; Rana, A.K.; Parmar, K.K.H. Synthesis, characterization and antimicrobial study of some pyrazole compounds derived from chalcone. Arch. Appl. Sci. Res., 2015, 7, 1-5.
[100]
Chaitramallu, M.; Shekarachar, D.; Kesagodu, D.; Rekha, N.D.; Ranjini, P. Synthesis of aryl tetralone derivatives by chalcone route. Med. Chem., 2016, 6, 525-530.
[103]
Patole, S.S.; Rajput, S.S. Microwave assisted solid phase synthesis & characterization of microbially potent 7H-pyrrolo [2,3-C: 5,4-C′] disoxazole derivatives. Eur. J. Biomed. Pharm. Sci., 2017, 4(12), 601-607.
[105]
Shaik, A.R. Synthesis, characterization and biological evolution of nitrogenous heterocyclic ring containing chalcones. Int. J. Pharm. Sci. Rev. Res., 2017, 43(2), 200-207.
[112]
Neha, B.; Janki, K.; Nirav, D. Synthesis and antimicrobial screening of some chalcones. Int. J. Sci. Res. Rev., 2018, 7(1), 40-45.