An Overview of Privileged Scaffold: Quinolines and Isoquinolines in Medicinal Chemistry as Anticancer Agents

Page: [2599 - 2633] Pages: 35

  • * (Excluding Mailing and Handling)

Abstract

Cancer is one of the most difficult diseases and causes of death for many decades. Many pieces of research are continuously going on to get a solution for cancer. Quinoline and isoquinoline derivatives have shown their possibilities to work as an antitumor agent in anticancer treatment. The members of this privileged scaffold quinoline and isoquinoline have shown their controlling impacts on cancer treatment through various modes. In particular, this review suggests the current scenario of quinoline and isoquinoline derivatives as antitumor agents and refine the path of these derivatives to find and develop new drugs against an evil known as cancer.

Keywords: Quinoline, Isoquinoline, Antiproliferative, Anticancer, Antitumor, Inhibition.

Graphical Abstract

[1]
Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Murray, T.; Thun, M. J. Cancer statistics, 2008. CA Cancer J. Clin., 2008, 58(2), 71-96.
[http://dx.doi.org/10.3322/CA.2007.0010] [PMID: 18287387]
[2]
Othman, D.I.A.; Selim, K.B.; El-Sayed, M.A-A.; Tantawy, A.S.; Amen, Y.; Shimizu, K.; Okauchi, T.; Kitamura, M. Design, synthesis and anticancer evaluation of new substituted thiophene-quinoline derivatives. Bioorg. Med. Chem., 2019, 27(19)115026
[http://dx.doi.org/10.1016/j.bmc.2019.07.042] [PMID: 31416740]
[3]
Pan, Z.; Zhang, X.; Yu, P.; Chen, X.; Lu, P.; Li, M.; Liu, X.; Li, Z.; Wei, F.; Wang, K.; Zheng, Q.; Li, D. Cinobufagin induces cell cycle arrest at the g2/m phase and promotes apoptosis in malignant melanoma cells. Front. Oncol., 2019, 9, 853.
[http://dx.doi.org/10.3389/fonc.2019.00853] [PMID: 31552178]
[4]
Cheng, Y.; An, L-K.; Wu, N.; Wang, X-D.; Bu, X-Z.; Huang, Z-S.; Gu, L-Q. Synthesis, cytotoxic activities and structure-activity relationships of topoisomerase I inhibitors: indolizinoquinoline-5,12-dione derivatives. Bioorg. Med. Chem., 2008, 16(8), 4617-4625.
[http://dx.doi.org/10.1016/j.bmc.2008.02.036] [PMID: 18296054]
[5]
Alqasoumi, S.I.; Al-Taweel, A.M.; Alafeefy, A.M.; Hamed, M.M.; Noaman, E.; Ghorab, M.M. Synthesis and biological evaluation of 2-amino-7,7-dimethyl 4-substituted-5-oxo-1-(3,4,5-trimethoxy)-1,4,5,6,7,8-hexahydro-quinoline-3-carbonitrile derivatives as potential cytotoxic agents. Bioorg. Med. Chem. Lett., 2009, 19(24), 6939-6942.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.065] [PMID: 19879135]
[6]
Campas, C.; Bolos, J.; Castaner, R. Tivozanib VEGFR tyrosine kinase inhibitor, angiogenesis inhibitor. Oncolytic. Drugs Future., 2009, 34, 793.
[http://dx.doi.org/10.1358/dof.2009.034.10.1417872]
[7]
Kubo, K.; Shimizu, T.; Ohyama, S.; Murooka, H.; Iwai, A.; Nakamura, K.; Hasegawa, K.; Kobayashi, Y.; Takahashi, N.; Takahashi, K.; Kato, S.; Izawa, T.; Isoe, T. Novel potent orally active selective VEGFR-2 tyrosine kinase inhibitors: synthesis, structure-activity relationships, and antitumor activities of N-phenyl-N'-4-(4-quinolyloxy)phenylureas. J. Med. Chem., 2005, 48(5), 1359-1366.
[http://dx.doi.org/10.1021/jm030427r] [PMID: 15743179]
[8]
Matsui, J.; Yamamoto, Y.; Funahashi, Y.; Tsuruoka, A.; Watanabe, T.; Wakabayashi, T.; Uenaka, T.; Asada, M. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int. J. Cancer, 2008, 122(3), 664-671.
[http://dx.doi.org/10.1002/ijc.23131] [PMID: 17943726]
[9]
Mulvihill, M.J.; Ji, Q-S.; Coate, H.R.; Cooke, A.; Dong, H.; Feng, L.; Foreman, K.; Rosenfeld-Franklin, M.; Honda, A.; Mak, G.; Mulvihill, K.M.; Nigro, A.I.; O’Connor, M.; Pirrit, C.; Steinig, A.G.; Siu, K.; Stolz, K.M.; Sun, Y.; Tavares, P.A.; Yao, Y.; Gibson, N.W. Novel 2-phenylquinolin-7-yl-derived imidazo[1,5-a]pyrazines as potent insulin-like growth factor-I receptor (IGF-IR) inhibitors. Bioorg. Med. Chem., 2008, 16(3), 1359-1375.
[http://dx.doi.org/10.1016/j.bmc.2007.10.061] [PMID: 17983756]
[10]
Nishii, H.; Chiba, T.; Morikami, K.; Fukami, T.A.; Sakamoto, H.; Ko, K.; Koyano, H. Discovery of 6-benzyloxyquinolines as c-Met selective kinase inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(4), 1405-1409.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.109] [PMID: 20093027]
[11]
Pannala, M.; Kher, S.; Wilson, N.; Gaudette, J.; Sircar, I.; Zhang, S-H.; Bakhirev, A.; Yang, G.; Yuen, P.; Gorcsan, F.; Sakurai, N.; Barbosa, M.; Cheng, J-F. Synthesis and structure-activity relationship of 4-(2-aryl-cyclopropylamino)-quinoline-3-carbonitriles as EGFR tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(21), 5978-5982.
[http://dx.doi.org/10.1016/j.bmcl.2007.07.071] [PMID: 17827009]
[12]
Wall, M.E.; Wani, M.C.; Cook, C.E. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptothecaacuminata. J. Am. Chem. Soc., 1966, 88, 3888-3890.
[http://dx.doi.org/10.1021/ja00968a057]
[13]
Tozer, G.M.; Akerman, S.; Cross, N.A.; Barber, P.R.; Björndahl, M.A.; Greco, O.; Harris, S.; Hill, S.A.; Honess, D.J.; Ireson, C.R.; Pettyjohn, K.L.; Prise, V.E.; Reyes-Aldasoro, C.C.; Ruhrberg, C.; Shima, D.T.; Kanthou, C. Blood vessel maturation and response to vascular-disrupting therapy in single vascular endothelial growth factor-A isoform-producing tumors. Cancer Res., 2008, 68(7), 2301-2311.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2011] [PMID: 18381437]
[14]
Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem., 2009, 9(14), 1648-1654.
[http://dx.doi.org/10.2174/138955709791012247] [PMID: 20088783]
[15]
Musiol, R.; Serda, M.; Hensel-Bielowka, S.; Polanski, J. Quinoline-based antifungals. Curr. Med. Chem., 2010, 17(18), 1960-1973.
[http://dx.doi.org/10.2174/092986710791163966] [PMID: 20377510]
[16]
Kaur, K.; Jain, M.; Reddy, R.P.; Jain, R. Quinolines and structurally related heterocycles as antimalarials. Eur. J. Med. Chem., 2010, 45(8), 3245-3264.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.011] [PMID: 20466465]
[17]
Zhou, Q.; Melkoumian, Z.K.; Lucktong, A.; Moniwa, M.; Davie, J.R.; Strobl, J.S. Rapid induction of histone hyperacetylation and cellular differentiation in human breast tumor cell lines following degradation of histone deacetylase-1. J. Biol. Chem., 2000, 275(45), 35256-35263.
[http://dx.doi.org/10.1074/jbc.M003106200] [PMID: 10938272]
[18]
Solomon, V.R.; Hu, C.; Lee, H. Design and synthesis of anti-breast cancer agents from 4-piperazinylquinoline: a hybrid pharmacophore approach. Bioorg. Med. Chem., 2010, 18(4), 1563-1572.
[http://dx.doi.org/10.1016/j.bmc.2010.01.001] [PMID: 20106668]
[19]
Solomon, V.R.; Lee, H. Quinoline as a privileged scaffold in cancer drug discovery. Curr. Med. Chem., 2011, 18(10), 1488-1508.
[http://dx.doi.org/10.2174/092986711795328382] [PMID: 21428893]
[20]
Kouznetsov, V.V.; Puentes, C.O.; Bohorques, A.R.R.; Zacchino, S.A.; Sortino, M.; Gupta, M.; Vazquez, Y.; Bahsas, A.; Luis, A.J. Transformations of 2-(α-furyl)- 4-(2-oxopyrrolidinyl-1)-1,2,3,4-tetrahydroquinolines, cycloadducts of the imino diels-alder reaction: a simple synthesis of new quinoline derivatives. Lett. Org. Chem., 2006, 3(9), 300.
[http://dx.doi.org/10.2174/157017806778700042]
[21]
Achar, K.C.S.; Hosamani, K.M.; Seetharamareddy, H.R. In-vivo analgesic and anti-inflammatory activities of newly synthesized benzimidazole derivatives. Eur. J. Med. Chem., 2010, 45(5), 2048-2054.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.029] [PMID: 20133024]
[22]
Atwell, G.J.; Baguley, B.C.; Denny, W.A. Potential antitumor agents. 57. 2-Phenylquinoline-8-carboxamides as “minimal” DNA-intercalating antitumor agents with in vivo solid tumor activity. J. Med. Chem., 1989, 32(2), 396-401.
[http://dx.doi.org/10.1021/jm00122a018] [PMID: 2913299]
[23]
Chen, Y.L.; Chen, I.L.; Tzeng, C.C.; Wang, T.C. Synthesis and cytotoxicity evaluation of certain α-methylidene- γ-butyrolactones bearing coumarin, flavone, xanthone, carbazole, and dibenzofuran moieties. Helv. Chim. Acta, 2000, 83, 989-994.
[http://dx.doi.org/10.1002/(SICI)1522-2675(20000510)83:5<989:AID-HLCA989>3.0.CO;2-E]
[24]
Chou, L-C.; Tsai, M-T.; Hsu, M-H.; Wang, S-H.; Way, T-D.; Huang, C-H.; Lin, H-Y.; Qian, K.; Dong, Y.; Lee, K-H.; Huang, L-J.; Kuo, S-C. Design, synthesis, and preclinical evaluation of new 5,6- (or 6,7-) disubstituted-2-(fluorophenyl)quinolin-4-one derivatives as potent antitumor agents. J. Med. Chem., 2010, 53(22), 8047-8058.
[http://dx.doi.org/10.1021/jm100780c] [PMID: 20973552]
[25]
El-Subbagh, H.I.; Abu-Zaid, S.M.; Mahran, M.A.; Badria, F.A.; Al-Obaid, A.M. Synthesis and biological evaluation of certain α,β-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents. J. Med. Chem., 2000, 43(15), 2915-2921.
[http://dx.doi.org/10.1021/jm000038m] [PMID: 10956199]
[26]
Gaba, M.; Singh, D.; Singh, S.; Sharma, V.; Gaba, P. Synthesis and pharmacological evaluation of novel 5-substituted-1-(phenylsulfonyl)-2-methylbenzimidazole derivatives as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2010, 45(6), 2245-2249.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.067] [PMID: 20172630]
[27]
Kuo, S.C.; Lee, H.Z.; Juang, J.P.; Lin, Y.T.; Wu, T.S.; Chang, J.J.; Lednicer, D.; Paull, K.D.; Lin, C.M.; Hamel, E. Synthesis and cytotoxicity of 1,6,7,8-substituted 2-(4′-substituted phenyl)-4-quinolones and related compounds: identification as antimitotic agents interacting with tubulin. J. Med. Chem., 1993, 36(9), 1146-1156.
[http://dx.doi.org/10.1021/jm00061a005] [PMID: 8387598]
[28]
LaMontagne, M.P.; Blumbergs, P.; Strube, R.E. Antimalarials. 14. 5-(aryloxy)-4-methylprimaquine analogues. A highly effective series of blood and tissue schizonticidal agents. J. Med. Chem., 1982, 25(9), 1094-1097.
[http://dx.doi.org/10.1021/jm00351a017] [PMID: 7131488]
[29]
LaMontagne, M.P.; Markovac, A.; Khan, M.S. Antimalarials. 13. 5-Alkoxy analogues of 4-methylprimaquine. J. Med. Chem., 1982, 25(8), 964-968.
[http://dx.doi.org/10.1021/jm00350a016] [PMID: 6750123]
[30]
Leatham, P.A.; Bird, H.A.; Wright, V.; Seymour, D.; Gordon, A. A double blind study of antrafenine, naproxen and placebo in osteoarthrosis. Eur. J. Rheumatol. Inflamm., 1983, 6(2), 209-211.
[PMID: 6673985]
[31]
Maguire, M.P.; Sheets, K.R.; McVety, K.; Spada, A.P.; Zilberstein, A. A new series of PDGF receptor tyrosine kinase inhibitors: 3-substituted quinoline derivatives. J. Med. Chem., 1994, 37(14), 2129-2137.
[http://dx.doi.org/10.1021/jm00040a003] [PMID: 8035419]
[32]
Muruganantham, N.; Sivakumar, R.; Anbalagan, N.; Gunasekaran, V.; Leonard, J.T. Synthesis, anticonvulsant and antihypertensive activities of 8-substituted quinoline derivatives. Biol. Pharm. Bull., 2004, 27(10), 1683-1687.
[http://dx.doi.org/10.1248/bpb.27.1683] [PMID: 15467220]
[33]
Shingalapur, R.V.; Hosamani, K.M.; Keri, R.S. Synthesis and evaluation of in vitro anti-microbial and anti-tubercular activity of 2-styryl benzimidazoles. Eur. J. Med. Chem., 2009, 44(10), 4244-4248.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.021] [PMID: 19540630]
[34]
Strekowski, L.; Mokrosz, J.L.; Honkan, V.A.; Czarny, A.; Cegla, M.T.; Wydra, R.L.; Patterson, S.E.; Schinazi, R.F. Synthesis and quantitative structure-activity relationship analysis of 2-(aryl or heteroaryl)quinolin-4-amines, a new class of anti-HIV-1 agents. J. Med. Chem., 1991, 34(5), 1739-1746.
[http://dx.doi.org/10.1021/jm00109a031] [PMID: 2033597]
[35]
Vachharajani, P.R.; Solanki, M.J.; Dubal, G.G.; Shah, V.H. Synthesis of some novel 1, 3, 4-oxadiazole and its anti-bacterial and anti-fungal activity. Pharma Chem., 2011, 3, 280-285.
[36]
Xia, Y.; Yang, Z-Y.; Xia, P.; Bastow, K.F.; Tachibana, Y.; Kuo, S-C.; Hamel, E.; Hackl, T.; Lee, K-H. Antitumor agents. 181. synthesis and biological evaluation of 6,7,2‘,3‘,4‘-substituted-1,2,3,4-tetrahydro-2-phenyl-4-quinolones as a new class of antimitotic antitumor agents. J. Med. Chem., 1998, 41(7), 1155-1162.
[http://dx.doi.org/10.1021/jm9707479] [PMID: 9544215]
[37]
Yamato, M.; Takeuchi, Y.; Hashigaki, K.; Ikeda, Y.; Chang, M.R.; Takeuchi, K.; Matsushima, M.; Tsuruo, T.; Tashiro, T.; Tsukagoshi, S. Synthesis and antitumor activity of fused tetracyclic quinoline derivatives. 1. J. Med. Chem., 1989, 32(6), 1295-1300.
[http://dx.doi.org/10.1021/jm00126a025] [PMID: 2542558]
[38]
Jain, S.; Chandra, V.; Kumar Jain, P.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem., 2019, 12(8), 4920-4946.
[http://dx.doi.org/10.1016/j.arabjc.2016.10.009]
[39]
Manske, R.H. The chemistry of quinolines. Chem. Rev., 1942, 30(1), 113-144.
[http://dx.doi.org/10.1021/cr60095a006]
[40]
Lu, J-J.; Meng, L-H.; Cai, Y-J.; Chen, Q.; Tong, L-J.; Lin, L-P.; Ding, J. Dihydroartemisinin induces apoptosis in HL-60 leukemia cells dependent of iron and p38 mitogen-activated protein kinase activation but independent of reactive oxygen species. Cancer Biol. Ther., 2008, 7(7), 1017-1023.
[http://dx.doi.org/10.4161/cbt.7.7.6035] [PMID: 18414062]
[41]
Chashoo, G.; Singh, S.K.; Mondhe, D.M.; Sharma, P.R.; Andotra, S.S.; Shah, B.A.; Taneja, S.C.; Saxena, A.K. Potentiation of the antitumor effect of 11-keto-β-boswellic acid by its 3-α-hexanoyloxy derivative. Eur. J. Pharmacol., 2011, 668(3), 390-400.
[http://dx.doi.org/10.1016/j.ejphar.2011.07.024] [PMID: 21821018]
[42]
Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods, 1986, 89(2), 271-277.
[http://dx.doi.org/10.1016/0022-1759(86)90368-6] [PMID: 3486233]
[43]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[44]
Thabrew, M.I.; Hughes, R.D.; McFarlane, I.G. Screening of hepatoprotective plant components using a HepG2 cell cytotoxicity assay. J. Pharm. Pharmacol., 1997, 49(11), 1132-1135.
[http://dx.doi.org/10.1111/j.2042-7158.1997.tb06055.x] [PMID: 9401951]
[45]
Wakeling, A.E.; Guy, S.P.; Woodburn, J.R.; Ashton, S.E.; Curry, B.J.; Barker, A.J.; Gibson, K.H.Z.D. ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res., 2002, 62(20), 5749-5754.
[PMID: 12384534]
[46]
Moyer, J.D.; Barbacci, E.G.; Iwata, K.K.; Arnold, L.; Boman, B.; Cunningham, A.; DiOrio, C.; Doty, J.; Morin, M.J.; Moyer, M.P.; Neveu, M.; Pollack, V.A.; Pustilnik, L.R.; Reynolds, M.M.; Sloan, D.; Theleman, A.; Miller, P. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res., 1997, 57(21), 4838-4848.
[PMID: 9354447]
[47]
Czoch, W.P.; Pognan, F.; Kaczmarek, L.; Boraty, J. Synthesis and structure-activity relationship of methyl-substituted indolo[2,3-b]quinolines: novel cytotoxic, dna topoisomerase ii inhibitors. J. Med. Chem., 1994, 37, 3503.
[http://dx.doi.org/10.1021/jm00047a008] [PMID: 7932579]
[48]
Chen, Y-L.; Chung, C-H.; Chen, I-L.; Chen, P-H.; Jeng, H-Y. Synthesis and cytotoxic activity evaluation of indolo-, pyrrolo-, and benzofuro-quinolin-2(1H)-ones and 6-anilinoindoloquinoline derivatives. Bioorg. Med. Chem., 2002, 10(8), 2705-2712.
[http://dx.doi.org/10.1016/S0968-0896(02)00111-6] [PMID: 12057659]
[49]
DoganKoruznjak. J.; Slade, N.; Zamola, B.; Pavelić, K.; Karminski-Zamola, G. Synthesis, photochemical synthesis and antitumor evaluation of novel derivatives of thieno[3′,2′:4,5]thieno[2,3-c]quinolones. Chem. Pharm. Bull. (Tokyo), 2002, 50(5), 656-660.
[http://dx.doi.org/10.1248/cpb.50.656] [PMID: 12036023]
[50]
Chen, Y-L.; Hung, H-M.; Lu, C-M.; Li, K-C.; Tzeng, C-C. Synthesis and anticancer evaluation of certain indolo[2,3-b]quinoline derivatives. Bioorg. Med. Chem., 2004, 12(24), 6539-6546.
[http://dx.doi.org/10.1016/j.bmc.2004.09.025] [PMID: 15556770]
[51]
Wellbrock, C.; Karasarides, M.; Marais, R. The RAF proteins take centre stage. Nat. Rev. Mol. Cell Biol., 2004, 5(11), 875-885.
[http://dx.doi.org/10.1038/nrm1498] [PMID: 15520807]
[52]
Chen, Y.L.; Chen, I.L.; Wang, T.C.; Han, C.H.; Tzeng, C.C. Synthesis and anticancer evaluation of certain 4-anilinofuro[2,3-b]quinoline and 4-anilinofuro[3,2-c]quinoline derivatives. Eur. J. Med. Chem., 2005, 40(9), 928-934.
[http://dx.doi.org/10.1016/j.ejmech.2005.04.003] [PMID: 15913847]
[53]
Chen, Y-L.; Huang, C-J.; Huang, Z-Y.; Tseng, C-H.; Chang, F-S.; Yang, S-H.; Lin, S-R.; Tzeng, C.C. Synthesis and antiproliferative evaluation of certain 4-anilino-8-methoxy-2-phenylquinoline and 4-anilino-8-hydroxy-2-phenylquinoline derivatives. Bioorg. Med. Chem., 2006, 14(9), 3098-3105.
[http://dx.doi.org/10.1016/j.bmc.2005.12.017] [PMID: 16412647]
[54]
Jiang, R.; Duckett, D.; Chen, W.; Habel, J.; Ling, Y.Y.; LoGrasso, P.; Kamenecka, T.M. 3,5-Disubstituted quinolines as novel c-Jun N-terminal kinase inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(22), 6378-6382.
[http://dx.doi.org/10.1016/j.bmcl.2007.08.054] [PMID: 17911023]
[55]
Cho, S.C. Synthesis and biological activities of jineol and its derivatives. Bull. Korean Chem. Soc., 2008, 29(8), 1587-1590.
[http://dx.doi.org/10.5012/bkcs.2008.29.8.1587]
[56]
Tseng, C-H.; Chen, Y-L.; Lu, P-J.; Yang, C-N.; Tzeng, C-C. Synthesis and antiproliferative evaluation of certain indeno[1,2-c]quinoline derivatives. Bioorg. Med. Chem., 2008, 16(6), 3153-3162.
[http://dx.doi.org/10.1016/j.bmc.2007.12.028] [PMID: 18180162]
[57]
Ferrer, R.; Lobo, G.; Gamboa, N.; Rodrigues, J.; Abramjuk, C.; Jung, K.; Lein, M.; Charris, J.E. Synthesis of [(7-chloroquinolin-4-yl)amino]chalcones: potential antimalarial and anticancer Agents. Sci. Pharm., 2009, 77, 725.
[http://dx.doi.org/10.3797/scipharm.0905-07]
[58]
Mulchin, B.J.; Newton, C.G.; Baty, J.W.; Grasso, C.H.; Martin, W.J.; Walton, M.C.; Dangerfield, E.M.; Plunkett, C.H.; Berridge, M.V.; Harper, J.L.; Timmer, M.S.M.; Stocker, B.L. The anti-cancer, anti-inflammatory and tuberculostatic activities of a series of 6,7-substituted-5,8-quinolinequinones. Bioorg. Med. Chem., 2010, 18(9), 3238-3251.
[http://dx.doi.org/10.1016/j.bmc.2010.03.021] [PMID: 20363637]
[59]
Heiniger, B.; Gakhar, G.; Prasain, K.; Hua, D.H.; Nguyen, T.A. Second-generation substituted quinolines as anticancer drugs for breast cancer. Anticancer Res., 2010, 30(10), 3927-3932.
[PMID: 21036704]
[60]
Al-Said, M.S.; Ghorab, M.M.; Al-Dosari, M.S.; Hamed, M.M. Synthesis and in vitro anticancer evaluation of some novel hexahydroquinoline derivatives having a benzenesulfonamide moiety. Eur. J. Med. Chem., 2011, 46(1), 201-207.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.002] [PMID: 21112675]
[61]
Kouznetsov, V.V.; Rojas Ruiz, A.F.; Y.Vargas Mendez, L.; P., Gupta , M. Simple c-2-substituted quinolines and their anticancer activity. LDDD, 2012, 9(7), 680-686.
[http://dx.doi.org/10.2174/157018012801319544]
[62]
Jiang, N.; Zhai, X.; Li, T.; Liu, D.; Zhang, T.; Wang, B.; Gong, P. Design, synthesis and antiproliferative activity of novel 2-substituted-4-amino-6-halogenquinolines. Molecules, 2012, 17(5), 5870-5881.
[http://dx.doi.org/10.3390/molecules17055870] [PMID: 22592090]
[63]
Meshram, H.M.; Reddy, B.C.; Kumar, D.A.; Kalyan, M.; Ramesh, P.; Kavitha, P.; Rao, J.V. Synthesis and cytotoxicity of new quinoline derivatives. Indian J. Chem., 2012, 51, 1411.
[64]
Marganakop, S.B.; Kamble, R.R.; Taj, T.; Kariduraganvar, M.Y. An efficient one-pot cyclization of quinoline thiosemicarbazones to quinolines derivatized with 1,3,4-thiadiazole as anticancer and anti-tubercular agents. Med. Chem. Res., 2012, 21(2), 185-191.
[http://dx.doi.org/10.1007/s00044-010-9522-z]
[65]
Sagheer, O.M.; Saqur, K.Y.; Ghareeb, M.M. Synthesis of oxoquinoline derivatives coupled to different amino acid esters and studying their biological activity as cytotoxic agents. Int. J. Pharm. Pharm. Sci., 2013, 5, 464.
[66]
Okten, S.; Cakmak, O.; Erenler, R.; Yuce, O.; Tekin, S. Simple and convenient preparation of novel 6,8-disubstituted quinoline derivatives and their promising anticancer activities. Turk. J. Chem., 2013, 37, 896.
[http://dx.doi.org/10.3906/kim-1301-30]
[67]
Iguchi, T.; Wang, N.; Imai, T.; Pan, Z. inventors; Okayama University, Japan. assignee. Preparation of indolo[3,2-c] quinoline derivatives as antimalarial and anticancer agents patent JP2015063476A, 2015.
[68]
Iguchi, T.; El Sayed, I.E.T.; Sasaki, K.; Mei, Z.; Wang, L.; Lu, W. inventors; Okayama University, Japan. assignee. Indoloquinoline derivative as antimalarial/anticancer agent and method for the preparation thereof JP2013107869A, 2013.
[69]
Gakh, A.A.; Krasavin, M.; Karapetian, R.; Rufanov, K.A.; Konstantinov, I.; Godovykh, E. inventors; United States Dept. of Energy, USA. assignee. Preparation of anti-cancer agents based on N-acyl-2,3-dihydro-1H-pyrrolo[2,3-b] quinoline derivatives patent US8420815B1, 2013.
[70]
Ghorab, M.M.; Al-Said, M.S.; Arafa, R.K. Design, synthesis and potential anti-proliferative activity of some novel 4-aminoquinoline derivatives. Acta Pharm., 2014, 64(3), 285-297.
[http://dx.doi.org/10.2478/acph-2014-0030] [PMID: 25296675]
[71]
Spaczyn’ska, E.; Tabak, D.; Malarz, K.; Musiol, R. Investigation of the spectrum of applicability of quinolineamides. Pharma. Chem., 2014, 6, 233.
[72]
El-Gamal, M.I.; Khan, M.A.; Abdel-Maksoud, M.S.; Gamal El-Din, M.M.; Oh, C-H. A new series of diarylamides possessing quinoline nucleus: Synthesis, in vitro anticancer activities, and kinase inhibitory effect. Eur. J. Med. Chem., 2014, 87, 484-492.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.068] [PMID: 25282271]
[73]
Yong, J.; Lu, C. inventors; Fujian Institute of Research on the Structure of Matter, CAS, Peop. Rep. China. assignee. Preparation of quinoline derivatives and their application as anticancer agents. CN104230912A, 2014.
[74]
Tang, Y; Wang, L; Xiang, J Institute of Chemistry, Chinese Academy of Sciences, Peop. Rep. China. assignee. 2,2'-bipyridine6,6'-diformyl-quinoline-2-amine derivatives, their preparation method and application as antitumor agents patent. CN103601719A2014.
[75]
Courcambeck, J; Bassissi, F; Brun, S; Nicolas, G; Beret, A; Patit, S Genoscience Pharma, Fr. assignee. Preparation of arylquinolines as anticancer agents. patent WO2014147611A12014.
[76]
Ji, M; Cai, J; Zhang, S; Chen, J; Wang, Y; Li, R Southeast University, Peop. Rep. China. assignee. Quinoline derivatives as antitumor agents and their preparation, pharmaceutical compositions and use in the treatment of cancer patent CN103772353A2014.
[77]
Lee, H; Solomon, VR ; Pundir, S Advanced Medical Research Institute of Canada, Can. assignee. Preparation of quinoline sulfonyl derivatives for the treatment of cancer. patent WO2014134705A12014.
[78]
Shi, L.; Xue, J.; Wu, T.; Wang, Z. China Pharmaceutical University, Peop. Rep. China. assignee. Quinoline-4-amine derivatives containing benzimidazole structure and its preparation method and application in preparing antitumor drug. patent CN103709146A, 2014.
[79]
Ghorab, M.M.; Alsaid, M.S. Anti-breast cancer activity of some novel quinoline derivatives. Acta Pharm., 2015, 65(3), 271-283.
[http://dx.doi.org/10.1515/acph-2015-0030] [PMID: 26431105]
[80]
Ilango, K. 1., Valentina, P.1., Subhakar, K.1., Kathiravan, M.K. Design, synthesis and biological screening of 2, 4-disubstituted quinolines. Austin J. Anal. Pharm. Chem., 2015, 4, 1048.
[81]
Bispo, M. de L.F. de Alcantara, C. C.; de Moraes, M. O.; do Ó Pessoa, C.; Rodrigues, F. A. R.; Kaiser, C. R.; Wardell, S. M. S. V.; Wardell, J. L.; de Souza, M. V. N. A new and potent class of quinoline derivatives against cancer. Monatsh. Chem., 2015, 146(12), 2041-2052.
[http://dx.doi.org/10.1007/s00706-015-1570-0]
[82]
Sidoryk, K; Kaczmarska, M; Bujak, I; Bankowski, K; Kaczmarek, L. Quinoline-4-amine derivatives containing benzimidazole structure and its preparation method and application in preparing antitumor drug. CN103709146A2015.
[83]
Sidoryk, K.; Świtalska, M.; Jaromin, A.; Cmoch, P.; Bujak, I.; Kaczmarska, M.; Wietrzyk, J.; Dominguez, E.G.; Żarnowski, R.; Andes, D.R.; Bańkowski, K.; Cybulski, M.; Kaczmarek, Ł. The synthesis of indolo[2,3-b]quinoline derivatives with a guanidine group: highly selective cytotoxic agents. Eur. J. Med. Chem., 2015, 105, 208-219.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.022] [PMID: 26496013]
[84]
Karthikeyan, C.; Lee, C.; Moore, J.; Mittal, R.; Suswam, E.A.; Abbott, K.L.; Pondugula, S.R.; Manne, U.; Narayanan, N.K.; Trivedi, P.; Tiwari, A.K. IND-2, a pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinoline derivative, circumvents multi-drug resistance and causes apoptosis in colon cancer cells. Bioorg. Med. Chem., 2015, 23(3), 602-611.
[http://dx.doi.org/10.1016/j.bmc.2014.11.043] [PMID: 25537531]
[85]
Gedawy, E.M.; Kassab, A.E.; El-Malah, A.A. Synthesis and anticancer activity of novel tetrahydroquinoline and tetrahydropyrimidoquinoline derivatives. Med. Chem. Res., 2015, 24(9), 3387-3397.
[http://dx.doi.org/10.1007/s00044-015-1388-7]
[86]
Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem., 2015, 97, 871-910.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.044] [PMID: 25073919]
[87]
Keri, R.S.; Patil, S.A. Quinoline: a promising antitubercular target. Biomed. Pharmacother., 2014, 68(8), 1161-1175.
[http://dx.doi.org/10.1016/j.biopha.2014.10.007] [PMID: 25458785]
[88]
Musiol, R. Quinoline-based HIV integrase inhibitors. Curr. Pharm. Des., 2013, 19(10), 1835-1849.
[http://dx.doi.org/10.2174/1381612811319100008] [PMID: 23092281]
[89]
Bongarzone, S.; Bolognesi, M.L. The concept of privileged structures in rational drug design: focus on acridine and quinoline scaffolds in neurodegenerative and protozoan diseases. Expert Opin. Drug Discov., 2011, 6(3), 251-268.
[http://dx.doi.org/10.1517/17460441.2011.550914] [PMID: 22647203]
[90]
Hsiang, Y.H.; Hertzberg, R.; Hecht, S.; Liu, L.F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem., 1985, 260(27), 14873-14878.
[PMID: 2997227]
[91]
Hsiang, Y.H.; Liu, L.F. Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res., 1988, 48(7), 1722-1726.
[PMID: 2832051]
[92]
Long, H.J., III; Bundy, B.N.; Grendys, E.C., Jr; Benda, J.A.; McMeekin, D.S.; Sorosky, J.; Miller, D.S.; Eaton, L.A.; Fiorica, J.V. Gynecologic oncology group study. randomized phase iii trial of cisplatin with or without topotecan in carcinoma of the uterine cervix: a gynecologic oncology group study. J. Clin. Oncol., 2005, 23(21), 4626-4633.
[http://dx.doi.org/10.1200/JCO.2005.10.021] [PMID: 15911865]
[93]
Robati, M.; Holtz, D.; Dunton, C.J. A review of topotecan in combination chemotherapy for advanced cervical cancer. Ther. Clin. Risk Manag., 2008, 4(1), 213-218.
[http://dx.doi.org/10.2147/TCRM.S1771] [PMID: 18728710]
[94]
Kipps, E.; Young, K.; Starling, N. Liposomal irinotecan in gemcitabine-refractory metastatic pancreatic cancer: efficacy, safety and place in therapy. Ther. Adv. Med. Oncol., 2017, 9(3), 159-170.
[http://dx.doi.org/10.1177/1758834016688816] [PMID: 28344661]
[95]
Su, T.L.; Chou, T.C.; Kim, J.Y.; Huang, J.T.; Ciszewska, G.; Ren, W.Y.; Otter, G.M.; Sirotnak, F.M.; Watanabe, K.A. 9-substituted acridine derivatives with long half-life and potent antitumor activity: synthesis and structure-activity relationships. J. Med. Chem., 1995, 38(17), 3226-3235.
[http://dx.doi.org/10.1021/jm00017a006] [PMID: 7650675]
[96]
Antony, S.; Jayaraman, M.; Laco, G.; Kohlhagen, G.; Kohn, K.W.; Cushman, M.; Pommier, Y. Differential induction of topoisomerase I-DNA cleavage complexes by the indenoisoquinoline MJ-III-65 (NSC 706744) and camptothecin: base sequence analysis and activity against camptothecin-resistant topoisomerases I. Cancer Res., 2003, 63(21), 7428-7435.
[PMID: 14612542]
[97]
Huang, M.; Gao, H.; Chen, Y.; Zhu, H.; Cai, Y.; Zhang, X.; Miao, Z.; Jiang, H.; Zhang, J.; Shen, H.; Lin, L.; Lu, W.; Ding, J. Chimmitecan, a novel 9-substituted camptothecin, with improved anticancer pharmacologic profiles in vitro and in vivo. Clin. Cancer Res., 2007, 13(4), 1298-1307.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1277] [PMID: 17287296]
[98]
Hu, Z.Y.; Li, X.X.; Du, F.F.; Yang, J.L.; Niu, W.; Xu, F.; Wang, F.Q.; Li, C.; Sun, Y. Pharmacokinetic evaluation of the anticancer prodrug simmitecan in different experimental animals. Acta Pharmacol. Sin., 2013, 34(11), 1437-1448.
[http://dx.doi.org/10.1038/aps.2013.74] [PMID: 24056706]
[99]
Meco, D.; Di Francesco, A.M.; Cusano, G.; Bucci, F.; Pierri, F.; Patriarca, V.; Torella, A.R.; Pisano, C.; Riccardi, R. Preclinical evaluation of the novel 7-substituted camptothecin Namitecan (ST1968) in paediatric tumour models. Cancer Chemother. Pharmacol., 2012, 70(6), 811-822.
[http://dx.doi.org/10.1007/s00280-012-1973-0] [PMID: 23007316]
[100]
Pisano, C.; De Cesare, M.; Beretta, G.L.; Zuco, V.; Pratesi, G.; Penco, S.; Vesci, L.; Foderà, R.; Ferrara, F.F.; Guglielmi, M.B.; Carminati, P.; Dallavalle, S.; Morini, G.; Merlini, L.; Orlandi, A.; Zunino, F. Preclinical profile of antitumor activity of a novel hydrophilic camptothecin, ST1968. Mol. Cancer Ther., 2008, 7(7), 2051-2059.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0266] [PMID: 18645015]
[101]
Beretta, G.L.; Zuco, V.; De Cesare, M.; Perego, P.; Zaffaroni, N. Namitecan: a hydrophilic camptothecin with a promising preclinical profile. Curr. Med. Chem., 2012, 19(21), 3488-3501.
[http://dx.doi.org/10.2174/092986712801323252] [PMID: 22680917]
[102]
Joerger, M.; Hess, D.; Delmonte, A.; Gallerani, E.; Fasolo, A.; Gianni, L.; Cresta, S.; Barbieri, P.; Pace, S.; Sessa, C. Integrative population pharmacokinetic and pharmacodynamic dose finding approach of the new camptothecin compound namitecan (ST1968). Br. J. Clin. Pharmacol., 2015, 80(1), 128-138.
[http://dx.doi.org/10.1111/bcp.12583] [PMID: 25580946]
[103]
Joerger, M.; Hess, D.; Delmonte, A.; Gallerani, E.; Barbieri, P.; Pace, S.; Sessa, C. Phase-I dose finding and pharmacokinetic study of the novel hydrophilic camptothecin ST-1968 (namitecan) in patients with solid tumors. Invest. New Drugs, 2015, 33(2), 472-479.
[http://dx.doi.org/10.1007/s10637-015-0219-5] [PMID: 25693886]
[104]
Kim, Y-M.; Lee, S.W.; Kim, D-Y.; Kim, J-H.; Nam, J-H.; Kim, Y-T. The efficacy and toxicity of belotecan (CKD-602), a camptothericin analogue topoisomerase I inhibitor, in patients with recurrent or refractory epithelial ovarian cancer. J. Chemother., 2010, 22(3), 197-200.
[http://dx.doi.org/10.1179/joc.2010.22.3.197] [PMID: 20566426]
[105]
Kurtzberg, L.S.; Roth, S.; Krumbholz, R.; Crawford, J.; Bormann, C.; Dunham, S.; Yao, M.; Rouleau, C.; Bagley, R.G.; Yu, X-J.; Wang, F.; Schmid, S.M.; Lavoie, E.J.; Teicher, B.A. Genz-644282, a novel non-camptothecin topoisomerase I inhibitor for cancer treatment. Clin. Cancer Res., 2011, 17(9), 2777-2787.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0542] [PMID: 21415217]
[106]
Houghton, P.J.; Lock, R.; Carol, H.; Morton, C.L.; Gorlick, R.; Anders Kolb, E.; Keir, S.T.; Reynolds, C.P.; Kang, M.H.; Maris, J.M.; Billups, C.A.; Zhang, M.X.; Madden, S.L.; Teicher, B.A.; Smith, M.A. Testing of the topoisomerase 1 inhibitor Genz-644282 by the pediatric preclinical testing program. Pediatr. Blood Cancer, 2012, 58(2), 200-209.
[http://dx.doi.org/10.1002/pbc.23016] [PMID: 21548007]
[107]
Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer, 2009, 9(1), 28-39.
[http://dx.doi.org/10.1038/nrc2559] [PMID: 19104514]
[108]
Stansfield, L.; Hughes, T.E.; Walsh-Chocolaad, T.L. Bosutinib: a second-generation tyrosine kinase inhibitor for chronic myelogenous leukemia. Ann. Pharmacother., 2013, 47(12), 1703-1711.
[http://dx.doi.org/10.1177/1060028013503124] [PMID: 24396109]
[109]
Boschelli, F.; Arndt, K.; Gambacorti-Passerini, C. Bosutinib: a review of preclinical studies in chronic myelogenous leukaemia. Eur. J. Cancer, 2010, 46(10), 1781-1789.
[http://dx.doi.org/10.1016/j.ejca.2010.02.032] [PMID: 20399641]
[110]
Kong, A.; Feldinger, K. Profile of neratinib and its potential in the treatment of breast cancer. BCTT, 2015, 2015(7)
[http://dx.doi.org/10.2147/BCTT.S54414]
[111]
Subramaniam, D.; He, A.R.; Hwang, J.; Deeken, J.; Pishvaian, M.; Hartley, M.L.; Marshall, J.L. Irreversible multitargeted ErbB family inhibitors for therapy of lung and breast cancer. Curr. Cancer Drug Targets, 2015, 14(9), 775-793.
[http://dx.doi.org/10.2174/1568009614666141111104643] [PMID: 25435079]
[112]
Chon, H.J.; Bae, K.J.; Lee, Y.; Kim, J. The casein kinase 2 inhibitor, CX-4945, as an anti-cancer drug in treatment of human hematological malignancies. Front. Pharmacol., 2015, 6, 70.
[http://dx.doi.org/10.3389/fphar.2015.00070] [PMID: 25873900]
[113]
Engelman, J.A.; Luo, J.; Cantley, L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet., 2006, 7(8), 606-619.
[http://dx.doi.org/10.1038/nrg1879] [PMID: 16847462]
[114]
Augur, K.R.; Luo, L.; Knight, S.D.; Van Aller, G.; Tummino, P.J.; Copeland, R.A.; Diamond, M.; Sutton, D.; Lu, H.; Oleykowski, K.; Sudakin, V.; Dhanak, D.; Jackson, J.R. GSK1059615: A novel inhibitor of phosphoinositide 3-kinase for the treatment of cancer. Proceedings of EORTC-NCI-AACR international conference on molecular targets and cancer, Geneva Palexpo, Geneva, Switzerland 2008.
[115]
Knight, S.D.; Adams, N.D.; Burgess, J.L.; Chaudhari, A.M.; Darcy, M.G.; Donatelli, C.A.; Luengo, J.I.; Newlander, K.A.; Parrish, C.A.; Ridgers, L.H.; Sarpong, M.A.; Schmidt, S.J.; Van Aller, G.S.; Carson, J.D.; Diamond, M.A.; Elkins, P.A.; Gardiner, C.M.; Garver, E.; Gilbert, S.A.; Gontarek, R.R.; Jackson, J.R.; Kershner, K.L.; Luo, L.; Raha, K.; Sherk, C.S.; Sung, C-M.; Sutton, D.; Tummino, P.J.; Wegrzyn, R.J.; Auger, K.R.; Dhanak, D. Discovery of GSK2126458, a highly potent inhibitor of pi3k and the mammalian target of rapamycin. ACS Med. Chem. Lett., 2010, 1(1), 39-43.
[http://dx.doi.org/10.1021/ml900028r] [PMID: 24900173]
[116]
Liu, P.; Cheng, H.; Roberts, T.M.; Zhao, J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov., 2009, 8(8), 627-644.
[http://dx.doi.org/10.1038/nrd2926] [PMID: 19644473]
[117]
Li, X; Dong, Q; Chen, Y; Wang, B; Bai, D Imidazo quinoline derivative as mTOR and PI3K-kinase inhibitor useful in the treatment of various diseases, and its preparation. patent WO2013053273A12013.
[118]
Li, X; Dong, Q; Chen, Y; Wang, B; Bai, D Imidazo quinoline derivative as mTOR and PI3K-kinase inhibitor useful in the treatment of various diseases, and its preparation. patent CN103030637A2013.
[119]
Reddy, EP; Reddy, M.V.R. Temple University - of the Commonwealth System of Higher Education, USA. Preparation of 3-aminothieno[3,2-c] quinoline derivatives as antitumor agents, patent WO2013142010A12013.
[120]
Cheng, J; Qin, J Preparation of morpholino-quinoline compounds for the treatment of diseases associated with PI3K/mTOR, patent CN103936762A2014.
[121]
Zhu, J; Song, Y; Han, J; Chen, Y; Lv, J; Zhou, Y. Preparation of N- (5-(quinolin-6-yl) pyridin-3-yl) benzene sulfamide derivatives for treating tumor and immune disease, patent WO2014067473A12014.
[122]
Zhu, J; Song, Y; Han, J; Chen, Y; Lv, J; Zhou, Y. Preparation of N-(5-(quinolin-6-yl) pyridin-3-yl) benzene sulfamide derivatives for treating tumor and immune disease patent, CN103788071A2014.
[123]
Kumar, S; Sharma, R; Deore, VB; Yewalkar, N.N. Preparation of imidazo[4,5-c] quinoline derivatives that are kinase inhibitors inhibitors useful in treatment of proliferative, neoplastic and other kinase-mediated diseases, patent WO2014141118A12014.
[124]
Hu, Y; Lv, X; Dong, X Zhejiang. Preparation of 3,4-disubstituted-6-(3-pyridyl) quinoline derivatives as PI3Kα inhibitors, patent CN105130954A2015.
[125]
Hu, Y; Lv, X; Dong, X Zhejiang 4-α, β unsaturated-sulfonylaminoquinolines as PI3Kα inhibitors and their preparation, pharmaceutical compositions and use in the treatment of cancer patent CN104961725A2015.
[126]
Adams, J.A. Kinetic and catalytic mechanisms of protein kinases. Chem. Rev., 2001, 101(8), 2271-2290.
[http://dx.doi.org/10.1021/cr000230w] [PMID: 11749373]
[127]
Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol., 2001, 2(2), 127-137.
[http://dx.doi.org/10.1038/35052073] [PMID: 11252954]
[128]
Wissner, A.; Brawner Floyd, M.B.; Rabindran, S.K.; Nilakantan, R.; Greenberger, L.M.; Shen, R.; Wang, Y.F.; Tsou, H.R. Syntheses and EGFR and HER-2 kinase inhibitory activities of 4-anilinoquinoline-3-carbonitriles: analogues of three important 4-anilinoquinazolines currently undergoing clinical evaluation as therapeutic antitumor agents. Bioorg. Med. Chem. Lett., 2002, 12(20), 2893-2897.
[http://dx.doi.org/10.1016/S0960-894X(02)00598-X] [PMID: 12270171]
[129]
Wissner, A.; Overbeek, E.; Reich, M.F.; Floyd, M.B.; Johnson, B.D.; Mamuya, N.; Rosfjord, E.C.; Discafani, C.; Davis, R.; Shi, X.; Rabindran, S.K.; Gruber, B.C.; Ye, F.; Hallett, W.A.; Nilakantan, R.; Shen, R.; Wang, Y-F.; Greenberger, L.M.; Tsou, H-R. Synthesis and structure-activity relationships of 6,7-disubstituted 4-anilinoquinoline-3-carbonitriles. The design of an orally active, irreversible inhibitor of the tyrosine kinase activity of the epidermal growth factor receptor (EGFR) and the human epidermal growth factor receptor-2 (HER-2). J. Med. Chem., 2003, 46(1), 49-63.
[http://dx.doi.org/10.1021/jm020241c] [PMID: 12502359]
[130]
Kim, H.; Lim, H.Y. Novel EGFR-TK inhibitor EKB-569 inhibits hepatocellular carcinoma cell proliferation by AKT and MAPK pathways. J. Korean Med. Sci., 2011, 26(12), 1563-1568.
[http://dx.doi.org/10.3346/jkms.2011.26.12.1563] [PMID: 22147992]
[131]
Tsou, H-R.; Overbeek-Klumpers, E.G.; Hallett, W.A.; Reich, M.F.; Floyd, M.B.; Johnson, B.D.; Michalak, R.S.; Nilakantan, R.; Discafani, C.; Golas, J.; Rabindran, S.K.; Shen, R.; Shi, X.; Wang, Y-F.; Upeslacis, J.; Wissner, A. Optimization of 6,7-disubstituted-4-(arylamino)quinoline-3-carbonitriles as orally active, irreversible inhibitors of human epidermal growth factor receptor-2 kinase activity. J. Med. Chem., 2005, 48(4), 1107-1131.
[http://dx.doi.org/10.1021/jm040159c] [PMID: 15715478]
[132]
Baselga, J. Is there a role for the irreversible epidermal growth factor receptor inhibitor EKB-569 in the treatment of cancer? A mutation-driven question. J. Clin. Oncol., 2006, 24(15), 2225-2226.
[http://dx.doi.org/10.1200/JCO.2005.05.3785] [PMID: 16710019]
[133]
Erlichman, C.; Hidalgo, M.; Boni, J.P.; Martins, P.; Quinn, S.E.; Zacharchuk, C.; Amorusi, P.; Adjei, A.A.; Rowinsky, E.K.; Phase, I. Phase I study of EKB-569, an irreversible inhibitor of the epidermal growth factor receptor, in patients with advanced solid tumors. J. Clin. Oncol., 2006, 24(15), 2252-2260.
[http://dx.doi.org/10.1200/JCO.2005.01.8960] [PMID: 16710023]
[134]
Pawar, V.G.; Sos, M.L.; Rode, H.B.; Rabiller, M.; Heynck, S.; van Otterlo, W.A.L.; Thomas, R.K.; Rauh, D. Synthesis and biological evaluation of 4-anilinoquinolines as potent inhibitors of epidermal growth factor receptor. J. Med. Chem., 2010, 53(7), 2892-2901.
[http://dx.doi.org/10.1021/jm901877j] [PMID: 20222733]
[135]
De Luca, A.; Normanno, N. Tivozanib, a pan-VEGFR tyrosine kinase inhibitor for the potential treatment of solid tumors. IDrugs, 2010, 13(9), 636-645.
[PMID: 20799147]
[136]
Motzer, R.J.; Nosov, D.; Eisen, T.; Bondarenko, I.; Lesovoy, V.; Lipatov, O.; Tomczak, P.; Lyulko, O.; Alyasova, A.; Harza, M.; Kogan, M.; Alekseev, B.Y.; Sternberg, C.N.; Szczylik, C.; Cella, D.; Ivanescu, C.; Krivoshik, A.; Strahs, A.; Esteves, B.; Berkenblit, A.; Hutson, T.E. Tivozanib versus sorafenib as initial targeted therapy for patients with metastatic renal cell carcinoma: results from a phase III trial. J. Clin. Oncol., 2013, 31(30), 3791-3799.
[http://dx.doi.org/10.1200/JCO.2012.47.4940] [PMID: 24019545]
[137]
Larsen, A.K.; Ouaret, D.; El Ouadrani, K.; Petitprez, A. Targeting EGFR and VEGF(R) pathway cross-talk in tumor survival and angiogenesis. Pharmacol. Ther., 2011, 131(1), 80-90.
[http://dx.doi.org/10.1016/j.pharmthera.2011.03.012] [PMID: 21439312]
[138]
Bowles, D.W.; Kessler, E.R.; Jimeno, A. Multi-targeted tyrosine kinase inhibitors in clinical development: focus on XL-184 (cabozantinib). Drugs Today (Barc), 2011, 47(11), 857-868.
[http://dx.doi.org/10.1358/dot.2011.47.11.1688487] [PMID: 22146228]
[139]
Roy, S.; Narang, B.K.; Rastogi, S.K.; Rawal, R.K. A novel multiple tyrosine-kinase targeted agent to explore the future perspectives of anti-angiogenic therapy for the treatment of multiple solid tumors: cabozantinib. Anticancer. Agents Med. Chem., 2015, 15(1), 37-47.
[http://dx.doi.org/10.2174/1871520614666140902153840] [PMID: 25181996]
[140]
Ong, WZ; Nowak, PW; Askew, BC; Kim, J Kala Pharmaceuticals, Inc., USA. assignee. Preparation of quinoline and quinazoline derivatives useful in treating and/or preventing diseases, patent WO2014127214A12014.
[141]
Shanghai, Renli Pharmaceutical Science & Technology Co., Ltd., Peop. Rep. China. assignee. Quinoline derivatives as a VEGFR inhibitor useful in treatment of cancer and their preparation, patent CN103524409A2014.
[142]
Xia, G.; Yu, Y.; Chen, W.; Zhang, Y.; Shen, J. Shanghai Pharmaceuticals Holding Co., Ltd., Peop. Rep. China; Zhejiang University. assignee. Preparation of quinoline and quinazoline derivatives as antitumor agents, patent CN103965120A, 2014.
[143]
Zhu, K; Mao, C; Qin, L Nanjing Zhongruiyuan Biotechnology Co., Ltd., Peop. Rep. China. assignee.. Preparation of alkynyl-substituted quinoline derivatives as antitumor agents patent CN104817497A2015.
[144]
Chen, Y; Guo, S Hinova Pharmaceuticals Inc., Peop. Rep. China. assignee.. Preparation of N-[2-chloro-4-(4-quinolinyloxy) phenyl]-N'-(3-isoxazolyl) urea derivatives as antitumor agents patent CN104693196A2015.
[145]
Chauhan, M.; Joshi, G.; Kler, H.; Kashyap, A.; Amrutkar, S.M.; Sharma, P.; Bhilare, K.D.; Chand Banerjee, U.; Singh, S.; Kumar, R. Dual inhibitors of epidermal growth factor receptor and topoisomerase iiα derived from a quinoline scaffold. RSC Advances, 2016, 6(81), 77717-77734.
[http://dx.doi.org/10.1039/C6RA15118C]
[146]
Hewett, Y.; Ghimire, S.; Farooqi, B.; Shah, B.K. Lenvatinib - A multikinase inhibitor for radioiodine-refractory differentiated thyroid cancer. J. Oncol. Pharm. Pract., 2018, 24(1), 28-32.
[http://dx.doi.org/10.1177/1078155216680119] [PMID: 27856921]
[147]
Oikonomopoulos, G.; Aravind, P.; Sarker, D. Lenvatinib: a potential breakthrough in advanced hepatocellular carcinoma? Future Oncol., 2016, 12(4), 465-476.
[http://dx.doi.org/10.2217/fon.15.341] [PMID: 26785762]
[148]
Musiol, R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin. Drug Discov., 2017, 12(6), 583-597.
[http://dx.doi.org/10.1080/17460441.2017.1319357] [PMID: 28399679]
[149]
Sebolt-Leopold, J.S.; Dudley, D.T.; Herrera, R.; Van Becelaere, K.; Wiland, A.; Gowan, R.C.; Tecle, H.; Barrett, S.D.; Bridges, A.; Przybranowski, S.; Leopold, W.R.; Saltiel, A.R. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat. Med., 1999, 5(7), 810-816.
[http://dx.doi.org/10.1038/10533] [PMID: 10395327]
[150]
Lackey, K.; Cory, M.; Davis, R.; Frye, S.V.; Harris, P.A.; Hunter, R.N.; Jung, D.K.; McDonald, O.B.; McNutt, R.W.; Peel, M.R.; Rutkowske, R.D.; Veal, J.M.; Wood, E.R. The discovery of potent cRaf1 kinase inhibitors. Bioorg. Med. Chem. Lett., 2000, 10(3), 223-226.
[http://dx.doi.org/10.1016/S0960-894X(99)00668-X] [PMID: 10698440]
[151]
Zhang, N.; Wu, B.; Powell, D.; Wissner, A.; Floyd, M.B.; Kovacs, E.D.; Toral-Barza, L.; Kohler, C. Synthesis and structure-activity relationships of 3-cyano-4-(phenoxyanilino)quinolines as MEK (MAPKK) inhibitors. Bioorg. Med. Chem. Lett., 2000, 10(24), 2825-2828.
[http://dx.doi.org/10.1016/S0960-894X(00)00580-1] [PMID: 11133101]
[152]
Zhang, N.; Wu, B.; Eudy, N.; Wang, Y.; Ye, F.; Powell, D.; Wissner, A.; Feldberg, L.R.; Kim, S.C.; Mallon, R.; Kovacs, E.D.; Toral-Barza, L.; Kohler, C.A. MEK (MAPKK) inhibitors. Part 2: structure-activity relationships of 4-anilino-3-cyano-6,7-dialkoxyquinolines. Bioorg. Med. Chem. Lett., 2001, 11(11), 1407-1410.
[http://dx.doi.org/10.1016/S0960-894X(01)00238-4] [PMID: 11378365]
[153]
Berger, D.; Dutia, M.; Powell, D.; Wu, B.; Wissner, A.; Boschelli, D.H.; Floyd, M.B.; Zhang, N.; Torres, N.; Levin, J.; Du, X.; Wojciechowicz, D.; Discafani, C.; Kohler, C.; Kim, S.C.; Feldberg, L.R.; Collins, K.; Mallon, R. Synthesis and evaluation of 4-anilino-6,7-dialkoxy-3-quinolinecarbonitriles as inhibitors of kinases of the Ras-MAPK signaling cascade. Bioorg. Med. Chem. Lett., 2003, 13(18), 3031-3034.
[http://dx.doi.org/10.1016/S0960-894X(03)00640-1] [PMID: 12941327]
[154]
Černuchová, P.; Vo-Thanh, G.; Milata, V.; Loupy, A.; Jantová, S.; Theiszová, M. Utilization of 2-ethoxymethylene-3-oxobutanenitrile in the synthesis of heterocycles possessing biological activity. Tetrahedron, 2005, 61(22), 5379-5387.
[http://dx.doi.org/10.1016/j.tet.2005.03.066]
[155]
Jantová, S.; Repický, A.; Letasiová, S.; Cipák, L. 4-Amino-3-acetylquinoline-induced apoptosis of murine L1210 leukemia cells involves ROS-mitochondrial-mediated death signaling and activation of p38 MAPK. Cell Biochem. Funct., 2008, 26(5), 609-619.
[http://dx.doi.org/10.1002/cbf.1485] [PMID: 18508389]
[156]
Singh, J.; Chuaqui, C.E.; Boriack-Sjodin, P.A.; Lee, W-C.; Pontz, T.; Corbley, M.J.; Cheung, H-K.; Arduini, R.M.; Mead, J.N.; Newman, M.N.; Papadatos, J.L.; Bowes, S.; Josiah, S.; Ling, L.E. Successful shape-based virtual screening: the discovery of a potent inhibitor of the type I TGFbeta receptor kinase (TbetaRI). Bioorg. Med. Chem. Lett., 2003, 13(24), 4355-4359.
[http://dx.doi.org/10.1016/j.bmcl.2003.09.028] [PMID: 14643325]
[157]
Sawyer, S.J.; Beight, D.W.; Britt, K.S.; Anderson, B.D.; Campbell, R.M.; Goodson, T.; Herron, D.K.; Li, H-Y.; McMillen, W.T.; Mort, N.; Parsons, S.; Smith, E.C.R.; Wagner, J.R.; Yan, L.; Zhang, F.; Yingling, J.M. Synthesis and activity of new aryl- and heteroaryl-substituted 5,6-dihydro-4h-pyrrolo[1,2-b]pyrazole inhibitors of the transforming growth factor-β type i receptor kinase domain. Bioorg. Med. Chem. Lett., 2004, 14(13), 3581-3584.
[158]
Elliott, R.L.; Blobe, G.C. Role of transforming growth factor Beta in human cancer. J. Clin. Oncol., 2005, 23(9), 2078-2093.
[http://dx.doi.org/10.1200/JCO.2005.02.047] [PMID: 15774796]
[159]
Mauviel, A. Transforming growth factor-beta: a key mediator of fibrosis. Methods Mol. Med., 2005, 117, 69-80.
[PMID: 16118446]
[160]
Muraoka-Cook, R.S.; Dumont, N.; Arteaga, C.L. Dual role of transforming growth factor beta in mammary tumorigenesis and metastatic progression. Clin. Cancer Res., 2005, 11(2 Pt 2), 937s-943s.
[PMID: 15701890]
[161]
Yarden, Y.; Escobedo, J.A.; Kuang, W.J.; Yang-Feng, T.L.; Daniel, T.O.; Tremble, P.M.; Chen, E.Y.; Ando, M.E.; Harkins, R.N.; Francke, U.; Fried, V.A.; Ullrich, A.; Williams, L.T. Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors. Nature, 1986, 323(6085), 226-232.
[http://dx.doi.org/10.1038/323226a0] [PMID: 3020426]
[162]
Escobedo, J.A.; Barr, P.J.; Williams, L.T. Role of tyrosine kinase and membrane-spanning domains in signal transduction by the platelet-derived growth factor receptor. Mol. Cell. Biol., 1988, 8(12), 5126-5131.
[http://dx.doi.org/10.1128/MCB.8.12.5126] [PMID: 2854192]
[163]
Matsui, T.; Heidaran, M.; Miki, T.; Popescu, N.; La Rochelle, W.; Kraus, M.; Pierce, J.; Aaronson, S. Isolation of a novel receptor cDNA establishes the existence of two PDGF receptor genes. Science, 1989, 243(4892), 800-804.
[http://dx.doi.org/10.1126/science.2536956] [PMID: 2536956]
[164]
Ross, R. Platelet-derived growth factor. Lancet, 1989, 1(8648), 1179-1182.
[http://dx.doi.org/10.1016/S0140-6736(89)92760-8] [PMID: 2566744]
[165]
Heldin, C.H. Structural and functional studies on platelet-derived growth factor. EMBO J., 1992, 11(12), 4251-4259.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05523.x] [PMID: 1425569]
[166]
Spada, A.P.; Maguire, M.P.; Persons, P.E.; Myers, M.R. PCT publication no.: WO 92/206421992.
[167]
Dolle, R.E.; Dunn, J.A.; Bobko, M.; Singh, B.; Kuster, J.E.; Baizman, E.; Harris, A.L.; Sawutz, D.G.; Miller, D.; Wang, S.; Faltynek, C.R.; Xie, W.; Sarup, J.; Bode, D.C.; Pagani, E.D.; Silver, P.J. 5,7-Dimethoxy-3-(4-pyridinyl)quinoline is a potent and selective inhibitor of human vascular beta-type platelet-derived growth factor receptor tyrosine kinase. J. Med. Chem., 1994, 37(17), 2627-2629.
[http://dx.doi.org/10.1021/jm00043a002] [PMID: 8064792]
[168]
Shimizu, T.; Fujiwara, Y.; Osawa, T.; Sakai, T.; Kubo, K.; Kubo, K.; Nishitoba, T.; Kimura, K.; Senga, T.; Murooka, H.; Iwai, A.; Fukushima, K.; Yoshino, T.; Miwa, A. Orally active anti-proliferation agents: novel diphenylamine derivatives as FGF-R2 autophosphorylation inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(4), 875-879.
[http://dx.doi.org/10.1016/j.bmcl.2003.12.019] [PMID: 15012985]
[169]
Petti, F.; Thelemann, A.; Kahler, J.; McCormack, S.; Castaldo, L.; Hunt, T.; Nuwaysir, L.; Zeiske, L.; Haack, H.; Sullivan, L.; Garton, A.; Haley, J.D. Temporal quantitation of mutant Kit tyrosine kinase signaling attenuated by a novel thiophene kinase inhibitor OSI-930. Mol. Cancer Ther., 2005, 4(8), 1186-1197.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0114] [PMID: 16093434]
[170]
Brennan, C.; Dixon, J.A.; Wickens, P.; Kumarasinghe, E.; Chuang, C-Y.; Kluender, H.C.E.; Hong, Z.; Kreiman, C. 1,3-Thiazole-5- carboxamides useful as cancer chemotherapeutic WO/2006/0963382006.
[171]
Superti-Furga, G.; Courtneidge, S.A. Structure-function relationships in Src family and related protein tyrosine kinases. BioEssays, 1995, 17(4), 321-330.
[http://dx.doi.org/10.1002/bies.950170408] [PMID: 7537961]
[172]
Courtneidge, S.A. Role of Src in signal transduction pathways. The Jubilee Lecture. Biochem. Soc. Trans., 2002, 30(2), 11-17.
[http://dx.doi.org/10.1042/bst0300011] [PMID: 12023816]
[173]
Lutz, M.P.; Esser, I.B.S.; Flossmann-Kast, B.B.M.; Vogelmann, R.; Lührs, H.; Friess, H.; Büchler, M.W.; Adler, G. Overexpression and activation of the tyrosine kinase Src in human pancreatic carcinoma. Biochem. Biophys. Res. Commun., 1998, 243(2), 503-508.
[http://dx.doi.org/10.1006/bbrc.1997.8043] [PMID: 9480838]
[174]
Šušva, M.; Missbach, M.; Green, J. Src inhibitors: drugs for the treatment of osteoporosis, cancer or both? Trends Pharmacol. Sci., 2000, 21(12), 489-495.
[http://dx.doi.org/10.1016/S0165-6147(00)01567-4] [PMID: 11121839]
[175]
Boschelli, D.H. Exploitation of the 3-quinolinecarbonitrile template for SRC tyrosine kinase inhibitors. Curr. Top. Med. Chem., 2008, 8(10), 922-934.
[http://dx.doi.org/10.2174/156802608784911653] [PMID: 18673175]
[176]
Boschelli, D.H.; Wang, Y.D.; Ye, F.; Wu, B.; Zhang, N.; Dutia, M.; Powell, D.W.; Wissner, A.; Arndt, K.; Weber, J.M.; Boschelli, F. Synthesis and Src kinase inhibitory activity of a series of 4-phenylamino-3-quinolinecarbonitriles. J. Med. Chem., 2001, 44(5), 822-833.
[http://dx.doi.org/10.1021/jm000420z] [PMID: 11262092]
[177]
Berger, D.; Dutia, M.; Powell, D.; Wissner, A.; DeMorin, F.; Raifeld, Y.; Weber, J.; Boschelli, F. Substituted 4-anilino-7-phenyl-3-quinolinecarbonitriles as Src kinase inhibitors. Bioorg. Med. Chem. Lett., 2002, 12(20), 2989-2992.
[http://dx.doi.org/10.1016/S0960-894X(02)00577-2] [PMID: 12270190]
[178]
Boschelli, D.H.; Wang, Y.D.; Johnson, S.; Wu, B.; Ye, F.; Barrios Sosa, A.C.; Golas, J.M.; Boschelli, F. 7-Alkoxy-4-phenylamino-3-quinolinecar-bonitriles as dual inhibitors of Src and Abl kinases. J. Med. Chem., 2004, 47(7), 1599-1601.
[http://dx.doi.org/10.1021/jm0499458] [PMID: 15027848]
[179]
Barrios Sosa, A.C.; Boschelli, D.H.; Ye, F.; Golas, J.M.; Boschelli, F. Synthesis and inhibition of Src kinase activity by 7-ethenyl and 7-ethynyl-4-anilino-3-quinolinecarbonitriles. Bioorg. Med. Chem. Lett., 2004, 14(9), 2155-2158.
[http://dx.doi.org/10.1016/j.bmcl.2004.02.035] [PMID: 15080999]
[180]
Barrios Sosa, A.C.; Boschelli, D.H.; Wu, B.; Wang, Y.; Golas, J.M. Further studies on ethenyl and ethynyl-4-phenylamino-3-quinolinecarbonitriles: identification of a subnanomolar Src kinase inhibitor. Bioorg. Med. Chem. Lett., 2005, 15(6), 1743-1747.
[http://dx.doi.org/10.1016/j.bmcl.2005.01.004] [PMID: 15745832]
[181]
Davis, I.J.; McFadden, A.W.; Zhang, Y.; Coxon, A.; Burgess, T.L.; Wagner, A.J.; Fisher, D.E. Identification of the receptor tyrosine kinase c-Met and its ligand, hepatocyte growth factor, as therapeutic targets in clear cell sarcoma. Cancer Res., 2010, 70(2), 639-645.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1121] [PMID: 20068147]
[182]
Dufies, M.; Jacquel, A.; Robert, G.; Cluzeau, T.; Puissant, A.; Fenouille, N.; Legros, L.; Raynaud, S.; Cassuto, J-P.; Luciano, F.; Auberger, P. Mechanism of action of the multikinase inhibitor Foretinib. Cell Cycle, 2011, 10(23), 4138-4148.
[http://dx.doi.org/10.4161/cc.10.23.18323] [PMID: 22101270]
[183]
Zou, H.Y.; Li, Q.; Lee, J.H.; Arango, M.E.; Burgess, K.; Qiu, M.; Engstrom, L.D.; Yamazaki, S.; Parker, M.; Timofeevski, S.; Cui, J.J.; McTigue, M.; Los, G.; Bender, S.L.; Smeal, T.; Christensen, J.G. Sensitivity of selected human tumor models to PF-04217903, a novel selective c-Met kinase inhibitor. Mol. Cancer Ther., 2012, 11(4), 1036-1047.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0839] [PMID: 22389468]
[184]
Xu, H. Preparation of quinoline compounds containing 1,2,4-triazine-dione and use as c-Met kinase inhibitors for treating proliferative diseases, patent US20130252958A12013.
[185]
Chen, C. Preparation of quinoline derivatives for treating solid tumor and leukemia, patent CN104211686A, 2014.
[186]
Yu, J; Guo, L; Zhao, F; Hao, Y; Li, P; Xu, L. Quinoline-series compound, its preparation method, and pharmaceutical application, patent CN104109166A, 2014.
[187]
Castrillo, A.; Pennington, D.J.; Otto, F.; Parker, P.J.; Owen, M.J.; Bosca, L. Protein kinase c is required for macrophage activation and defense against bacterial infection. J. Exp. Med., 2001, 194, 231.
[http://dx.doi.org/10.1084/jem.194.9.1231]
[188]
Jarak, I.; Kralj, M.; Šuman, L.; Pavlović, G.; Dogan, J.; Piantanida, I.; Zinić, M.; Pavelić, K.; Karminski-Zamola, G. Novel cyano- and N-isopropylamidino-substituted derivatives of benzo[b]thiophene-2-carboxanilides and benzo[b]thieno[2,3-c]quinolones: synthesis, photochemical synthesis, crystal structure determination, and antitumor evaluation. 2. J. Med. Chem., 2005, 48(7), 2346-2360.
[http://dx.doi.org/10.1021/jm049541f] [PMID: 15801828]
[189]
Cesare, P.; Dekker, L.V.; Sardini, A.; Parker, P.J.; McNaughton, P.A. Specific involvement of PKC-epsilon in sensitization of the neuronal response to painful heat. Neuron, 1999, 23(3), 617-624.
[http://dx.doi.org/10.1016/S0896-6273(00)80813-2] [PMID: 10433272]
[190]
Weber, C.K.; Slupsky, J.R.; Herrmann, C.; Schuler, M.; Rapp, U.R.; Block, C. Mitogenic signaling of Ras is regulated by differential interaction with Raf isozymes. Oncogene, 2000, 19(2), 169-176.
[http://dx.doi.org/10.1038/sj.onc.1203261] [PMID: 10644994]
[191]
Kuan, C-Y.; Whitmarsh, A.J.; Yang, D.D.; Liao, G.; Schloemer, A.J.; Dong, C.; Bao, J.; Banasiak, K.J.; Haddad, G.G.; Flavell, R.A.; Davis, R.J.; Rakic, P. A critical role of neural-specific JNK3 for ischemic apoptosis. Proc. Natl. Acad. Sci. USA, 2003, 100(25), 15184-15189.
[http://dx.doi.org/10.1073/pnas.2336254100] [PMID: 14657393]
[192]
Zhang, G-Y.; Zhang, Q-G. Agents targeting c-Jun N-terminal kinase pathway as potential neuroprotectants. Expert Opin. Investig. Drugs, 2005, 14(11), 1373-1383.
[http://dx.doi.org/10.1517/13543784.14.11.1373] [PMID: 16255677]
[193]
Avetisyan, A.A.; Aleksanyan, I.L.; Sargsyan, K.S. Synthesis of substituted 2,4-dimethylthieno[3,2-c] quinolines. Russ. J. Org. Chem., 2007, 43(3), 422-425.
[http://dx.doi.org/10.1134/S1070428007030165]
[194]
Serda, M.; Musiol, R.; Polanski, J. 14th International conference on Synthetic Organic Chemistry, 2010, p. C103.
[195]
Pierre, F.; Chua, P.C.; O’Brien, S.E.; Siddiqui-Jain, A.; Bourbon, P.; Haddach, M.; Michaux, J.; Nagasawa, J.; Schwaebe, M.K.; Stefan, E.; Vialettes, A.; Whitten, J.P.; Chen, T.K.; Darjania, L.; Stansfield, R.; Bliesath, J.; Drygin, D.; Ho, C.; Omori, M.; Proffitt, C.; Streiner, N.; Rice, W.G.; Ryckman, D.M.; Anderes, K. Pre-clinical characterization of CX-4945, a potent and selective small molecule inhibitor of CK2 for the treatment of cancer. Mol. Cell. Biochem., 2011, 356(1-2), 37-43.
[http://dx.doi.org/10.1007/s11010-011-0956-5] [PMID: 21755459]
[196]
Beydoun, K.; Doucet, H. One-pot Synthesis of furo- or thienoquinolines through sequential imination and intramolecular palladium-catalyzed direct arylation. Eur. J. Org. Chem., 2012, 2012(34), 6745-6751.
[http://dx.doi.org/10.1002/ejoc.201201142]
[197]
Zhang, D. Substituted quinolines as Bruton's tyrosine kinases inhibitors, patent WO2013152135A1, 2013.
[198]
Lv, H; Chen, Y; Wang, S; Hu, Q; Zheng, S Preparation of quinoline derivatives protein kinase inhibitors, patent CN103382206A, 2013.
[199]
Chand, P; Tapolsky, G.H. Preparation of pyridynyltrifluoromethyl quinolinyl propenone derivatives for use as a PFKFB3 inhibitors, patent WO2013148228A1, 2013.
[200]
Huang, Z; Gu, L; Du, G; Hua, W Preparation of methylbenzofuran quinoline derivatives as antitumor agents, patent CN103382207A, 2013.
[201]
Huang, Z; Gu, L; Du, G; Tan, J; Huang, S; Ou, T Preparation of peptide-substituted coumarone quinoline derivatives as antitumor agents, patent CN104017047A, 2014.
[202]
Wan, H; Shen, J; Li, C; Han, Y; Liu, H; Zhou, Z. Deuterated 3-cyanoquinoline compounds as protein kinase inhibitors and their preparation, pharmaceutical compositions and use in the treatment of cancer, patent WO2014086284A12014.
[203]
Schadt, O; Esdar, C; Schultz-Fademrecht, C; Eickhoff, J Preparation of a quinoline inhibitor of the macrophage stimulating 1 receptor, patent WO2014194975A1, 2014.
[204]
Li, Y-L.; Burns, D.M.; Feng, H.; Xue, C-B.; Wang, A.; Pan, J. Preparation of bicyclic aromatic carboxamide compounds useful as Pim kinase inhibitors for treating proliferative and immune disorders, patent WO2014110574A1, 2014.
[205]
Bock, MG; Moebitz, H; Panigrahi, SK; Poddutoori, R; Samajdar, S Preparation of 1-(cyclohexyl)-8-(phenyl)-1H-imidazo[4,5-c] quinoline derivatives as MEK kinase inhibitors useful in the treatment of cancer and inflammation patent WO2015022664A12015.
[206]
Chabot, G; Giorgi-Renault, S; Desbene-Finck, S; Helissey, P; Labruere, R; Testud, M Preparation of water soluble 4-azapodophyllotoxin analogs as medicaments for the treatment of cancer, patent WO2015107119A12015.
[207]
Zhu, H; Tao, X; Duan, Y; Tang, D inventors; Nanjing University,Peop. Rep. China. assignee. Preparation of quinoline imidazole derivatives for inhibiting telomerase activity patent CN104402864A2015.
[208]
Sawada, M.; Nakashima, S.; Banno, Y.; Yamakawa, H.; Hayashi, K.; Takenaka, K.; Nishimura, Y.; Sakai, N.; Nozawa, Y. Ordering of ceramide formation, caspase activation, and Bax/Bcl-2 expression during etoposide-induced apoptosis in C6 glioma cells. Cell Death Differ., 2000, 7(9), 761-772.
[http://dx.doi.org/10.1038/sj.cdd.4400711] [PMID: 11042671]
[209]
Ciechanover, A. The ubiquitin-proteasome proteolytic pathway. Cell, 1994, 79(1), 13-21.
[http://dx.doi.org/10.1016/0092-8674(94)90396-4] [PMID: 7923371]
[210]
Hochstrasser, M. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr. Opin. Cell Biol., 1995, 7(2), 215-223.
[http://dx.doi.org/10.1016/0955-0674(95)80031-X] [PMID: 7612274]
[211]
Daniel, K.G.; Gupta, P.; Harbach, R.H.; Guida, W.C.; Dou, Q.P. Organic copper complexes as a new class of proteasome inhibitors and apoptosis inducers in human cancer cells. Biochem. Pharmacol., 2004, 67(6), 1139-1151.
[http://dx.doi.org/10.1016/j.bcp.2003.10.031] [PMID: 15006550]
[212]
Daniel, K.G.; Chen, D.; Orlu, S.; Cui, Q.C.; Miller, F.R.; Dou, Q.P. Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells. Breast Cancer Res., 2005, 7(6), R897-R908.
[http://dx.doi.org/10.1186/bcr1322] [PMID: 16280039]
[213]
Adsule, S.; Barve, V.; Chen, D.; Ahmed, F.; Dou, Q.P.; Padhye, S.; Sarkar, F.H. Novel Schiff base copper complexes of quinoline-2 carboxaldehyde as proteasome inhibitors in human prostate cancer cells. J. Med. Chem., 2006, 49(24), 7242-7246.
[http://dx.doi.org/10.1021/jm060712l] [PMID: 17125278]
[214]
Dark, G.G.; Hill, S.A.; Prise, V.E.; Tozer, G.M.; Pettit, G.R.; Chaplin, D.J. Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res., 1997, 57(10), 1829-1834.
[PMID: 9157969]
[215]
Gaya, A.M.; Rustin, G.J.S. Vascular disrupting agents: a new class of drug in cancer therapy. Clin. Oncol. (R. Coll. Radiol.), 2005, 17(4), 277-290.
[http://dx.doi.org/10.1016/j.clon.2004.11.011] [PMID: 15997924]
[216]
Siemann, D.W.; Chaplin, D.J.; Walicke, P.A. A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P). Expert Opin. Investig. Drugs, 2009, 18(2), 189-197.
[http://dx.doi.org/10.1517/13543780802691068] [PMID: 19236265]
[217]
Nien, C.Y.; Chen, Y.C.; Kuo, C.C.; Hsieh, H.P.; Chang, C.Y.; Wu, J.S.; Wu, S.Y.; Liou, J.P.; Chang, J.Y. 5-Amino-2-aroylquinolines as highly potent tubulin polymerization inhibitors. J. Med. Chem., 2010, 53(5), 2309-2313.
[http://dx.doi.org/10.1021/jm900685y] [PMID: 20148562]
[218]
Zheng, Y.G.; Wu, J.; Chen, Z.; Goodman, M. Chemical regulation of epigenetic modifications: opportunities for new cancer therapy. Med. Res. Rev., 2008, 28(5), 645-687.
[http://dx.doi.org/10.1002/med.20120] [PMID: 18271058]
[219]
Manzo, F.; Tambaro, F.P.; Mai, A.; Altucci, L. Histone acetyltransferase inhibitors and preclinical studies. Expert Opinion on Therapeutic Patents, 2009, 19(6), 761-774.
[http://dx.doi.org/10.1517/13543770902895727]
[220]
Baylin, S.B. Tying it all together: epigenetics, genetics, cell cycle, and cancer. Science, 1997, 277(5334), 1948-1949.
[http://dx.doi.org/10.1126/science.277.5334.1948] [PMID: 9333948]
[221]
Marmorstein, R.; Roth, S.Y. Histone acetyltransferases: function, structure, and catalysis. Curr. Opin. Genet. Dev., 2001, 11(2), 155-161.
[http://dx.doi.org/10.1016/S0959-437X(00)00173-8] [PMID: 11250138]
[222]
Roth, S.Y.; Denu, J.M.; Allis, C.D. Histone acetyltransferases. Annu. Rev. Biochem., 2001, 70, 81-120.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.81] [PMID: 11395403]
[223]
Jones, P.A.; Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet., 2002, 3(6), 415-428.
[http://dx.doi.org/10.1038/nrg816] [PMID: 12042769]
[224]
Mai, A.; Rotili, D.; Tarantino, D.; Ornaghi, P.; Tosi, F.; Vicidomini, C.; Sbardella, G.; Nebbioso, A.; Miceli, M.; Altucci, L.; Filetici, P. Small-molecule inhibitors of histone acetyltransferase activity: identification and biological properties. J. Med. Chem., 2006, 49(23), 6897-6907.
[http://dx.doi.org/10.1021/jm060601m] [PMID: 17154519]
[225]
Jones, P.; Altamura, S.; De Francesco, R.; Paz, O.G.; Kinzel, O.; Mesiti, G.; Monteagudo, E.; Pescatore, G.; Rowley, M.; Verdirame, M.; Steinkühler, C. A novel series of potent and selective ketone histone deacetylase inhibitors with antitumor activity in vivo. J. Med. Chem., 2008, 51(8), 2350-2353.
[http://dx.doi.org/10.1021/jm800079s] [PMID: 18370373]
[226]
Kinzel, O.; Llauger-Bufi, L.; Pescatore, G.; Rowley, M.; Schultz-Fademrecht, C.; Monteagudo, E.; Fonsi, M.; Gonzalez Paz, O.; Fiore, F.; Steinkühler, C.; Jones, P. Discovery of a potent class I selective ketone histone deacetylase inhibitor with antitumor activity in vivo and optimized pharmacokinetic properties. J. Med. Chem., 2009, 52(11), 3453-3456.
[http://dx.doi.org/10.1021/jm9004303] [PMID: 19441846]
[227]
Mai, A.; Rotili, D.; Tarantino, D.; Nebbioso, A.; Castellano, S.; Sbardella, G.; Tini, M.; Altucci, L. Identification of 4-hydroxyquinolines inhibitors of p300/CBP histone acetyltransferases. Bioorg. Med. Chem. Lett., 2009, 19(4), 1132-1135.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.097] [PMID: 19144517]
[228]
Demont, E.H.; Jones, K.L.; Watson, R.J. Preparation of 4-(8-methoxy-1-(1-methoxypropan-2-yl)-2-(tetrahydro-2H-pyran-4-yl)-1Himidazo[4,5-c] quinolin-7-yl)-3,5-dimethylisoxazole, its salts and isomers and their use as bromodomain inhibitors, patent WO2013024104A12013.
[229]
Sasmal, S; Hosahalli, S Preparation of substituted imidazo[4,5-c] quinoline derivatives as bromodomain inhibitors patent WO2014128655A12014.
[230]
Amans, D; Atkinson, SJ; Harrison, LA; Hirst, D.J.; Law, R.P.; Lindon, M. Preparation of acylaminotetrahydroquinoline derivatives for use as bromodomain inhibitors, patent WO2014140076A1, 2014.
[231]
Sharma, R; Kulkarni, S; Kulkarni, M; Mukherjee, S; Yadav, RK; Agarwal, M Preparation of imidazoquinoline compounds as bromodomain inhibitors, WO2015049629A12015.
[232]
Babaoglu, K; Corkey, BK; Jiang, RH; Sperandio, D; Yang, H Preparation of imidazoquinoline compounds as bromodomain inhibitors, WO2015049629A12015.
[233]
Ntranos, A.; Casaccia, P. Bromodomains: Translating the words of lysine acetylation into myelin injury and repair. Neurosci. Lett., 2016, 625, 4-10.
[http://dx.doi.org/10.1016/j.neulet.2015.10.015] [PMID: 26472704]
[234]
Hussaini, S.M.A. Therapeutic Significance of Quinolines: A Patent Review (2013-2015). Expert Opin. Ther. Pat., 2016, 26(10), 1201-1221.
[235]
Kleer, C.G.; Cao, Q.; Varambally, S.; Shen, R.; Ota, I.; Tomlins, S.A.; Ghosh, D.; Sewalt, R.G.A.B.; Otte, A.P.; Hayes, D.F.; Sabel, M.S.; Livant, D.; Weiss, S.J.; Rubin, M.A.; Chinnaiyan, A.M. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl. Acad. Sci. USA, 2003, 100(20), 11606-11611.
[http://dx.doi.org/10.1073/pnas.1933744100] [PMID: 14500907]
[236]
Yun, Z; Wang, H Quinoline-hydroxamic acid derivatives as protein kinase and histone deacetylase inhibitors and their preparation, pharmaceutical compositions and use in the treatment of diseases, patent WO2013040801A1, 2013.
[237]
Deng, W; Liu, J; An, N; Liang, Q; Wu, D Pyrazoloquinoline compounds as histone deacetylase inhibitors and their preparation, pharmaceutical compositions and use in the treatment of cancers, patent CN102977095A, 2013.
[238]
Falkenberg, K.J.; Johnstone, R.W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov., 2014, 13(9), 673-691.
[http://dx.doi.org/10.1038/nrd4360] [PMID: 25131830]
[239]
Fang, H; Wang, L; Yang, X; Xu, W; Yi, F Substituted quinoline histone deacetylase (HDAC) inhibitor and preparation method and application thereof in preparation of drug for preventing or treating mammal disease caused by HDAC abnormal expression, patent CN104592114A2015.
[240]
Xiang, P.J.H.; Zhou, Y.; Yang, B.; Wang, H.J.; Hu, J.; Hu, J.; Yang, S.Y.; Zhao, Y.L. 5-methoxyquinoline derivatives as a new class of ezh2 inhibitors. Molecule, 2015, 20, 7620.
[http://dx.doi.org/10.3390/molecules20057620]
[241]
Brown, K.K.; Chai, D.; Dodson, C.S.; Duffy, K.J.; Shaw, A.N. Preparation of quinoline derivatives as inhibitors of lactate dehydrogenase a useful in the treatment of cancer patent WO2013096153A1, 2013.
[242]
Ceccarelli, SM; Conte, A; Kuehne, H; Kuhn, B; Neidhart, W Obst Sander, U inventors; F. Hoffmann-La Roche AG, Switz. assignee. Preparation of arylquinoline derivatives as dual FABP inhibitors, patent WO2013064465A12013.
[243]
Wang, S; Cao, X; Cao, C; Dai, Z; Lu, A. Preparation of 3-cyano-4-(arylamino) quinoline derivatives as HDM2 and HDMX dual inhibitors useful in the treatment of cancer patent CN103804292A2014.
[244]
Zhou, H-J; Wustrow, D inventors; Cleave Biosciences, Inc., USA. assignee. Preparation of quinolines and quinazolines and their compositions and methods for JAMM protein inhibition patent WO2014066506A22014.
[245]
Hoves, S; Kuhn, B; Ricklin, F; Roever, S. Preparation of 4-aminoimidazoquinoline compounds as TLR agonists, patent US20150299194A12015.
[246]
Huang, H-S.; Chen, T-C.; Chen, S-J.; Chen, C-L.; Lee, C-C. Preparation of novel indeno[1,2-c] quinolin-11-one derivatives as antitumor agents, patent US20150197492A12015.
[247]
Heisler, I.; Mueller, T.; Siebeneicher, H.; Buchmann, B.; Cleve, A.; Guenther, J. N-Pyrazolyl quinoline carboxamides as glucose transport inhibitors and their preparation, patent WO2015091428A1, 2015.
[248]
Faernegaardh, K.; Gravenfors, Y; Ernfors, P.; Hammarstroem, L.; Kitambi, S. 2,4-Disubstituted quinoline derivatives and their preparation and use for the treatment of cancer patent WO2015033228A22015.
[249]
Inukai, T.; Takeuchi, J.; Yasuhiro, T. Preparation of quinoline carboxamide compounds, their medical compositions, and preventive and/or therapeutic method for Axl-related disorders patent WO2015012298A12015.
[250]
Fukazawa, N.; Odale, M.; Suzuki, T.; Otsuka, K.; Sato, W.; Tsuruo, T. Novel heterocyclic compounds and anticancer-drug reinforcing agents containing them as effective components. EP198903102351989.
[251]
Sato, W.; Fukazawa, N.; Suzuki, T.; Yusa, K.; Tsuruo, T. Circumvention of multidrug resistance by a newly synthesized quinoline derivative, MS-073. Cancer Res., 1991, 51(9), 2420-2424.
[PMID: 1673087]
[252]
Sato, W.; Fukazawa, N.; Nakanishi, O.; Baba, M.; Suzuki, T.; Yano, O.; Naito, M.; Tsuruo, T. Reversal of multidrug resistance by a novel quinoline derivative, MS-209. Cancer Chemother. Pharmacol., 1995, 35(4), 271-277.
[http://dx.doi.org/10.1007/BF00689444] [PMID: 7828268]
[253]
Suzuki, T.; Fukazawa, N.; San-nohe, K.; Sato, W.; Yano, O.; Tsuruo, T. Structure-activity relationship of newly synthesized quinoline derivatives for reversal of multidrug resistance in cancer. J. Med. Chem., 1997, 40(13), 2047-2052.
[http://dx.doi.org/10.1021/jm960869l] [PMID: 9207946]
[254]
Roe, M.; Folkes, A.; Ashworth, P.; Brumwell, J.; Chima, L.; Hunjan, S.; Pretswell, I.; Dangerfield, W.; Ryder, H.; Charlton, P. Reversal of P-glycoprotein mediated multidrug resistance by novel anthranilamide derivatives. Bioorg. Med. Chem. Lett., 1999, 9(4), 595-600.
[http://dx.doi.org/10.1016/S0960-894X(99)00030-X] [PMID: 10098671]
[255]
Martin, C.; Berridge, G.; Mistry, P.; Higgins, C.; Charlton, P.; Callaghan, R. The molecular interaction of the high affinity reversal agent XR9576 with P-glycoprotein. Br. J. Pharmacol., 1999, 128(2), 403-411.
[http://dx.doi.org/10.1038/sj.bjp.0702807] [PMID: 10510451]
[256]
Mistry, P.; Stewart, A.J.; Dangerfield, W.; Okiji, S.; Liddle, C.; Bootle, D.; Plumb, J.A.; Templeton, D.; Charlton, P. In vitro and in vivo reversal of P-glycoprotein-mediated multidrug resistance by a novel potent modulator, XR9576. Cancer Res., 2001, 61(2), 749-758.
[PMID: 11212278]
[257]
Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58.
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[258]
Lee, B.D.; Li, Z.; French, K.J.; Zhuang, Y.; Xia, Z.; Smith, C.D. Synthesis and evaluation of dihydropyrroloquinolines that selectively antagonize P-glycoprotein. J. Med. Chem., 2004, 47(6), 1413-1422.
[http://dx.doi.org/10.1021/jm0303204] [PMID: 14998330]
[259]
Sinhababu, A.K.; Thakker, D.R. Prodrugs of anticancer agents. Adv. Drug Deliv. Rev., 1996, 19(2), 241-273.
[http://dx.doi.org/10.1016/0169-409X(95)00109-K]
[260]
Rajski, S.R.; Williams, R.M. DNA cross-linking agents as antitumor drugs. Chem. Rev., 1998, 98(8), 2723-2796.
[http://dx.doi.org/10.1021/cr9800199] [PMID: 11848977]
[261]
Denny, W.A. DNA minor groove alkylating agents. Curr. Med. Chem., 2001, 8(5), 533-544.
[http://dx.doi.org/10.2174/0929867003373283] [PMID: 11281840]
[262]
Pezzoni, G.; Grandi, M.; Biasoli, G.; Capolongo, L.; Ballinari, D.; Giuliani, F.C.; Barbieri, B.; Pastori, A.; Pesenti, E.; Mongelli, N. Biological profile of FCE 24517, a novel benzoyl mustard analogue of distamycin A. Br. J. Cancer, 1991, 64(6), 1047-1050.
[http://dx.doi.org/10.1038/bjc.1991.463] [PMID: 1764367]
[263]
Zhang, J.; Ke, X.; Tu, C.; Lin, J.; Ding, J.; Lin, L.; Fun, H.K.; You, X.; Guo, Z. Novel Cu(II)-quinoline carboxamide complexes: structural characterization, cytotoxicity and reactivity towards 5′-GMP. Biometals, 2003, 16(3), 485-496.
[http://dx.doi.org/10.1023/A:1022577420708] [PMID: 12680713]
[264]
Kim, Y-H.; Shin, K-J.; Lee, T.G.; Kim, E.; Lee, M-S.; Ryu, S.H.; Suh, P-G. G2 arrest and apoptosis by 2-amino-N-quinoline-8-yl-benzenesulfonamide (QBS), a novel cytotoxic compound. Biochem. Pharmacol., 2005, 69(9), 1333-1341.
[http://dx.doi.org/10.1016/j.bcp.2004.12.019] [PMID: 15826604]
[265]
Zhao, Y-L.; Chen, Y-L.; Chang, F-S.; Tzeng, C-C. Synthesis and cytotoxic evaluation of certain 4-anilino-2-phenylquinoline derivatives. Eur. J. Med. Chem., 2005, 40(8), 792-797.
[http://dx.doi.org/10.1016/j.ejmech.2005.03.008] [PMID: 16122581]
[266]
Hurren, R.; Beheshti Zavareh, R.; Dalili, S.; Wood, T.; Rose, D.; Chang, H.; Jamal, N.; Messner, H.; Batey, R.A.; Schimmer, A.D. A novel diquinolonium displays preclinical anti-cancer activity and induces caspase-independent cell death. Apoptosis, 2008, 13(6), 748-755.
[http://dx.doi.org/10.1007/s10495-008-0209-6] [PMID: 18415680]
[267]
Li, W.; Zhang, Z-W.; Wang, S-X.; Ren, S-M.; Jiang, T. Synthesis and analysis of potential DNA intercalators containing quinoline-glucose hybrids. Chem. Biol. Drug Des., 2009, 74(1), 80-86.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00831.x] [PMID: 19519747]
[268]
Kakadiya, R.; Dong, H.; Kumar, A.; Narsinh, D.; Zhang, X.; Chou, T-C.; Lee, T-C.; Shah, A.; Su, T-L. Potent DNA-directed alkylating agents: Synthesis and biological activity of phenyl N-mustard-quinoline conjugates having a urea or hydrazinecarboxamide linker. Bioorg. Med. Chem., 2010, 18(6), 2285-2299.
[http://dx.doi.org/10.1016/j.bmc.2010.01.061] [PMID: 20181487]