A Review on Electrochemical Sensing of Cancer Biomarkers Based on Nanomaterial - Modified Systems

Page: [63 - 78] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Diagnosis of cancer in the early stages can help treat efficiently and reduce cancerrelated death. Cancer biomarkers can respond to the presence of cancer in body fluids before the appearance of any other symptoms of cancer. The integration of nanomaterials into biosensors as electrochemical platforms offer rapid, sensitive detection for cancer biomarkers. The use of surface- modified electrodes by carbon nanomaterials and metal nanoparticles enhances the performance of electrochemical analysis in biosensing systems through the increase of bioreceptors loading capacity on the surface. In this review, novel approaches based on nanomaterial-modified systems in the point of care diagnostics are highlighted.

Keywords: Cancer biomarkers, electrochemical-based biosensor, surface modified electrode, carbon nanomaterial, metal nanoparticles, bioreceptors

Graphical Abstract

[1]
Roointan, A.; Ahmad Mir, T.; Ibrahim Wani, S. Mati-Ur-Rehman; Hussain, K.K.; Ahmed, B.; Abrahim, S.; Savardashtaki, A.; Gandomani, G.; Gandomani, M.; Chinnappan, R.; Akhtar, M.H. Early detection of lung cancer biomarkers through biosensor technology: A review. J. Pharm. Biomed. Anal., 2019, 164, 93-103.
[http://dx.doi.org/10.1016/j.jpba.2018.10.017] [PMID: 30366148]
[2]
Sadighbayan, D.; Sadighbayan, K.; Khosroushahi, A.Y.; Hasanzadeh, M. Recent Adv on the DNA-based electrochemical biosensing of cancer biomarkers: Analytical approach. Trends Analyt. Chem., 2019.119115609
[http://dx.doi.org/10.1016/j.trac.2019.07.020]
[3]
Henry, N.L.; Hayes, D.F. Cancer biomarkers. Mol. Oncol., 2012, 6(2), 140-146.
[http://dx.doi.org/10.1016/j.molonc.2012.01.010] [PMID: 22356776]
[4]
Khanmohammadi, A.; Aghaie, A.; Vahedi, E.; Qazvini, A.; Ghanei, M.; Afkhami, A.; Hajian, A.; Bagheri, H. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta, 2020.206120251
[http://dx.doi.org/10.1016/j.talanta.2019.120251] [PMID: 31514848]
[5]
Wu, L.; Qu, X. Cancer biomarker detection: recent achievements and challenges. Chem. Soc. Rev., 2015, 44(10), 2963-2997.
[http://dx.doi.org/10.1039/C4CS00370E] [PMID: 25739971]
[6]
Afreen, S.; He, Z.; Xiao, Y.; Zhu, J-J. Nanoscale metal-organic frameworks in detecting cancer biomarkers. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(7), 1338-1349.
[http://dx.doi.org/10.1039/C9TB02579K] [PMID: 31999289]
[7]
Yang, G.; Xiao, Z.; Tang, C.; Deng, Y.; Huang, H.; He, Z. Recent Adv in biosensor for detection of lung cancer biomarkers. Biosens. Bioelectron., 2019.141111416
[http://dx.doi.org/10.1016/j.bios.2019.111416] [PMID: 31279179]
[8]
Jin, B.; Wang, P.; Mao, H.; Hu, B.; Zhang, H.; Cheng, Z.; Wu, Z.; Bian, X.; Jia, C.; Jing, F.; Jin, Q.; Zhao, J. Multi-nanomaterial electrochemical biosensor based on label-free graphene for detecting cancer biomarkers. Biosens. Bioelectron., 2014, 55, 464-469.
[http://dx.doi.org/10.1016/j.bios.2013.12.025] [PMID: 24462797]
[9]
Topkaya, S.N.; Azimzadeh, M.; Ozsoz, M. Electrochemical biosensors for cancer biomarkers detection: Recent Adv and challenges. Electroanalysis, 2016, 28(7), 1402-1419.
[http://dx.doi.org/10.1002/elan.201501174]
[10]
Arya, S.K.; Bhansali, S. Lung cancer and its early detection using biomarker-based biosensors. Chem. Rev., 2011, 111(11), 6783-6809.
[http://dx.doi.org/10.1021/cr100420s] [PMID: 21774490]
[11]
Abolhasan, R.; Mehdizadeh, A.; Rashidi, M.R.; Aghebati-Maleki, L.; Yousefi, M. Application of hairpin DNA-based biosensors with various signal amplification strategies in clinical diagnosis. Biosens. Bioelectron., 2019, 129, 164-174.
[http://dx.doi.org/10.1016/j.bios.2019.01.008] [PMID: 30708263]
[12]
Girigoswami, K.; Akhtar, N. Nanobiosensors and fluorescence based biosensors: An overview. Int. J. Nanodimens., 2019, 10(1), 1-17.
[13]
Ejeian, F.; Etedali, P.; Mansouri-Tehrani, H-A.; Soozanipour, A.; Low, Z-X.; Asadnia, M.; Taheri-Kafrani, A.; Razmjou, A. Biosensors for wastewater monitoring: A review. Biosens. Bioelectron., 2018, 118, 66-79.
[http://dx.doi.org/10.1016/j.bios.2018.07.019] [PMID: 30056302]
[14]
Mehrotra, P. Biosensors and their applications - A review. J. Oral Biol. Craniofac. Res., 2016, 6(2), 153-159.
[http://dx.doi.org/10.1016/j.jobcr.2015.12.002] [PMID: 27195214]
[15]
Xu, T.; Song, Y.; Gao, W.; Wu, T.; Xu, L-P.; Zhang, X.; Wang, S. Superwettable electrochemical biosensor toward detection of cancer biomarkers. ACS Sens., 2018, 3(1), 72-78.
[http://dx.doi.org/10.1021/acssensors.7b00868] [PMID: 29308651]
[16]
Abbasnejad, B.; Thorby, W.; Razmjou, A.; Jin, D.; Asadnia, M.; Warkiani, M.E. MEMS piezoresistive flow sensors for sleep apnea therapy. Sens. Actuators A Phys., 2018, 279, 577-585.
[http://dx.doi.org/10.1016/j.sna.2018.06.038]
[17]
Ejeian, F.; Azadi, S.; Razmjou, A.; Orooji, Y.; Kottapalli, A.; Warkiani, M.E.; Asadnia, M. Design and applications of MEMS flow sensors: A review. Sens. Actuators A Phys., 2019, 295, 483-502.
[http://dx.doi.org/10.1016/j.sna.2019.06.020]
[18]
Raoufi, M.A.; Moshizi, S.A.; Razmjou, A.; Wu, S.; Warkiani, M.E.; Asadnia, M. Development of a biomimetic semicircular canal with MEMS sensors to restore balance. IEEE Sens. J., 2019, 19(23), 11675-11686.
[http://dx.doi.org/10.1109/JSEN.2019.2935480]
[19]
Mohammad, M.; Razmjou, A.; Liang, K.; Asadnia, M.; Chen, V. Metal–organic-framework-based enzymatic microfluidic biosensor via surface patterning and biomineralization. ACS Appl. Mater. Interfaces, 2019, 11(2), 1807-1820.
[http://dx.doi.org/10.1021/acsami.8b16837] [PMID: 30525376]
[20]
Baghbaderani, S.S.; Noorbakhsh, A. Novel chitosan-Nafion composite for fabrication of highly sensitive impedimetric and colorimetric As(III) aptasensor. Biosens. Bioelectron., 2019, 131, 1-8.
[http://dx.doi.org/10.1016/j.bios.2019.01.059] [PMID: 30797108]
[21]
Sharifi, M.; Avadi, M.R.; Attar, F.; Dashtestani, F.; Ghorchian, H.; Rezayat, S.M.; Saboury, A.A.; Falahati, M. Cancer diagnosis using nanomaterials based electrochemical nanobiosensors. Biosens. Bioelectron., 2019, 126, 773-784.
[http://dx.doi.org/10.1016/j.bios.2018.11.026] [PMID: 30554099]
[22]
Razmjou, A.; Eshaghi, G.; Orooji, Y.; Hosseini, E.; Korayem, A.H.; Mohagheghian, F.; Boroumand, Y.; Noorbakhsh, A.; Asadnia, M.; Chen, V. Lithium ion-selective membrane with 2D subnanometer channels. Water Res., 2019, 159, 313-323.
[http://dx.doi.org/10.1016/j.watres.2019.05.018] [PMID: 31102860]
[23]
Razmjou, A.; Asadnia, M.; Hosseini, E.; Habibnejad Korayem, A.; Chen, V. Design principles of ion selective nanostructured membranes for the extraction of lithium ions. Nat. Commun., 2019, 10(1), 5793.
[http://dx.doi.org/10.1038/s41467-019-13648-7] [PMID: 31857585]
[24]
Razmjoo, A.; Babaluo, A. Simulation of binary gas separation in nanometric tubular ceramic membranes by a new combinational approach. J. Membr. Sci., 2006, 282(1-2), 178-188.
[http://dx.doi.org/10.1016/j.memsci.2006.05.021]
[25]
Razmjoo, A.; Babaluo, A. Modification for CAAM approach for simulation of binary gas mixture separation in nanometric tubular membranes. J. Membr. Sci., 2007, 287(1), 1-5.
[http://dx.doi.org/10.1016/j.memsci.2006.10.020]
[26]
Noorisafa, F.; Razmjou, A.; Emami, N.; Low, Z-X.; Korayem, A.H.; Kajani, A.A. Surface modification of polyurethane via creating a biocompatible superhydrophilic nanostructured layer: role of surface chemistry and structure. J. Exp. Nanosci., 2016, 11(14), 1087-1109.
[http://dx.doi.org/10.1080/17458080.2016.1188223]
[27]
Liu, Q.; Low, Z-X.; Li, L.; Razmjou, A.; Wang, K.; Yao, J.; Wang, H. ZIF-8/Zn 2 GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(38), 11563-11569.
[http://dx.doi.org/10.1039/c3ta12433a]
[28]
Ensafi, A.A.; Karimi-Maleh, H. Ferrocenedicarboxylic acid modified multiwall carbon nanotubes paste electrode for voltammetric determination of sulfite. Int. J. Electrochem. Sci., 2010, 5(3), 392-406.
[29]
Afzali, D.; Karimi-Maleh, H.; Khalilzadeh, M.A. Sensitive and selective determination of phenylhydrazine in the presence of hydrazine at a ferrocene-modified carbon nanotube paste electrode. Environ. Chem. Lett., 2011, 9(3), 375-381.
[http://dx.doi.org/10.1007/s10311-010-0289-8]
[30]
Karimi-Maleh, H.; Karimi, F.; Malekmohammadi, S.; Zakariae, N.; Esmaeili, R.; Rostamnia, S.; Yola, M.L.; Atar, N.; Movagharnezhad, S.; Rajendran, S. An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples. J. Mol. Liq., 2020, 310113185
[http://dx.doi.org/10.1016/j.molliq.2020.113185]
[31]
Baghizadeh, A.; Karimi-Maleh, H.; Khoshnama, Z. Hassankhan i A, Abbasghorbani M. A voltammetric sensor for simultaneous determination of vitamin C and vitamin B6 in food samples using ZrO2 nanoparticle/ionic liquids carbon paste electrode. Food Anal. Methods, 2015, 8, 549-557.
[http://dx.doi.org/10.1007/s12161-014-9926-3]
[32]
Eren, T.; Atar, N.; Yola, M.L.; Karimi-Maleh, H. A sensitive molecularly imprinted polymer based quartz crystal microbalance nanosensor for selective determination of lovastatin in red yeast rice. Food Chem., 2015, 185, 430-436.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.153] [PMID: 25952889]
[33]
Ensafi, A.A.; Karimi‐Maleh, H.; Mallakpour, S. Simultaneous determination of ascorbic acid, acetaminophen, and tryptophan by square wave voltammetry using N-(3, 4-Dihydroxyphenethyl)‐3, 5‐Dinitrobenzamide‐modified carbon nanotubes paste electrode. Electroanalysis, 2012, 24(3), 666-675.
[http://dx.doi.org/10.1002/elan.201100465]
[34]
Alavi-Tabari, S.A.; Khalilzadeh, M.A.; Karimi-Maleh, H. Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J. Electroanal. Chem. , 2018, 811, 84-88.
[http://dx.doi.org/10.1016/j.jelechem.2018.01.034]
[35]
Ray, A.; Roy, A.; Bhattacharjee, S.; Jana, S.; Ghosh, C.K.; Sinha, C.; Das, S. Correlation between the dielectric and electrochemical properties of TiO2-V2O5 nanocomposite for energy storage application. Electrochim. Acta, 2018, 266, 404-413.
[http://dx.doi.org/10.1016/j.electacta.2018.02.033]
[36]
Wang, B.; Akiba, U.; Anzai, J.I. Recent progress in nanomaterial-based electrochemical biosensors for cancer biomarkers: A review. Molecules, 2017, 22(7), 1048.
[http://dx.doi.org/10.3390/molecules22071048] [PMID: 28672780]
[37]
Karimi-Maleh, H.; Arotiba, O.A. Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J. Colloid Interface Sci., 2020, 560, 208-212.
[http://dx.doi.org/10.1016/j.jcis.2019.10.007] [PMID: 31670018]
[38]
Karimi-Maleh, H.; Fakude, C.T.; Mabuba, N.; Peleyeju, G.M.; Arotiba, O.A. The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J. Colloid Interface Sci., 2019, 554, 603-610.
[http://dx.doi.org/10.1016/j.jcis.2019.07.047] [PMID: 31330427]
[39]
Shamsadin-Azad, Z.; Taher, M.A.; Cheraghi, S.; Karimi-Maleh, H. A nanostructure voltammetric platform amplified with ionic liquid for determination of tert-butylhydroxyanisole in the presence kojic acid. J. Food Meas. Charact., 2019, 13(3), 1781-1787.
[http://dx.doi.org/10.1007/s11694-019-00096-6]
[40]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor. Compos., Part B Eng., 2019, 172, 666-670.
[http://dx.doi.org/10.1016/j.compositesb.2019.05.065]
[41]
Karimi-Maleh, H.; Shafieizadeh, M.; Taher, M.A.; Opoku, F.; Kiarii, E.M.; Govender, P.P.; Ranjbari, S.; Rezapour, M.; Orooji, Y. The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J. Mol. Liq., 2020.298112040
[http://dx.doi.org/10.1016/j.molliq.2019.112040]
[42]
Orooji, Y.; Alizadeh, A.a.; Ghasali, E.; Derakhshandeh, M.R.; Alizadeh, M.; Asl, M.S.; Ebadzadeh, T. Co-reinforcing of mullite-TiN-CNT composites with ZrB2 and TiB2 compounds. Ceram. Int., 2019, 45(16), 20844-20854.
[http://dx.doi.org/10.1016/j.ceramint.2019.07.072]
[43]
Orooji, Y.; Derakhshandeh, M.R.; Ghasali, E.; Alizadeh, M.; Asl, M.S.; Ebadzadeh, T. Effects of ZrB2 reinforcement on microstructure and mechanical properties of a spark plasma sintered mullite-CNT composite. Ceram. Int., 2019, 45(13), 16015-16021.
[http://dx.doi.org/10.1016/j.ceramint.2019.05.113]
[44]
Orooji, Y.; Ghasali, E.; Moradi, M.; Derakhshandeh, M.R.; Alizadeh, M.; Asl, M.S.; Ebadzadeh, T. Preparation of mullite-TiB2-CNTs hybrid composite through spark plasma sintering. Ceram. Int., 2019, 45(13), 16288-16296.
[http://dx.doi.org/10.1016/j.ceramint.2019.05.154]
[45]
Karimi-Maleh, H.; Ahanjan, K.; Taghavi, M.; Ghaemy, M. A novel voltammetric sensor employing zinc oxide nanoparticles and a new ferrocene-derivative modified carbon paste electrode for determination of captopril in drug samples. Anal. Methods, 2016, 8(8), 1780-1788.
[http://dx.doi.org/10.1039/C5AY03284A]
[46]
Arduini, F.; Micheli, L.; Moscone, D.; Palleschi, G.; Piermarini, S.; Ricci, F.; Volpe, G. Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. Trends Analyt. Chem., 2016, 79, 114-126.
[http://dx.doi.org/10.1016/j.trac.2016.01.032]
[47]
Rotariu, L.; Lagarde, F.; Jaffrezic-Renault, N.; Bala, C. Electrochemical biosensors for fast detection of food contaminants–trends and perspective. Trends Analyt. Chem., 2016, 79, 80-87.
[http://dx.doi.org/10.1016/j.trac.2015.12.017]
[48]
Yan, M.; Zang, D.; Ge, S.; Ge, L.; Yu, J. A disposable electrochemical immunosensor based on carbon screen-printed electrodes for the detection of prostate specific antigen. Biosens. Bioelectron., 2012, 38(1), 355-361.
[http://dx.doi.org/10.1016/j.bios.2012.06.019] [PMID: 22770827]
[49]
Zhu, X.; Wu, G.; Lu, N.; Yuan, X.; Li, B. A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants. J. Hazard. Mater., 2017, 324(Pt B), 272-280.,
[http://dx.doi.org/10.1016/j.jhazmat.2016.10.057] [PMID: 27810324]
[50]
Marquitan, M.; Bobrowski, T.; Ernst, A.; Wilde, P.; Clausmeyer, J.; Ruff, A.; Schuhmann, W. Miniaturized amperometric glucose sensors based on polymer/enzyme modified carbon electrodes in the sub-micrometer scale. J. Electrochem. Soc., 2018, 165(12), G3008.
[http://dx.doi.org/10.1149/2.0021812jes]
[51]
Lin, C-W.; Wei, K-C.; Liao, S.S.; Huang, C-Y.; Sun, C-L.; Wu, P-J.; Lu, Y-J.; Yang, H-W.; Ma, C-C.M. A reusable magnetic graphene oxide-modified biosensor for vascular endothelial growth factor detection in cancer diagnosis. Biosens. Bioelectron., 2015, 67, 431-437.
[http://dx.doi.org/10.1016/j.bios.2014.08.080] [PMID: 25223552]
[52]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Gupta, V.K.; Ahmar, H.; Asadi, M.H. A novel biosensor for liquid phase determination of glutathione and amoxicillin in biological and pharmaceutical samples using a ZnO/CNTs nanocomposite/catechol derivative modified electrode. J. Mol. Liq., 2014, 196, 258-263.
[http://dx.doi.org/10.1016/j.molliq.2014.03.049]
[53]
Malhotra, B.D.; Kumar, S.; Pandey, C.M. In Nanomaterials based biosensors for cancer biomarker detection. J. Phys. Conf. Ser., 2016, 704012011
[http://dx.doi.org/10.1088/1742-6596/704/1/012011]
[54]
Cui, F.; Zhou, Z.; Zhou, H.S. Measurement and analysis of cancer biomarkers based on electrochemical biosensors. J. Electrochem. Soc., 2019, 167(3)037525
[http://dx.doi.org/10.1149/2.0252003JES]
[55]
Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev., 2010, 39(5), 1747-1763.
[http://dx.doi.org/10.1039/b714449k] [PMID: 20419217]
[56]
Justino, C.I.; Freitas, A.C.; Pereira, R.; Duarte, A.C.; Santos, T.A.R. Recent developments in recognition elements for chemical sensors and biosensors. Trends Analyt. Chem., 2015, 68, 2-17.
[http://dx.doi.org/10.1016/j.trac.2015.03.006]
[57]
Pasinszki, T.; Krebsz, M.; Tung, T.T.; Losic, D. Carbon nanomaterial based biosensors for non-invasive detection of cancer and disease biomarkers for clinical diagnosis. Sensors (Basel), 2017, 17(8), 1919.
[http://dx.doi.org/10.3390/s17081919] [PMID: 28825646]
[58]
Mohanraj, J.; Durgalakshmi, D.; Rakkesh, R.A.; Balakumar, S.; Rajendran, S.; Karimi-Maleh, H. Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor. J. Colloid Interface Sci., 2020, 566, 463-472.
[http://dx.doi.org/10.1016/j.jcis.2020.01.089] [PMID: 32032811]
[59]
Sharma, S.; Singh, N.; Tomar, V.; Chandra, R. A review on electrochemical detection of serotonin based on surface modified electrodes. Biosens. Bioelectron., 2018, 107, 76-93.
[http://dx.doi.org/10.1016/j.bios.2018.02.013] [PMID: 29448224]
[60]
Kolanthai, E.; Ganesan, K.; Epple, M.; Kalkura, S.N. Synthesis of nanosized hydroxyapatite/agarose powders for bone filler and drug delivery application. Materials Today Communications, 2016, 8, 31-40.
[http://dx.doi.org/10.1016/j.mtcomm.2016.03.008]
[61]
Karunakaran, G.; Kumar, G.S.; Cho, E-B.; Sunwoo, Y.; Kolesnikov, E.; Kuznetsov, D. Microwave-assisted hydrothermal synthesis of mesoporous carbonated hydroxyapatite with tunable nanoscale characteristics for biomedical applications. Ceram. Int., 2019, 45(1), 970-977.
[http://dx.doi.org/10.1016/j.ceramint.2018.09.273]
[62]
Miraki, M.; Karimi-Maleh, H.; Taher, M.A.; Cheraghi, S.; Karimi, F.; Agarwal, S.; Gupta, V.K. Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa. J. Mol. Liq., 2019, 278, 672-676.
[http://dx.doi.org/10.1016/j.molliq.2019.01.081]
[63]
Karimi-Maleh, H.; Sheikhshoaie, M.; Sheikhshoaie, I.; Ranjbar, M.; Alizadeh, J.; Maxakato, N.W.; Abbaspourrad, A. A novel electrochemical epinine sensor using amplified CuO nanoparticles and an-hexyl-3-methylimidazolium hexafluorophosphate electrode. New J. Chem., 2019, 43(5), 2362-2367.
[http://dx.doi.org/10.1039/C8NJ05581E]
[64]
Janakiram, S.; Ahmadi, M.; Dai, Z.; Ansaloni, L.; Deng, L. Performance of nanocomposite membranes containing 0D to 2D nanofillers for CO2 separation: A review. Membranes (Basel), 2018, 8(2), 24.
[http://dx.doi.org/10.3390/membranes8020024] [PMID: 29757953]
[65]
Asadian, E.; Ghalkhani, M.; Shahrokhian, S. Electrochemical sensing based on carbon nanoparticles: A review. Sens. Actuators B Chem., 2019, 293, 183-209.
[http://dx.doi.org/10.1016/j.snb.2019.04.075]
[66]
Sanghavi, B.J.; Wolfbeis, O.S.; Hirsch, T.; Swami, N.S. Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Mikrochim. Acta, 2015, 182(1-2), 1-41.
[http://dx.doi.org/10.1007/s00604-014-1308-4] [PMID: 25568497]
[67]
Wang, W.; Fan, X.; Xu, S.; Davis, J.J.; Luo, X. Low fouling label-free DNA sensor based on polyethylene glycols decorated with gold nanoparticles for the detection of breast cancer biomarkers. Biosens. Bioelectron., 2015, 71, 51-56.
[http://dx.doi.org/10.1016/j.bios.2015.04.018] [PMID: 25884734]
[68]
Ortega, F.G.; Fernández-Baldo, M.A.; Serrano, M.J.; Messina, G.A.; Lorente, J.A.; Raba, J. Epithelial cancer biomarker EpCAM determination in peripheral blood samples using a microfluidic immunosensor based in silver nanoparticles as platform. Sens. Actuators B Chem., 2015, 221, 248-256.
[http://dx.doi.org/10.1016/j.snb.2015.06.066]
[69]
Ilkhani, H.; Sarparast, M.; Noori, A.; Zahra Bathaie, S.; Mousavi, M.F. Electrochemical aptamer/antibody based sandwich immunosensor for the detection of EGFR, a cancer biomarker, using gold nanoparticles as a signaling probe. Biosens. Bioelectron., 2015, 74, 491-497.
[http://dx.doi.org/10.1016/j.bios.2015.06.063] [PMID: 26176209]
[70]
Paul, K.B.; Singh, V.; Vanjari, S.R.K.; Singh, S.G. One step biofunctionalized electrospun multiwalled carbon nanotubes embedded zinc oxide nanowire interface for highly sensitive detection of carcinoma antigen-125. Biosens. Bioelectron., 2017, 88, 144-152.
[http://dx.doi.org/10.1016/j.bios.2016.07.114] [PMID: 27520500]
[71]
Tabasi, A.; Noorbakhsh, A.; Sharifi, E. Reduced graphene oxide-chitosan-aptamer interface as new platform for ultrasensitive detection of human epidermal growth factor receptor 2. Biosens. Bioelectron., 2017, 95, 117-123.
[http://dx.doi.org/10.1016/j.bios.2017.04.020] [PMID: 28433858]
[72]
Tavallaie, R.; McCarroll, J.; Le Grand, M.; Ariotti, N.; Schuhmann, W.; Bakker, E.; Tilley, R.D.; Hibbert, D.B.; Kavallaris, M.; Gooding, J.J. Nucleic acid hybridization on an electrically reconfigurable network of gold-coated magnetic nanoparticles enables microRNA detection in blood. Nat. Nanotechnol., 2018, 13(11), 1066-1071.
[http://dx.doi.org/10.1038/s41565-018-0232-x] [PMID: 30150634]
[73]
Eivazzadeh-Keihan, R.; Pashazadeh-Panahi, P.; Baradaran, B.; Maleki, A.; Hejazi, M.; Mokhtarzadeh, A.; de la Guardia, M. Recent Adv on nanomaterial based electrochemical and optical aptasensors for detection of cancer biomarkers. Trends Analyt. Chem., 2018, 100, 103-115.
[http://dx.doi.org/10.1016/j.trac.2017.12.019]
[74]
Pastucha, M.; Farka, Z.; Lacina, K.; Mikušová, Z.; Skládal, P. Magnetic nanoparticles for smart electrochemical immunoassays: a review on recent developments. Mikrochim. Acta, 2019, 186(5), 312.
[http://dx.doi.org/10.1007/s00604-019-3410-0] [PMID: 31037494]
[75]
Labib, M.; Sargent, E.H.; Kelley, S.O. Electrochemical methods for the analysis of clinically relevant biomolecules. Chem. Rev., 2016, 116(16), 9001-9090.
[http://dx.doi.org/10.1021/acs.chemrev.6b00220] [PMID: 27428515]
[76]
Viswambari Devi, R.; Doble, M.; Verma, R.S. Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosens. Bioelectron., 2015, 68, 688-698.
[http://dx.doi.org/10.1016/j.bios.2015.01.066] [PMID: 25660660]
[77]
Jayanthi, V.S.P.K.S.A.; Das, A.B.; Saxena, U. Recent Adv in biosensor development for the detection of cancer biomarkers. Biosens. Bioelectron., 2017, 91, 15-23.
[http://dx.doi.org/10.1016/j.bios.2016.12.014] [PMID: 27984706]
[78]
Sadighbayan, D.; Sadighbayan, K.; Tohid-Kia, M.R.; Khosroushahi, A.Y.; Hasanzadeh, M. Development of electrochemical biosensors for tumor marker determination towards cancer diagnosis: Recent progress. Trends Analyt. Chem., 2019, 118, 73-88.
[http://dx.doi.org/10.1016/j.trac.2019.05.014]
[79]
Taniselass, S.; Arshad, M.K.M.; Gopinath, S.C.B. Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosens. Bioelectron., 2019, 130, 276-292.
[http://dx.doi.org/10.1016/j.bios.2019.01.047] [PMID: 30771717]
[80]
Zaidi, S.A.; Shahzad, F.; Batool, S. Progress in cancer biomarkers monitoring strategies using graphene modified support materials. Talanta, 2020.210120669
[http://dx.doi.org/10.1016/j.talanta.2019.120669] [PMID: 31987212]
[81]
Negahdary, M. Aptamers in nanostructure-based electrochemical biosensors for cardiac biomarkers and cancer biomarkers: A review. Biosens. Bioelectron., 2020.152112018
[http://dx.doi.org/10.1016/j.bios.2020.112018] [PMID: 32056737]
[82]
Muniandy, S.; Teh, S.J.; Thong, K.L.; Thiha, A.; Dinshaw, I.J.; Lai, C.W.; Ibrahim, F.; Leo, B.F. Carbon nanomaterial-based electrochemical biosensors for foodborne bacterial detection. Crit. Rev. Anal. Chem., 2019, 49(6), 510-533.
[http://dx.doi.org/10.1080/10408347.2018.1561243] [PMID: 30648398]
[83]
Shabani-Nooshabadi, M.; Karimi-Maleh, H.; Tahernejad-Javazmi, F. Fabrication of an electroanalytical sensor for determination of deoxyepinephrine in the presence of uric acid using CuFe2O4 nanoparticle/ionic liquid amplified sensor. J. Electrochem. Soc., 2019, 166(6), H218.
[http://dx.doi.org/10.1149/2.1261906jes]
[84]
Zhou, Y.; Fang, Y.; Ramasamy, R.P. Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors (Basel), 2019, 19(2), 392.
[http://dx.doi.org/10.3390/s19020392] [PMID: 30669367]
[85]
Krishnan, S.K.; Singh, E.; Singh, P.; Meyyappan, M.; Nalwa, H.S. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv, 2019, 9(16), 8778-8881.
[http://dx.doi.org/10.1039/C8RA09577A]
[86]
Alizadeh, A.; Razmjou, A.; Ghaedi, M.; Jannesar, R.; Tabatabaei, F.; Pezeshkpour, V.; Tayebi, L. Culture of dental pulp stem cells on nanoporous alumina substrates modified by carbon nanotubes. Int. J. Nanomed, 2019, 14, 1907-1918.
[http://dx.doi.org/10.2147/IJN.S189730] [PMID: 30936693]
[87]
Fu, L.; Zheng, Y.; Zhang, P.; Zhang, H.; Xu, Y.; Zhou, J.; Zhang, H.; Karimi-Maleh, H.; Lai, G.; Zhao, S.; Su, W.; Yu, J.; Lin, C.T. Development of an electrochemical biosensor for phylogenetic analysis of Amaryllidaceae based on the enhanced electrochemical fingerprint recorded from plant tissue. Biosens. Bioelectron., 2020, 159112212
[http://dx.doi.org/10.1016/j.bios.2020.112212] [PMID: 32364933]
[88]
Ensafi, A.A.; Dadkhah-Tehrani, S.; Karimi-Maleh, H. A voltammetric sensor for the simultaneous determination of L-cysteine and tryptophan using a p-aminophenol-multiwall carbon nanotube paste electrode. Anal. Sci., 2011, 27(4), 409-409.
[http://dx.doi.org/10.2116/analsci.27.409] [PMID: 21478617]
[89]
Ensafi, A.A.; Karimi-Maleh, H.; Mallakpour, S. A new strategy for the selective determination of glutathione in the presence of nicotinamide adenine dinucleotide (NADH) using a novel modified carbon nanotube paste electrode. Colloids Surf. B Biointerfaces, 2013, 104, 186-193.
[http://dx.doi.org/10.1016/j.colsurfb.2012.12.011] [PMID: 23314609]
[90]
Karimi-Maleh, H.; Shojaei, A.F.; Tabatabaeian, K.; Karimi, F.; Shakeri, S.; Moradi, R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate. Biosens. Bioelectron., 2016, 86, 879-884.
[http://dx.doi.org/10.1016/j.bios.2016.07.086] [PMID: 27494812]
[91]
Shahmiri, M.R.; Bahari, A.; Karimi-Maleh, H.; Hosseinzadeh, R.; Mirnia, N. Ethynylferrocene–NiO/MWCNT nanocomposite modified carbon paste electrode as a novel voltammetric sensor for simultaneous determination of glutathione and acetaminophen. Sens. Actuators B Chem., 2013, 177, 70-77.
[http://dx.doi.org/10.1016/j.snb.2012.10.098]
[92]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Ensafi, A.A.; Moradi, R.; Mallakpour, S.; Beitollahi, H. A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens. Bioelectron., 2014, 60, 1-7.
[http://dx.doi.org/10.1016/j.bios.2014.03.055] [PMID: 24755294]
[93]
Karimi-Maleh, H.; Biparva, P.; Hatami, M. A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid. Biosens. Bioelectron., 2013, 48, 270-275.
[http://dx.doi.org/10.1016/j.bios.2013.04.029] [PMID: 23707873]
[94]
Bijad, M.; Karimi-Maleh, H.; Khalilzadeh, M.A. Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples. Food Anal. Methods, 2013, 6(6), 1639-1647.
[http://dx.doi.org/10.1007/s12161-013-9585-9]
[95]
Jamali, T.; Karimi-Maleh, H.; Khalilzadeh, M.A. A novel nanosensor based on Pt: Co nanoalloy ionic liquid carbon paste electrode for voltammetric determination of vitamin B9 in food samples. Lebensm. Wiss. Technol., 2014, 57(2), 679-685.
[http://dx.doi.org/10.1016/j.lwt.2014.01.023]
[96]
Alizadeh, A.; Razmjou, A.; Ghaedi, M.; Jannesar, R. Nanoporous solid-state membranes modified with multi-wall carbon nanotubes with anti-biofouling property. Int. J. Nanomed, 2019, 14, 1669-1685.
[http://dx.doi.org/10.2147/IJN.S189728] [PMID: 30880972]
[97]
Umeyama, T.; Tezuka, N.; Fujita, M.; Matano, Y.; Takeda, N.; Murakoshi, K.; Yoshida, K.; Isoda, S.; Imahori, H. Retention of intrinsic electronic properties of soluble single-walled carbon nanotubes after a significant degree of sidewall functionalization by the Bingel reaction. J. Phys. Chem. C, 2007, 111(27), 9734-9741.
[http://dx.doi.org/10.1021/jp071604t]
[98]
Alavi-Tabari, S.A.; Khalilzadeh, M.A.; Karimi-Maleh, H.; Zareyee, D. An amplified platform nanostructure sensor for the analysis of epirubicin in the presence of topotecan as two important chemotherapy drugs for breast cancer therapy. New J. Chem., 2018, 42(5), 3828-3832.
[http://dx.doi.org/10.1039/C7NJ04430E]
[99]
Miodek, A.; Mejri, N.; Gomgnimbou, M.; Sola, C.; Korri-Youssoufi, H. E-DNA sensor of Mycobacterium tuberculosis based on electrochemical assembly of nanomaterials (MWCNTs/PPy/PAMAM). Anal. Chem., 2015, 87(18), 9257-9264.
[http://dx.doi.org/10.1021/acs.analchem.5b01761] [PMID: 26313137]
[100]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta, 2018, 176, 208-213.
[http://dx.doi.org/10.1016/j.talanta.2017.08.027] [PMID: 28917742]
[101]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J. Food Compos. Anal., 2017, 62, 254-259.
[http://dx.doi.org/10.1016/j.jfca.2017.06.006]
[102]
Tahmasebi, F.; Noorbakhsh, A. Sensitive electrochemical prostate specific antigen aptasensor: effect of carboxylic acid functionalized carbon nanotube and glutaraldehyde linker. Electroanalysis, 2016, 28(5), 1134-1145.
[http://dx.doi.org/10.1002/elan.201501014]
[103]
Rostamabadi, P.F.; Heydari-Bafrooei, E. Impedimetric aptasensing of the breast cancer biomarker HER2 using a glassy carbon electrode modified with gold nanoparticles in a composite consisting of electrochemically reduced graphene oxide and single-walled carbon nanotubes. Mikrochim. Acta, 2019, 186(8), 495.
[http://dx.doi.org/10.1007/s00604-019-3619-y] [PMID: 31270702]
[104]
Yazdanparast, S.; Benvidi, A.; Banaei, M.; Nikukar, H.; Tezerjani, M.D.; Azimzadeh, M. Dual-aptamer based electrochemical sandwich biosensor for MCF-7 human breast cancer cells using silver nanoparticle labels and a poly(glutamic acid)/MWNT nanocomposite. Mikrochim. Acta, 2018, 185(9), 405.
[http://dx.doi.org/10.1007/s00604-018-2918-z] [PMID: 30094655]
[105]
Karimi-Maleh, H.; Cellat, K.; Arıkan, K.; Savk, A.; Karimi, F.; Şen, F. Palladium–nickel nanoparticles decorated on functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater. Chem. Phys., 2020, 250123042
[http://dx.doi.org/10.1016/j.matchemphys.2020.123042]
[106]
Mandal, D.; Nunna, B.B.; Zhuang, S.; Rakshit, S.; Lee, E.S. Carbon nanotubes based biosensor for detection of cancer antigens (CA-125) under shear flow condition. Nano-Structures & Nano-Objects, 2018, 15, 180-185.
[http://dx.doi.org/10.1016/j.nanoso.2017.09.013]
[107]
Cha-Umpong, W.; Dong, G.; Razmjou, A.; Chen, V. Effect of oscillating temperature and crystallization on graphene oxide composite pervaporation membrane for inland brine desalination. J. Membr. Sci., 2019.588117210
[http://dx.doi.org/10.1016/j.memsci.2019.117210]
[108]
Cha-Umpong, W.; Hosseini, E.; Razmjou, A.; Zakertabrizi, M.; Korayem, A.H.; Chen, V. New molecular understanding of hydrated ion trapping mechanism during thermally-driven desalination by pervaporation using GO membrane. J. Membr. Sci., 2020.598117687
[http://dx.doi.org/10.1016/j.memsci.2019.117687]
[109]
Razmjou, A. The role of defects in Li+ selective nanostructured membranes: comment on “Tunable Nanoscale Interlayer of Graphene with Symmetrical Polyelectrolyte Multilayer Architecture for Lithium Extraction”. Adv. Mater. Interfaces, 2019, 6(2)1801427
[http://dx.doi.org/10.1002/admi.201801427]
[110]
Karimi-Maleh, H.; Bananezhad, A.; Ganjali, M.R.; Norouzi, P.; Sadrnia, A. Surface amplification of pencil graphite electrode with polypyrrole and reduced graphene oxide for fabrication of a guanine/adenine DNA based electrochemical biosensors for determination of didanosine anticancer drug. Appl. Surf. Sci., 2018, 441, 55-60.
[http://dx.doi.org/10.1016/j.apsusc.2018.01.237]
[111]
Hong, G.; Diao, S.; Antaris, A.L.; Dai, H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev., 2015, 115(19), 10816-10906.
[http://dx.doi.org/10.1021/acs.chemrev.5b00008] [PMID: 25997028]
[112]
Wang, R.; Feng, J-J.; Xue, Y.; Wu, L.; Wang, A-J. A label-free electrochemical immunosensor based on AgPt nanorings supported on reduced graphene oxide for ultrasensitive analysis of tumor marker. Sens. Actuators B Chem., 2018, 254, 1174-1181.
[http://dx.doi.org/10.1016/j.snb.2017.08.009]
[113]
Wei, B.; Mao, K.; Liu, N.; Zhang, M.; Yang, Z. Graphene nanocomposites modified electrochemical aptamer sensor for rapid and highly sensitive detection of prostate specific antigen. Biosens. Bioelectron., 2018, 121, 41-46.
[http://dx.doi.org/10.1016/j.bios.2018.08.067] [PMID: 30196046]
[114]
Assari, P.; Rafati, A.A.; Feizollahi, A.; Asadpour, J.R. An electrochemical immunosensor for the prostate specific antigen based on the use of reduced graphene oxide decorated with gold nanoparticles. Mikrochim. Acta, 2019, 186(7), 484.
[http://dx.doi.org/10.1007/s00604-019-3565-8] [PMID: 31256262]
[115]
Ge, J.; Jia, Q.; Liu, W.; Guo, L.; Liu, Q.; Lan, M.; Zhang, H.; Meng, X.; Wang, P. Red‐emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv. Mater., 2015, 27(28), 4169-4177.
[http://dx.doi.org/10.1002/adma.201500323] [PMID: 26045099]
[116]
Jalili, R.; Khataee, A.; Rashidi, M-R.; Razmjou, A. Detection of penicillin G residues in milk based on dual-emission carbon dots and molecularly imprinted polymers. Food Chem., 2020.314126172
[http://dx.doi.org/10.1016/j.foodchem.2020.126172] [PMID: 31951890]
[117]
Wu, D.; Liu, Y.; Wang, Y.; Hu, L.; Ma, H.; Wang, G.; Wei, Q. Label-free electrochemiluminescent immunosensor for detection of prostate specific antigen based on aminated graphene quantum dots and carboxyl graphene quantum dots. Sci. Rep., 2016, 6, 20511.
[http://dx.doi.org/10.1038/srep20511] [PMID: 26842737]
[118]
Malekzad, H.; Hasanzadeh, M.; Shadjou, N.; Jouyban, A. Highly sensitive immunosensing of prostate specific antigen using poly cysteine caped by graphene quantum dots and gold nanoparticle: A novel signal amplification strategy. Int. J. Biol. Macromol., 2017, 105(Pt 1), 522-532.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.069] [PMID: 28711617]
[119]
Zheng, X.T.; Ananthanarayanan, A.; Luo, K.Q.; Chen, P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small, 2015, 11(14), 1620-1636.
[http://dx.doi.org/10.1002/smll.201402648] [PMID: 25521301]
[120]
Ruiyi, L.; Haiyan, Z.; Zaijun, L.; Junkang, L. Electrochemical determination of acetaminophen using a glassy carbon electrode modified with a hybrid material consisting of graphene aerogel and octadecylamine-functionalized carbon quantum dots. Mikrochim. Acta, 2018, 185(2), 145.
[http://dx.doi.org/10.1007/s00604-018-2688-7] [PMID: 29594483]
[121]
García-Mendiola, T.; Bravo, I.; López-Moreno, J.M.; Pariente, F.; Wannemacher, R.; Weber, K.; Popp, J.; Lorenzo, E. Carbon nanodots based biosensors for gene mutation detection. Sens. Actuators B Chem., 2018, 256, 226-233.
[http://dx.doi.org/10.1016/j.snb.2017.10.105]
[122]
Pirsaheb, M.; Mohammadi, S.; Salimi, A. Current Adv of carbon dots based biosensors for tumor marker detection, cancer cells analysis and bioimaging. Trends Analyt. Chem., 2019, 115, 83-99.
[http://dx.doi.org/10.1016/j.trac.2019.04.003]
[123]
Huang, Q.; Zhang, H.; Hu, S.; Li, F.; Weng, W.; Chen, J.; Wang, Q.; He, Y.; Zhang, W.; Bao, X. A sensitive and reliable dopamine biosensor was developed based on the Au@carbon dots-chitosan composite film. Biosens. Bioelectron., 2014, 52, 277-280.
[http://dx.doi.org/10.1016/j.bios.2013.09.003] [PMID: 24064477]
[124]
Abazar, F.; Noorbakhsh, A. Chitosan-carbon quantum dots as a new platform for highly sensitive insulin impedimetric aptasensor. Sens. Actuators B Chem., 2020.304127281
[http://dx.doi.org/10.1016/j.snb.2019.127281]
[125]
Gu, C.; Guo, C.; Li, Z.; Wang, M.; Zhou, N.; He, L.; Zhang, Z.; Du, M. Bimetallic ZrHf-based metal-organic framework embedded with carbon dots: Ultra-sensitive platform for early diagnosis of HER2 and HER2-overexpressed living cancer cells. Biosens. Bioelectron., 2019, 134, 8-15.
[http://dx.doi.org/10.1016/j.bios.2019.03.043] [PMID: 30952013]
[126]
Karimi-Maleh, H.; Hatami, M.; Moradi, R.; Khalilzadeh, M.A.; Amiri, S.; Sadeghifar, H. Synergic effect of Pt-Co nanoparticles and a dopamine derivative in a nanostructured electrochemical sensor for simultaneous determination of N-acetylcysteine, paracetamol and folic acid. Mikrochim. Acta, 2016, 183(11), 2957-2964.
[http://dx.doi.org/10.1007/s00604-016-1946-9]
[127]
Najafi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem., 2014, 158, 125-131.
[http://dx.doi.org/10.1016/j.foodchem.2014.02.082] [PMID: 24731323]
[128]
Elyasi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem., 2013, 141(4), 4311-4317.
[http://dx.doi.org/10.1016/j.foodchem.2013.07.020] [PMID: 23993620]
[129]
Khan, M. Nanoparticles modified ITO based biosensor. J. Electron. Mater., 2017, 46(4), 2254-2268.
[http://dx.doi.org/10.1007/s11664-016-5172-3]
[130]
Ravalli, A.; Marrazza, G. Gold and magnetic nanoparticles-based electrochemical biosensors for cancer biomarker determination. J. Nanosci. Nanotechnol., 2015, 15(5), 3307-3319.
[http://dx.doi.org/10.1166/jnn.2015.10038] [PMID: 26504948]
[131]
Kajani, A.A.; Bordbar, A-K.; Esfahani, S.H.Z.; Razmjou, A. Gold nanoparticles as potent anticancer agent: green synthesis, characterization, and in vitro study. RSC Adv, 2016, 6(68), 63973-63983.
[http://dx.doi.org/10.1039/C6RA09050H]
[132]
Kajani, A.A.; Bordbar, A-K.; Zarkesh-Esfahani, S.H.; Razmjou, A.; Hou, J. Gold/silver decorated magnetic nanostructures as theranostic agents: Synthesis, characterization and in-vitro study. J. Mol. Liq., 2017, 247, 238-245.
[http://dx.doi.org/10.1016/j.molliq.2017.09.119]
[133]
Rasheed, P.A.; Sandhyarani, N. Electrochemical DNA sensors based on the use of gold nanoparticles: a review on recent developments. Mikrochim. Acta, 2017, 184(4), 981-1000.
[http://dx.doi.org/10.1007/s00604-017-2143-1]
[134]
Sonuç Karaboğa, M.N.; Şimşek, Ç.S.; Sezgintürk, M.K. AuNPs modified, disposable, ITO based biosensor: Early diagnosis of heat shock protein 70. Biosens. Bioelectron., 2016, 84, 22-29.
[http://dx.doi.org/10.1016/j.bios.2015.08.044] [PMID: 26318579]
[135]
Suresh, L.; Brahman, P.K.; Reddy, K.R. J S, B. Development of an electrochemical immunosensor based on gold nanoparticles incorporated chitosan biopolymer nanocomposite film for the detection of prostate cancer using PSA as biomarker. Enzyme Microb. Technol., 2018, 112, 43-51.
[http://dx.doi.org/10.1016/j.enzmictec.2017.10.009] [PMID: 29499779]
[136]
Jothi, L.; Jaganathan, S.K.; Nageswaran, G. An electrodeposited Au nanoparticle/porous graphene nanoribbon composite for electrochemical detection of alpha-fetoprotein. Mater. Chem. Phys., 2019, 242122514
[137]
Zare-Zardini, H.; Amiri, A.; Shanbedi, M.; Taheri-Kafrani, A.; Kazi, S.N.; Chew, B.T.; Razmjou, A. In vitro and in vivo study of hazardous effects of Ag nanoparticles and Arginine-treated multi walled carbon nanotubes on blood cells: application in hemodialysis membranes. J. Biomed. Mater. Res. A, 2015, 103(9), 2959-2965.
[http://dx.doi.org/10.1002/jbm.a.35425] [PMID: 25690431]
[138]
Orooji, Y.; Liang, F.; Razmjou, A.; Liu, G.; Jin, W. Preparation of anti-adhesion and bacterial destructive polymeric ultrafiltration membranes using modified mesoporous carbon. Separ. Purif. Tech., 2018, 205, 273-283.
[http://dx.doi.org/10.1016/j.seppur.2018.05.006]
[139]
Kajani, A.A.; Zarkesh-Esfahani, S.H.; Bordbar, A-K.; Khosropour, A.R.; Razmjou, A.; Kardi, M. Anticancer effects of silver nanoparticles encapsulated by Taxus baccata extracts. J. Mol. Liq., 2016, 223, 549-556.
[http://dx.doi.org/10.1016/j.molliq.2016.08.064]
[140]
Han, L.; Liu, C-M.; Dong, S-L.; Du, C-X.; Zhang, X-Y.; Li, L-H.; Wei, Y. Enhanced conductivity of rGO/Ag NPs composites for electrochemical immunoassay of prostate-specific antigen. Biosens. Bioelectron., 2017, 87, 466-472.
[http://dx.doi.org/10.1016/j.bios.2016.08.004] [PMID: 27591721]
[141]
Chen, M.; Wang, Y.; Su, H.; Mao, L.; Jiang, X.; Zhang, T.; Dai, X. Three-dimensional electrochemical DNA biosensor based on 3D graphene-Ag nanoparticles for sensitive detection of CYFRA21-1 in non-small cell lung cancer. Sens. Actuators B Chem., 2018, 255, 2910-2918.
[http://dx.doi.org/10.1016/j.snb.2017.09.111]
[142]
Lee, S.X.; Lim, H.N.; Ibrahim, I.; Jamil, A.; Pandikumar, A.; Huang, N.M. Horseradish peroxidase-labeled silver/reduced graphene oxide thin film-modified screen-printed electrode for detection of carcinoembryonic antigen. Biosens. Bioelectron., 2017, 89(Pt 1), 673-680.
[http://dx.doi.org/10.1016/j.bios.2015.12.030] [PMID: 26718548]
[143]
Aghababaie, M.; Beheshti, M.; Razmjou, A.; Bordbar, A-K. Covalent immobilization of Candida rugosa lipase on a novel functionalized Fe3O4@ SiO2 dip-coated nanocomposite membrane. Food Bioprod. Process., 2016, 100, 351-360.
[http://dx.doi.org/10.1016/j.fbp.2016.07.016]
[144]
Nazaria, R.; Aghababaiea, M.; Razmjoua, A.; Landarani-Isfahanib, A.; Aminib, M.; Hajjarib, M.; Mirkhanib, V.; Moghadamb, M.; Taheri-Kafrania, A. Multifunctional hyperbranched polyglycerol-grafted silica-encapsulated superparamagnetic iron oxide nanoparticles as novel and reusable draw agents in forward osmosis process. Desalination Water Treat., 2017, 64, 81-89.
[http://dx.doi.org/10.5004/dwt.2017.20127]
[145]
Emami, N.; Razmjou, A.; Noorisafa, F.; Korayem, A.H.; Zarrabi, A.; Ji, C. Fabrication of smart magnetic nanocomposite asymmetric membrane capsules for the controlled release of nitrate. Environ. Nanotechnol. Monit. Manag., 2017, 8, 233-243.
[http://dx.doi.org/10.1016/j.enmm.2017.09.001]
[146]
Aghababaie, M.; Beheshti, M.; Bordbar, A-K.; Razmjou, A. Novel approaches to immobilize Candida rugosa lipase on nanocomposite membranes prepared by covalent attachment of magnetic nanoparticles on poly acrylonitrile membrane. RSC Adv, 2018, 8(9), 4561-4570.
[http://dx.doi.org/10.1039/C7RA11866J]
[147]
Imanifard, S.; Zarrabi, A.; Zarepour, A.; Jafari, M.; Khosravi, A.; Razmjou, A. Nanoengineered thermoresponsive magnetic nanoparticles for drug controlled release. Macromol. Chem. Phys., 2017, 218(23)1700350
[http://dx.doi.org/10.1002/macp.201700350]
[148]
Jahanbani, S.; Benvidi, A. A novel electrochemical DNA biosensor based on a modified magnetic bar carbon paste electrode with Fe3O4NPs-reduced graphene oxide/PANHS nanocomposite. Mater. Sci. Eng. C, 2016, 68, 1-8.
[http://dx.doi.org/10.1016/j.msec.2016.05.056] [PMID: 27523989]
[149]
Sharafeldin, M.; Bishop, G.W.; Bhakta, S.; El-Sawy, A.; Suib, S.L.; Rusling, J.F. Fe3O4 nanoparticles on graphene oxide sheets for isolation and ultrasensitive amperometric detection of cancer biomarker proteins. Biosens. Bioelectron., 2017, 91, 359-366.
[http://dx.doi.org/10.1016/j.bios.2016.12.052] [PMID: 28056439]
[150]
Peng, F.; Chu, M.; Sun, J.; Liu, Y.; Zhang, Q.; Chen, Y.; Wang, F.; Zhao, W. Preparation of Fe3O4@ PS/PDA-Au nanotubes for sensitive electrochemical detection of alpha-fetoprotein. J. Electroanal. Chem. , 2018, 814, 52-58.
[http://dx.doi.org/10.1016/j.jelechem.2017.12.076]
[151]
Kumar, S.; Umar, M.; Saifi, A.; Kumar, S.; Augustine, S.; Srivastava, S.; Malhotra, B.D. Electrochemical paper based cancer biosensor using iron oxide nanoparticles decorated PEDOT:PSS. Anal. Chim. Acta, 2019, 1056, 135-145.
[http://dx.doi.org/10.1016/j.aca.2018.12.053] [PMID: 30797454]
[152]
Low, Z-X.; Wang, Z.; Leong, S.; Razmjou, A.; Dumée, L.F.; Zhang, X.; Wang, H. Enhancement of the antifouling properties and filtration performance of poly (ethersulfone) ultrafiltration membranes by incorporation of nanoporous titania nanoparticles. Ind. Eng. Chem. Res., 2015, 54(44), 11188-11198.
[http://dx.doi.org/10.1021/acs.iecr.5b03147]
[153]
Hou, J.; Zulkifli, M.Y.; Mohammad, M.; Zhang, Y.; Razmjou, A.; Chen, V. Biocatalytic gas-liquid membrane contactors for CO2 hydration with immobilized carbonic anhydrase. J. Membr. Sci., 2016, 520, 303-313.
[http://dx.doi.org/10.1016/j.memsci.2016.07.003]
[154]
Leong, S.; Razmjou, A.; Wang, K.; Hapgood, K.; Zhang, X.; Wang, H. TiO2 based photocatalytic membranes: A review. J. Membr. Sci., 2014, 472, 167-184.
[http://dx.doi.org/10.1016/j.memsci.2014.08.016]
[155]
Orooji, Y.; Ghasali, E.; Emami, N.; Noorisafa, F.; Razmjou, A. ANOVA design for the optimization of TiO2 coating on polyether sulfone membranes. Molecules, 2019, 24(16), 2924.
[http://dx.doi.org/10.3390/molecules24162924] [PMID: 31409035]
[156]
Shirani, E.; Razmjou, A.; Tavassoli, H.; Landarani-Isfahani, A.; Rezaei, S.; Abbasi Kajani, A.; Asadnia, M.; Hou, J.; Ebrahimi Warkiani, M. Strategically designing a pumpless microfluidic device on an “inert” polypropylene substrate with potential application in biosensing and diagnostics. Langmuir, 2017, 33(22), 5565-5576.
[http://dx.doi.org/10.1021/acs.langmuir.7b00537] [PMID: 28489410]
[157]
Mansoorianfar, M.; Khataee, A.; Riahi, Z.; Shahin, K.; Asadnia, M.; Razmjou, A.; Hojjati-Najafabadi, A.; Mei, C.; Orooji, Y.; Li, D. Scalable fabrication of tunable titanium nanotubes via sonoelectrochemical process for biomedical applications. Ultrason. Sonochem., 2020.64104783
[http://dx.doi.org/10.1016/j.ultsonch.2019.104783] [PMID: 31937440]
[158]
Wang, Y.; Huang, X.; Li, H.; Guo, L. Sensitive impedimetric DNA biosensor based on (Nb,V) codoped TiO2 for breast cancer susceptible gene detection. Mater. Sci. Eng. C, 2017, 77, 867-873.
[http://dx.doi.org/10.1016/j.msec.2017.03.260] [PMID: 28532103]
[159]
Bazli, L.; Siavashi, M.; Shiravi, A. A review of carbon nanotube/TiO2 composite prepared via sol-gel method. J. Composites Comp., 2019, 1(1), 1-9.
[http://dx.doi.org/10.29252/jcc.1.1.1]
[160]
Cui, H-F.; Wu, W-W.; Li, M-M.; Song, X.; Lv, Y.; Zhang, T-T. A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides. Biosens. Bioelectron., 2018, 99, 223-229.
[http://dx.doi.org/10.1016/j.bios.2017.07.068] [PMID: 28763783]
[161]
Fan, G-C.; Zhu, H.; Du, D.; Zhang, J-R.; Zhu, J-J.; Lin, Y. Enhanced photoelectrochemical immunosensing platform based on CdSeTe@ CdS: Mn core–shell quantum dots-sensitized TiO2 amplified by CuS nanocrystals conjugated signal antibodies. Anal. Chem., 2016, 88(6), 3392-3399.
[http://dx.doi.org/10.1021/acs.analchem.6b00144] [PMID: 26910366]
[162]
Dong, Y-X.; Cao, J-T.; Liu, Y-M.; Ma, S-H. A novel immunosensing platform for highly sensitive prostate specific antigen detection based on dual-quenching of photocurrent from CdSe sensitized TiO2 electrode by gold nanoparticles decorated polydopamine nanospheres.Biosens. Bioelectron., 2017, 91, 246-252.,
[http://dx.doi.org/10.1016/j.bios.2016.12.043] [PMID: 28013019]