Coronavirus: History, Genome Structure and Pathogenesis

Page: [325 - 338] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: The positive sense and inordinate large RNA genome enclosed by helical nucleocapsids along with an outermost layer belongs to the family Coronaviridae. The phylogenetic tree of this family has been classified into Class1 as alpha, Class 2 as beta, Class 3 as gamma, and Class 4 as delta CoV. The mammalian respiratory and gastrointestinal tracts are the main target organs of this enveloped virus with misperceived mechanisms. The relevance of this virus family has considerably increased by the recent emergence of the Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS), which are caused by viruses that belong to the beta-CoV group.

Aim: Aforesaid illustrations of the emergence of coronavirus diseases over the past two decades, SARS (2002; 2003) and MERS (2012 to present) - the ongoing COVID-19 outbreak has pressurized the WHO to take innovative measures for public health, research and medical communities. The aim of the present review is to have proficiency in the coronavirus replication and transcription process which is still in its infancy.

Conclusion: As an outcome of epidemics, it is being recognized as one of the most advancing viruses by the virtue of high genomic nucleotide substitution rates and recombination. The hallmark of coronavirus replication is discontinuous transcription resulting in the production of multiple subgenomic mRNAs having sequences complementary to both ends of the genome. Therefore, the complete genome sequence of coronavirus will be used as a frame of reference for comprehending this classical phenomenon of the RNA replication process. Finally, research on the pathogenesis of coronaviruses and the host immunopathological response will aid in designing vaccines and minimizing the mortality rate.

Keywords: Coronavirus, COVID-19, MERS, pathogenesis, SARS, transmission, sub genomic mRNA, recombination.

Graphical Abstract

[1]
Yang Y, Peng F, Wang R, et al. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun 2020; 109102434
[http://dx.doi.org/10.1016/j.jaut.2020.102434] [PMID: 32143990]
[2]
Poutanen SM. Human coronaviruses. Princ Prac Ped Infect Disease 2013; 117e4
[http://dx.doi.org/10.1016/B978-1-4377-2702-9.00224-5]]
[3]
She J, Jiang J, Ye L, Hu L, Bai C, Song Y. 2019 novel coronavirus of pneumonia in Wuhan, China: emerging attack and management strategies. Clin Transl Med 2020; 9(1): 19.
[http://dx.doi.org/10.1186/s40169-020-00271-z] [PMID: 32078069]
[4]
Almeida JD, Tyrrell DAJ. The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture. J Gen Virol 1967; 1(2): 175-8.
[http://dx.doi.org/10.1099/0022-1317-1-2-175] [PMID: 4293939]
[5]
Mielech AM, Deng X, Chen Y, et al. Murine coronavirus ubiquitin-like domain is important for papain-like protease stability and viral pathogenesis. J Virol 2015; 89(9): 4907-17.
[http://dx.doi.org/10.1128/JVI.00338-15] [PMID: 25694594]
[6]
Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016; 24(6): 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[7]
van der Hoek L, Pyrc K, Jebbink MF, et al. Identification of a new human coronavirus. Nat Med 2004; 10(4): 368-73.
[http://dx.doi.org/10.1038/nm1024] [PMID: 15034574]
[8]
Shreen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: origin, transmission and characteristics of human Coronavirus. J Adv Res 2020; 16(24): 91-8.
[http://dx.doi.org/10.1016/j.jare.2020.03.005]
[9]
Zhang ZJ, Yu XJ, Fu T, et al. Novel coronavirus infection in newborn babies under 28 days in China. Eur Respir J 2020; 55(4)2000697
[PMID: 32139463]
[10]
Ye ZW, Yuan S, Yuen KS, Fung SY, Chan CP, Jin DY. Zoonotic origins of human coronaviruses. Int J Biol Sci 2020; 16(10): 1686-97.
[http://dx.doi.org/10.7150/ijbs.45472] [PMID: 32226286]
[11]
Weiss SR, Leibowitz JL. Coronavirus pathogenesis. Adv Virus Res 2011; 81: 85-164.
[http://dx.doi.org/10.1016/B978-0-12-385885-6.00009-2] [PMID: 22094080]
[12]
Guan WJ, Ni ZY, Hu Y, et al. China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[13]
Tyrrell DAJ, Bynoe ML. Cultivation of a novel type of common cold virus in organ culture. BMJ 1965; 1(5448): 1467-70.
[http://dx.doi.org/10.1136/bmj.1.5448.1467] [PMID: 14288084]
[14]
Hamre D, Procknow JJ. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med 1966; 121(1): 190-3.
[http://dx.doi.org/10.3181/00379727-121-30734] [PMID: 4285768]
[15]
McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc Natl Acad Sci USA 1967; 57(4): 933-40.
[http://dx.doi.org/10.1073/pnas.57.4.933] [PMID: 5231356]
[16]
Kahn JS, McIntosh K. History and recent advances in coronavirus discovery. Pediatr Infect Dis J 2005; 24(11): S223-7.
[http://dx.doi.org/10.1097/01.inf.0000188166.17324.60] [PMID: 16378050]
[17]
Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 2005; 69(4): 635-64.
[http://dx.doi.org/10.1128/MMBR.69.4.635-664.2005] [PMID: 16339739]
[18]
Tyrrell DAJ, Almeida JD, Cunningham CH, et al. Coronaviridae. Intervirology 1975; 5(1-2): 76-82.
[http://dx.doi.org/10.1159/000149883] [PMID: 1184350]
[19]
Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect 2020; 26(6): 729-34.
[http://dx.doi.org/10.1016/j.cmi.2020.03.026] [PMID: 32234451]
[20]
Guan WJ, Zheng XY, Zeng GQ, Zhong NS. Severe acute respiratory syndrome: a vanished evil? J Thorac Dis 2013; 5(2): S87-9.
[PMID: 23977440]
[21]
Peiris JS, Lai ST, Poon LL, et al. SARS study group. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 2003; 361(9366): 1319-25.
[http://dx.doi.org/10.1016/S0140-6736(03)13077-2] [PMID: 12711465]
[22]
Woo PC, Lau SK, Chu CM, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 2005; 79(2): 884-95.
[http://dx.doi.org/10.1128/JVI.79.2.884-895.2005] [PMID: 15613317]
[23]
Pyrc K, Sims AC, Dijkman R, et al. Culturing the unculturable: human coronavirus HKU1 infects, replicates, and produces progeny virions in human ciliated airway epithelial cell cultures. J Virol 2010; 84(21): 11255-63.
[http://dx.doi.org/10.1128/JVI.00947-10] [PMID: 20719951]
[24]
Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012; 367(19): 1814-20.
[http://dx.doi.org/10.1056/NEJMoa1211721] [PMID: 23075143]
[25]
Memish ZA, Mishra N, Olival KJ, et al. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg Infect Dis 2013; 19(11): 1819-23.
[http://dx.doi.org/10.3201/eid1911.131172] [PMID: 24206838]
[26]
Mohd HA, Al-Tawfiq JA, Memish ZA. Middle East respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir. Virol J 2016; 13(1): 87-94.
[http://dx.doi.org/10.1186/s12985-016-0544-0] [PMID: 27255185]
[27]
Omrani AS, Shalhoub S. Middle East respiratory syndrome coronavirus (MERS-CoV): what lessons can we learn? J Hosp Infect 2015; 91(3): 188-96.
[http://dx.doi.org/10.1016/j.jhin.2015.08.002] [PMID: 26452615]
[28]
Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Mil Med Res 2020; 7(1): 1-10.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 31928528]
[29]
Gorbalenya AE. Severe acute respiratory syndrome-related coronavirus–The species and its viruses, a statement of the Coronavirus Study Group. bioRxiv 2020; 2020: 1-15.
[http://dx.doi.org/10.1101/2020.02.07.937862]]
[30]
Phan MVT, Ngo Tri T, Hong Anh P, Baker S, Kellam P, Cotten M. Identification and characterization of Coronaviridae genomes from Vietnamese bats and rats based on conserved protein domains. Virus Evol 2018; 4(2)vey035
[http://dx.doi.org/10.1093/ve/vey035] [PMID: 30568804]
[31]
Woo PC, Lau SK, Lam CS, et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol 2012; 86(7): 3995-4008.
[http://dx.doi.org/10.1128/JVI.06540-11] [PMID: 22278237]
[32]
Cong Y, Verlhac P, Reggiori F. The interaction between nidovirales and autophagy components. Viruses 2017; 9(7): 182.
[http://dx.doi.org/10.3390/v9070182] [PMID: 28696396]
[33]
Pasternak AO, Spaan WJ, Snijder EJ. Nidovirus transcription: how to make sense? J Gen Virol 2006; 87(6): 1403-21.
[http://dx.doi.org/10.1099/vir.0.81611-0] [PMID: 16690906]
[34]
Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. Nidovirales: evolving the largest RNA virus genome. Virus Res 2006; 117(1): 17-37.
[http://dx.doi.org/10.1016/j.virusres.2006.01.017] [PMID: 16503362]
[35]
Erles K, Brownlie J. Canine respiratory coronavirus: an emerging pathogen in the canine infectious respiratory disease complex. Vet Clin North Am Small Anim Pract 2008; 38(4): 815-25.
[http://dx.doi.org/10.1016/j.cvsm.2008.02.008] [PMID: 18501280]
[36]
Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 2015; 1282: 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1] [PMID: 25720466]
[37]
Pal M, Berhanu G, Desalegn C, Kandi V. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): an update. Cureus 2020; 12(3)e7423
[http://dx.doi.org/10.7759/cureus.7423] [PMID: 32337143]
[38]
Lim YX, Ng YL, Tam JP, Liu DX. Human coronaviruses: a review of virus–host interactions. Diseases 2016; 4(3): 26.
[http://dx.doi.org/10.3390/diseases4030026] [PMID: 28933406]
[39]
Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 2008; 9(4): 267-76.
[http://dx.doi.org/10.1038/nrg2323] [PMID: 18319742]
[40]
Woo PC, Lau SK, Yuen KY. Infectious diseases emerging from Chinese wet-markets: zoonotic origins of severe respiratory viral infections. Curr Opin Infect Dis 2006; 19(5): 401-7.
[http://dx.doi.org/10.1097/01.qco.0000244043.08264.fc] [PMID: 16940861]
[41]
Ge XY, Li JL, Yang XL, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013; 503(7477): 535-8.
[http://dx.doi.org/10.1038/nature12711] [PMID: 24172901]
[42]
Fielding BC. Human coronavirus NL63: a clinically important virus? Future Microbiol 2011; 6(2): 153-9.
[http://dx.doi.org/10.2217/fmb.10.166] [PMID: 21366416]
[43]
Li SW, Lin CW. Human coronaviruses: clinical features and phylogenetic analysis. Biomedicine (Taipei) 2013; 3(1): 43-50.
[http://dx.doi.org/10.1016/j.biomed.2012.12.007] [PMID: 32289002]
[44]
Xu J, Zhao S, Teng T, et al. Systematic comparison of two animal-to-human transmitted human Coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses 2020; 12(2): 244-61.
[http://dx.doi.org/10.3390/v12020244] [PMID: 32098422]
[45]
Ji W, Wang W, Zhao X, Zai J, Li X. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J Med Virol 2020; 92(4): 433-40.
[http://dx.doi.org/10.1002/jmv.25682] [PMID: 31967321]
[46]
Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 2020; 46(4): 586-90.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[47]
Oshiro L, Dalton AJ, Haguenau F. Ultrastructure of animal viruses and bacteriophages: an atlas. Academic Press 1973; pp. 331-43.
[48]
Orenstein JM, Banach B, Baker SC. Morphogenesis of coronavirus HCoV-NL63 in cell culture: a transmission electron microscopic study. Open Infect Dis J 2008; 2: 52-8.
[http://dx.doi.org/10.2174/1874279300802010052] [PMID: 19844604]
[49]
Sugiyama K, Amano Y. Morphological and biological properties of a new coronavirus associated with diarrhea in infant mice. Arch Virol 1981; 67(3): 241-51.
[http://dx.doi.org/10.1007/BF01318134] [PMID: 7224861]
[50]
Risco C, Antón IM, Enjuanes L, Carrascosa JL. The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins. J Virol 1996; 70(7): 4773-7.
[http://dx.doi.org/10.1128/JVI.70.7.4773-4777.1996] [PMID: 8676505]
[51]
Ng ML, Lee JWM, Leong MLN, Ling AE, Tan HC, Ooi EE. Topographic changes in SARS coronavirus-infected cells at late stages of infection. Emerg Infect Dis 2004; 10(11): 1907-14.
[http://dx.doi.org/10.3201/eid1011.040195] [PMID: 15550199]
[52]
Caul EO, Ashley CR, Ferguson M, Egglestone SI. Preliminary studies on the isolation of coronavirus 229E nucleocapsids. FEMS Microbiol Lett 1979; 5(2): 101-5.
[http://dx.doi.org/10.1111/j.1574-6968.1979.tb03256.x]
[53]
Yang D, Leibowitz JL. The structure and functions of coronavirus genomic 3′ and 5′ ends. Virus Res 2015; 206: 120-33.
[http://dx.doi.org/10.1016/j.virusres.2015.02.025] [PMID: 25736566]
[54]
Ropp SL, Wees CEM, Fang Y, et al. Characterization of emerging European-like porcine reproductive and respiratory syndrome virus isolates in the United States. J Virol 2004; 78(7): 3684-703.
[http://dx.doi.org/10.1128/JVI.78.7.3684-3703.2004] [PMID: 15016889]
[55]
Woo PC, Huang Y, Lau SK, Yuen KY. Coronavirus genomics and bioinformatics analysis. Viruses 2010; 2(8): 1804-20.
[http://dx.doi.org/10.3390/v2081803] [PMID: 21994708]
[56]
Nakagawa K, Lokugamage KG, Makino S. Viral and cellular mRNA translation in coronavirus-infected cells. Adv Virus Res 2016; 96: 165-92.
[http://dx.doi.org/10.1016/bs.aivir.2016.08.001] [PMID: 27712623]
[57]
Song Z, Xu Y, Bao L, et al. From SARS to MERS, thrusting Coronaviruses into the spotlight. Viruses 2019; 11(1): 59-87.
[http://dx.doi.org/10.3390/v11010059] [PMID: 30646565]
[58]
Cockrell AS, Leist SR, Douglas MG, Baric RS. Modeling pathogenesis of emergent and pre-emergent human coronaviruses in mice. Mamm Genome 2018; 29(7-8): 367-83.
[http://dx.doi.org/10.1007/s00335-018-9760-9] [PMID: 30043100]
[59]
Williams RK, Jiang GS, Snyder SW, Frana MF, Holmes KV. Purification of the 110-kilodalton glycoprotein receptor for mouse hepatitis virus (MHV)-A59 from mouse liver and identification of a nonfunctional, homologous protein in MHV-resistant SJL/J mice. J Virol 1990; 64(8): 3817-23.
[http://dx.doi.org/10.1128/JVI.64.8.3817-3823.1990] [PMID: 2164599]
[60]
Wentworth DE, Holmes KV. Molecular determinants of species specificity in the coronavirus receptor aminopeptidase N (CD13): influence of N-linked glycosylation. J Virol 2001; 75(20): 9741-52.
[http://dx.doi.org/10.1128/JVI.75.20.9741-9752.2001] [PMID: 11559807]
[61]
Li W, Greenough TC, Moore MJ, et al. Efficient replication of severe acute respiratory syndrome coronavirus in mouse cells is limited by murine angiotensin-converting enzyme 2. J Virol 2004; 78(20): 11429-33.
[http://dx.doi.org/10.1128/JVI.78.20.11429-11433.2004] [PMID: 15452268]
[62]
Schultze B, Gross HJ, Brossmer R, Herrler G. The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant. J Virol 1991; 65(11): 6232-7.
[http://dx.doi.org/10.1128/JVI.65.11.6232-6237.1991] [PMID: 1920630]
[63]
Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 2003; 77(16): 8801-11.
[http://dx.doi.org/10.1128/JVI.77.16.8801-8811.2003] [PMID: 12885899]
[64]
Li F. Receptor recognition and cross-species infections of SARS coronavirus. Antiviral Res 2013; 100(1): 246-54.
[http://dx.doi.org/10.1016/j.antiviral.2013.08.014] [PMID: 23994189]
[65]
Weismiller DG, Sturman LS, Buchmeier MJ, Fleming JO, Holmes KV. Monoclonal antibodies to the peplomer glycoprotein of coronavirus mouse hepatitis virus identify two subunits and detect a conformational change in the subunit released under mild alkaline conditions. J Virol 1990; 64(6): 3051-5.
[http://dx.doi.org/10.1128/JVI.64.6.3051-3055.1990] [PMID: 1692350]
[66]
Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci USA 2004; 101(12): 4240-5.
[http://dx.doi.org/10.1073/pnas.0306446101] [PMID: 15010527]
[67]
Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 2012; 4(6): 1011-33.
[http://dx.doi.org/10.3390/v4061011] [PMID: 22816037]
[68]
Araki K, Gangappa S, Dillehay DL, Rouse BT, Larsen CP, Ahmed R. Pathogenic virus-specific T cells cause disease during treatment with the calcineurin inhibitor FK506: implications for transplantation. J Exp Med 2010; 207(11): 2355-67.
[http://dx.doi.org/10.1084/jem.20100124] [PMID: 20921283]
[69]
Ulferts R, Imbert I, Canard B, Ziebuhr J. Expression and functions of SARS coronavirus replicative proteins Molecular biology of the SARS-Coronavirus 2010; 75-98.
[http://dx.doi.org/10.1007/978-3-642-03683-5_6]
[70]
Astuti I. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes Metab Syndr 2020; 14(4): 407-12.
[http://dx.doi.org/10.1016/j.dsx.2020.04.020]]
[71]
Ziebuhr J, Snijder EJ, Gorbalenya AE. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 2000; 81(Pt 4): 853-79.
[http://dx.doi.org/10.1099/0022-1317-81-4-853] [PMID: 10725411]
[72]
Mielech AM, Chen Y, Mesecar AD, Baker SC. Nidovirus papain-like proteases: multifunctional enzymes with protease, deubiquitinating and deISGylating activities. Virus Res 2014; 194: 184-90.
[http://dx.doi.org/10.1016/j.virusres.2014.01.025] [PMID: 24512893]
[73]
Snijder EJ, Bredenbeek PJ, Dobbe JC, et al. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 2003; 331(5): 991-1004.
[http://dx.doi.org/10.1016/S0022-2836(03)00865-9] [PMID: 12927536]
[74]
van Marle G, Dobbe JC, Gultyaev AP, Luytjes W, Spaan WJM, Snijder EJ. Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proc Natl Acad Sci USA 1999; 96(21): 12056-61.
[http://dx.doi.org/10.1073/pnas.96.21.12056] [PMID: 10518575]
[75]
Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016; 3(1): 237-61.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[76]
Cavanagh D, Davis PJ, Cook JKA. Infectious bronchitis virus: evidence for recombination within the Massachusetts serotype. Avian Pathol 1992; 21(3): 401-8.
[http://dx.doi.org/10.1080/03079459208418858] [PMID: 18670955]
[77]
Millet JK, Whittaker GR. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res 2015; 202: 120-34.
[http://dx.doi.org/10.1016/j.virusres.2014.11.021] [PMID: 25445340]
[78]
Peng G, Xu L, Lin YL, et al. Crystal structure of bovine coronavirus spike protein lectin domain. J Biol Chem 2012; 287(50): 41931-8.
[http://dx.doi.org/10.1074/jbc.M112.418210] [PMID: 23091051]
[79]
de Haan CA, Te Lintelo E, Li Z, et al. Cooperative involvement of the S1 and S2 subunits of the murine coronavirus spike protein in receptor binding and extended host range. J Virol 2006; 80(22): 10909-18.
[http://dx.doi.org/10.1128/JVI.00950-06] [PMID: 16956938]
[80]
Abraham S, Kienzle TE, Lapps W, Brian DA. Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site. Virology 1990; 176(1): 296-301.
[http://dx.doi.org/10.1016/0042-6822(90)90257-R] [PMID: 2184576]
[81]
Masters PS. The molecular biology of coronaviruses. Adv Virus Res 2006; 66: 193-292.
[http://dx.doi.org/10.1016/S0065-3527(06)66005-3] [PMID: 16877062]
[82]
Krokhin O, Li Y, Andonov A, et al. Mass spectrometric characterization of proteins from the SARS virus: a preliminary report. Mol Cell Proteomics 2003; 2(5): 346-56.
[http://dx.doi.org/10.1074/mcp.M300048-MCP200] [PMID: 12775768]
[83]
Sturman LS, Holmes KV, Behnke J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J Virol 1980; 33(1): 449-62.
[http://dx.doi.org/10.1128/JVI.33.1.449-462.1980] [PMID: 6245243]
[84]
Neuman BW, Kiss G, Kunding AH, et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol 2011; 174(1): 11-22.
[http://dx.doi.org/10.1016/j.jsb.2010.11.021] [PMID: 21130884]
[85]
de Haan CA, Haijema BJ, Boss D, Heuts FW, Rottier PJ. Coronaviruses as vectors: stability of foreign gene expression. J Virol 2005; 79(20): 12742-51.
[http://dx.doi.org/10.1128/JVI.79.20.12742-12751.2005] [PMID: 16188977]
[86]
Mortola E, Roy P. Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett 2004; 576(1-2): 174-8.
[http://dx.doi.org/10.1016/j.febslet.2004.09.009] [PMID: 15474033]
[87]
Narayanan K, Maeda A, Maeda J, Makino S. Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells. J Virol 2000; 74(17): 8127-34.
[http://dx.doi.org/10.1128/JVI.74.17.8127-8134.2000] [PMID: 10933723]
[88]
Arndt AL, Larson BJ, Hogue BG. A conserved domain in the coronavirus membrane protein tail is important for virus assembly. J Virol 2010; 84(21): 11418-28.
[http://dx.doi.org/10.1128/JVI.01131-10] [PMID: 20719948]
[89]
Wilson L, McKinlay C, Gage P, Ewart G. SARS coronavirus E protein forms cation-selective ion channels. Virology 2004; 330(1): 322-31.
[http://dx.doi.org/10.1016/j.virol.2004.09.033] [PMID: 15527857]
[90]
Raamsman MJ, Locker JK, de Hooge A, et al. Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E. J Virol 2000; 74(5): 2333-42.
[http://dx.doi.org/10.1128/JVI.74.5.2333-2342.2000] [PMID: 10666264]
[91]
McBride R, van Zyl M, Fielding BC. The coronavirus nucleocapsid is a multifunctional protein. Viruses 2014; 6(8): 2991-3018.
[http://dx.doi.org/10.3390/v6082991] [PMID: 25105276]
[92]
Wang P, Chen J, Zheng A, et al. Expression cloning of functional receptor used by SARS coronavirus. Biochem Biophys Res Commun 2004; 315(2): 439-44.
[http://dx.doi.org/10.1016/j.bbrc.2004.01.076] [PMID: 14766227]
[93]
Lo YS, Lin SY, Wang SM, et al. Oligomerization of the carboxyl terminal domain of the human coronavirus 229E nucleocapsid protein. FEBS Lett 2013; 587(2): 120-7.
[http://dx.doi.org/10.1016/j.febslet.2012.11.016] [PMID: 23178926]
[94]
Bergmann CC, Lane TE, Stohlman SA. Coronavirus infection of the central nervous system: host-virus stand-off. Nat Rev Microbiol 2006; 4(2): 121-32.
[http://dx.doi.org/10.1038/nrmicro1343] [PMID: 16415928]
[95]
Masters PS. Coronavirus genomic RNA packaging. Virology 2019; 537: 198-207.
[http://dx.doi.org/10.1016/j.virol.2019.08.031] [PMID: 31505321]
[96]
Lim YX, Ng YL, Tam JP, Liu DX. Human Coronaviruses: a review of virus-host interactions. Diseases 2016; 4(3): 26-54.
[http://dx.doi.org/10.3390/diseases4030026] [PMID: 28933406]