Recent Advances in Organocatalytic Ring-opening Polymerization

Page: [272 - 286] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

As compared with widely used polyolefin materials, aliphatic polyesters have been primarily used in electronics, packaging, and biomedicine owing to its unique biocompatibility and degradability. At present, ring-opening polymerization (ROP) of lactone is the main method to synthesize polyesters. Two types of catalysts, including metal-based catalysts and organocatalysts, were most researched today. However, metal-based catalysts lead to polymer materials with metal residues, which limits its properties and applications. As a result, organocatalysts have received great attention. In this review, the progress of organocatalytic ring-opening polymerization in the past decades was systematically summarized. The potential challenges and development directions in this field are also discussed.

Keywords: Ring-opening polymerization, organocatalysts, aliphatic polyesters, phosphazene base, N-heterocyclic carbenes, (thio)urea.

Graphical Abstract

[1]
Ittel, S.D.; Johnson, L.K.; Brookhart, M. Late-metal catalysts for ethylene homo- and copolymerization. Chem. Rev., 2000, 100(4), 1169-1204.
[http://dx.doi.org/10.1021/cr9804644] [PMID: 11749263]
[2]
Guo, L.; Dai, S.; Sui, X.; Chen, C. Palladium and nickel catalyzed chain walking olefin polymerization and copolymerization. ACS Catal., 2016, 6, 428-441.
[http://dx.doi.org/10.1021/acscatal.5b02426]
[3]
Xiong, S.; Guo, L.; Zhang, S.; Liu, Z. Asymmetric cationic [P, O] type palladium complexes in olefin homopolymerization and copolymerization. Chin. J. Chem., 2017, 35, 1209-1221.
[http://dx.doi.org/10.1002/cjoc.201600898]
[4]
Gibson, V.C.; Spitzmesser, S.K. Advances in non-metallocene olefin polymerization catalysis. Chem. Rev., 2003, 103(1), 283-315.
[http://dx.doi.org/10.1021/cr980461r] [PMID: 12517186]
[5]
Guo, L.; Liu, W.; Chen, C. Late transition metal catalyzed α-olefin polymerization and copolymerization with polar monomers. Mater. Chem. Front., 2017, 1, 2487-2494.
[http://dx.doi.org/10.1039/C7QM00321H]
[6]
Guo, L.; Chen, C. (α-Diimine)palladium catalyzed ethylene polymerization and (co)polymerization with polar comonomers. Sci. China Chem., 2015, 58, 1663-1673.
[http://dx.doi.org/10.1007/s11426-015-5433-7]
[7]
Hong, M.; Chen, J.; Chen, E.Y.X. Polymerization of polar monomers mediated by main-group Lewis acid-base pairs. Chem. Rev., 2018, 118(20), 10551-10616.
[http://dx.doi.org/10.1021/acs.chemrev.8b00352] [PMID: 30350583 ]
[8]
Kamber, N.E.; Jeong, W.; Waymouth, R.M.; Pratt, R.C.; Lohmeijer, B.G.G.; Hedrick, J.L. Organocatalytic ring-opening polymerization. Chem. Rev., 2007, 107(12), 5813-5840.
[http://dx.doi.org/10.1021/cr068415b] [PMID: 17988157]
[9]
Kiesewetter, M.K.; Shin, E.J.; Hedrick, J.L.; Waymouth, R.M. Organocatalysis: opportunities and challenges for polymer synthesis. Macromolecules, 2010, 43, 2093-2107.
[http://dx.doi.org/10.1021/ma9025948]
[10]
Albertsson, A-C.; Varma, I.K. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules, 2003, 4(6), 1466-1486.
[http://dx.doi.org/10.1021/bm034247a] [PMID: 14606869]
[11]
Tardy, A.; Nicolas, J.; Gigmes, D.; Lefay, C.; Guillaneuf, Y. Radical ring-opening polymerization: scope, limitations, and application to (bio)degra-dable materials. Chem. Rev., 2017, 117(3), 1319-1406.
[http://dx.doi.org/10.1021/acs.chemrev.6b00319] [PMID: 28085265]
[12]
Agarwal, S. Chemistry, chances and limitations of the radical ring-opening polymerization of cyclic ketene acetals for the synthesis of degradable polyesters. Polym. Chem., 2010, 1, 953-964.
[http://dx.doi.org/10.1039/c0py00040j]
[13]
Miao, Y.; Zinck, P. Ring-opening polymerization of cyclic esters initiated by cyclodextrins. Polym. Chem., 2012, 3, 1119-1122.
[http://dx.doi.org/10.1039/c2py00567k]
[14]
Yuan, P-j.; Hong, M. Ring-opening polymerizations of the “non-strained” γ-butyrolactone and its derivatives: an overview and outlook. Gaofenzi Xuebao, 2019, 50, 327-337.
[15]
Dove, A.P. Organic catalysis for ring-opening polymerization. ACS Macro Lett., 2012, 1, 1409-1412.
[http://dx.doi.org/10.1021/mz3005956]
[16]
Ottou, W.N.; Sardon, H.; Mecerreyes, D.; Vignolle, J.; Taton, D. Update and challenges in organo-mediated polymerization reactions. Prog. Polym. Sci., 2016, 56, 64-115.
[http://dx.doi.org/10.1016/j.progpolymsci.2015.12.001]
[17]
Schwesinger, R.; Schlemper, H. Peralkylated polyaminophosphazenes- extremely strong, neutral nitrogen bases. Angew. Chem. Int. Ed. Engl., 1987, 26, 1167-1169.
[http://dx.doi.org/10.1002/anie.198711671]
[18]
Rexin, O.; Mülhaupt, R. Anionic ring-opening polymerization of propylene oxide in the presence of phosphonium catalysts. J. Polym. Sci. A Polym. Chem., 2002, 40, 864-873.
[http://dx.doi.org/10.1002/pola.10163]
[19]
Zhang, L.; Nederberg, F.; Pratt, R.C.; Waymouth, R.M.; Hedrick, J.L.; Wade, C.G. Phosphazene bases: a new category of organocatalysts for the living ring-opening polymerization of cyclic esters. Macromolecules, 2007, 40, 4154-4158.
[http://dx.doi.org/10.1021/ma070316s]
[20]
Zhao, J.; Alamri, H.; Hadjichristidis, N. A facile metal-free “grafting-from” route from acrylamide-based substrate toward complex macromolecular combs. Chem. Commun. (Camb.), 2013, 49(63), 7079-7081.
[http://dx.doi.org/10.1039/c3cc44131h] [PMID: 23824060]
[21]
Zhao, J.; Pahovnik, D.; Gnanou, Y.; Hadjichristidis, N. Phosphazene-promoted metal-free ring-opening polymerization of ethylene oxide initiated by carboxylic acid. Macromolecules, 2014, 47, 1693-1698.
[http://dx.doi.org/10.1021/ma500067j]
[22]
Bozell, J.J.; Petersen, G.R. Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem., 2010, 12, 539-554.
[http://dx.doi.org/10.1039/b922014c]
[23]
Bomgardner, M.M. Biobased polymers. Chem. Eng. News, 2014, 92, 10-14.
[http://dx.doi.org/10.1021/cen-09243-cover]
[24]
Houk, K.N.; Jabbari, A.; Hall, H.K., Jr; Alemán, C. Why δ-valerolactone polymerizes and γ-butyrolactone does not. J. Org. Chem., 2008, 73(7), 2674-2678.
[http://dx.doi.org/10.1021/jo702567v] [PMID: 18324833]
[25]
Hong, M.; Chen, E.Y.X. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nat. Chem., 2016, 8(1), 42-49.
[http://dx.doi.org/10.1038/nchem.2391] [PMID: 26673263]
[26]
Hong, M.; Chen, E.Y.X. Towards truly sustainable polymers: a metal-free recyclable polyester from biorenewable non-strained γ-butyrolactone. Angew. Chem. Int. Ed. Engl., 2016, 55(13), 4188-4193.
[http://dx.doi.org/10.1002/anie.201601092] [PMID: 26934184]
[27]
Zhao, N.; Ren, C.; Li, H.; Li, Y.; Liu, S.; Li, Z. Selective ring-opening polymerization of non-strained γ-butyrolactone catalyzed by a cyclic trimeric phosphazene base. Angew. Chem. Int. Ed. Engl., 2017, 56(42), 12987-12990.
[http://dx.doi.org/10.1002/anie.201707122] [PMID: 28834073]
[28]
Liu, S.; Ren, C.; Zhao, N.; Shen, Y.; Li, Z. Phosphazene bases as organocatalysts for ring-opening polymerization of cyclic esters. Macromol. Rapid Commun., 2018, 39(24)e1800485
[http://dx.doi.org/10.1002/marc.201800485] [PMID: 30276913]
[29]
Li, Y.; Zhao, N.; Wei, C.; Sun, A.; Liu, S.; Li, Z. Binary organocatalytic system for ring-opening polymerization of ε-caprolactone and δ-valerolactone: synergetic effects for enhanced selectivity. Eur. Polym. J., 2019, 111, 11-19.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.12.012]
[30]
Shen, Y.; Zhao, Z.; Li, Y.; Liu, S.; Liu, F.; Li, Z. A facile method to prepare high molecular weight bio-renewable poly(γ-butyrolactone) using a strong base/urea binary synergistic catalytic system. Polym. Chem., 2019, 10, 1231-1237.
[http://dx.doi.org/10.1039/C8PY01812J]
[31]
Liu, S.; Li, H.; Zhao, N.; Li, Z. Stereoselective ring-opening polymerization of rac-lactide using organocatalytic cyclic trimeric phosphazene base. ACS Macro Lett., 2018, 7, 624-628.
[http://dx.doi.org/10.1021/acsmacrolett.8b00353]
[32]
Shen, Y.; Zhang, J.; Zhao, N.; Liu, F.; Li, Z. Preparation of biorenewable poly(γ-butyrolactone)-b-poly(l-lactide) diblock copolyesters via one-pot sequential metal-free ring-opening polymerization. Polym. Chem., 2018, 9, 2936-2941.
[http://dx.doi.org/10.1039/C8PY00389K]
[33]
Zhao, N.; Ren, C.; Shen, Y.; Liu, S.; Li, Z. Facile synthesis of aliphatic ω-pentadecalactone containing diblock copolyesters via sequential ROP with l-lactide, ε-caprolactone, and δ-valerolactone catalyzed by cyclic trimeric phosphazene base with inherent tribasic characteristics. Macromolecules, 2019, 52, 1083-1091.
[http://dx.doi.org/10.1021/acs.macromol.8b02690]
[34]
Coutelier, O.; El Ezzi, M.; Destarac, M.; Bonnette, F.; Kato, T.; Baceiredo, A.; Sivasankarapillai, G.; Gnanou, Y.; Taton, D. N-Heterocyclic carbene-catalysed synthesis of polyurethanes. Polym. Chem., 2012, 3, 605-608.
[http://dx.doi.org/10.1039/c2py00477a]
[35]
Duong, H.A.; Cross, M.J.; Louie, J. N-heterocyclic carbenes as highly efficient catalysts for the cyclotrimerization of isocyanates. Org. Lett., 2004, 6(25), 4679-4681.
[http://dx.doi.org/10.1021/ol048211m] [PMID: 15575659]
[36]
Nyce, G.W.; Glauser, T.; Connor, E.F.; Möck, A.; Waymouth, R.M.; Hedrick, J.L. In situ generation of carbenes: a general and versatile platform for organocatalytic living polymerization. J. Am. Chem. Soc., 2003, 125(10), 3046-3056.
[http://dx.doi.org/10.1021/ja021084+] [PMID: 12617671]
[37]
Connor, E.F.; Nyce, G.W.; Myers, M.; Möck, A.; Hedrick, J.L. First example of N-heterocyclic carbenes as catalysts for living polymerization: organocatalytic ring-opening polymerization of cyclic esters. J. Am. Chem. Soc., 2002, 124(6), 914-915.
[http://dx.doi.org/10.1021/ja0173324] [PMID: 11829593]
[38]
Raynaud, J.; Absalon, C.; Gnanou, Y.; Taton, D. N-heterocyclic carbene-organocatalyzed ring-opening polymerization of ethylene oxide in the presence of alcohols or trimethylsilyl nucleophiles as chain moderators for the synthesis of α,ω-heterodifunctionalized poly(ethylene oxide)s. Macromolecules, 2010, 43, 2814-2823.
[http://dx.doi.org/10.1021/ma902676r]
[39]
Kamber, N.E.; Jeong, W.; Gonzalez, S.; Hedrick, J.L.; Waymouth, R.M. N-heterocyclic carbenes for the organocatalytic ring-opening polymerization of ε-caprolactone. Macromolecules, 2009, 42, 1634-1639.
[http://dx.doi.org/10.1021/ma802618h]
[40]
Fischer, C.; Smith, S.W.; Powell, D.A.; Fu, G.C. Umpolung of Michael acceptors catalyzed by N-heterocyclic carbenes. J. Am. Chem. Soc., 2006, 128(5), 1472-1473.
[http://dx.doi.org/10.1021/ja058222q] [PMID: 16448117]
[41]
Biju, A.T.; Padmanaban, M.; Wurz, N.E.; Glorius, F. N-heterocyclic carbene catalyzed umpolung of Michael acceptors for intermolecular reactions. Angew. Chem. Int. Ed. Engl., 2011, 50(36), 8412-8415.
[http://dx.doi.org/10.1002/anie.201103555] [PMID: 21780269]
[42]
Bugaut, X.; Glorius, F. Organocatalytic umpolung: N-heterocyclic carbenes and beyond. Chem. Soc. Rev., 2012, 41(9), 3511-3522.
[http://dx.doi.org/10.1039/c2cs15333e] [PMID: 22377957]
[43]
Ryan, S.J.; Candish, L.; Lupton, D.W. Acyl anion free N-heterocyclic carbene organocatalysis. Chem. Soc. Rev., 2013, 42(12), 4906-4917.
[http://dx.doi.org/10.1039/c3cs35522e] [PMID: 23403488]
[44]
Mahatthananchai, J.; Bode, J.W. On the mechanism of N-heterocyclic carbene-catalyzed reactions involving acyl azoliums. Acc. Chem. Res., 2014, 47(2), 696-707.
[http://dx.doi.org/10.1021/ar400239v] [PMID: 24410291]
[45]
Chauhan, P.; Enders, D. N-heterocyclic carbene catalyzed activation of esters: a new option for asymmetric domino reactions. Angew. Chem. Int. Ed. Engl., 2014, 53(6), 1485-1487.
[http://dx.doi.org/10.1002/anie.201309952] [PMID: 24492969]
[46]
Zhang, R.; Zhang, L.; Wang, J.; Guo, X. Ring-opening copolymerization of ε-caprolactone with 2,2-dimethyltrimethylene carbonate using N-hetero-cyclic carbene organocatalysts. Polym. Bull., 2013, 70, 1289-1301.
[http://dx.doi.org/10.1007/s00289-012-0854-3]
[47]
Wang, Y.; Zhang, L.; Guo, X.; Zhang, R.; Li, J. Characteristics and mechanism of L-lactide polymerization using N-heterocyclic carbene organocatalyst. J. Polym. Res., 2013, 20, 87.
[http://dx.doi.org/10.1007/s10965-013-0087-7]
[48]
Xia, H.; Kan, S.; Li, Z.; Chen, J.; Cui, S.; Wu, W.; Ouyang, P.; Guo, K. N-heterocyclic carbenes as organocatalysts in controlled/living ring-opening polymerization of O-carboxyanhydrides derived from l-lactic acid and l-mandelic acid. J. Polym. Sci. A Polym. Chem., 2014, 52, 2306-2315.
[http://dx.doi.org/10.1002/pola.27241]
[49]
Naumann, S.; Buchmeiser, M.R. Liberation of N-heterocyclic carbenes (NHCs) from thermally labile progenitors: protected NHCs as versatile tools in organo- and polymerization catalysis. Catal. Sci. Technol., 2014, 4, 2466-2479.
[http://dx.doi.org/10.1039/C4CY00344F]
[50]
Fèvre, M.; Pinaud, J.; Leteneur, A.; Gnanou, Y.; Vignolle, J.; Taton, D.; Miqueu, K.; Sotiropoulos, J-M. Imidazol(in)ium hydrogen carbonates as a genuine source of N-heterocyclic carbenes (NHCs): applications to the facile preparation of NHC metal complexes and to NHC-organocatalyzed molecular and macromolecular syntheses. J. Am. Chem. Soc., 2012, 134(15), 6776-6784.
[http://dx.doi.org/10.1021/ja3005804] [PMID: 22455795]
[51]
Fèvre, M.; Vignolle, J.; Taton, D. Azolium hydrogen carbonates and azolium carboxylates as organic pre-catalysts for N-heterocyclic carbene-catalysed group transfer and ring-opening polymerisations. Polym. Chem., 2013, 4, 1995-2003.
[http://dx.doi.org/10.1039/c2py20915b]
[52]
Naumann, S.; Schmidt, F.G.; Frey, W.; Buchmeiser, M.R. Protected N-heterocyclic carbenes as latent pre-catalysts for the polymerization of ε-caprolactone. Polym. Chem., 2013, 4, 4172-4181.
[http://dx.doi.org/10.1039/c3py00548h]
[53]
Jones, G.O.; Chang, Y.A.; Horn, H.W.; Acharya, A.K.; Rice, J.E.; Hedrick, J.L.; Waymouth, R.M. N-Heterocyclic carbene-catalyzed ring opening polymerization of ε-caprolactone with and without alcohol initiators: insights from theory and experiment. J. Phys. Chem. B, 2015, 119(17), 5728-5737.
[http://dx.doi.org/10.1021/acs.jpcb.5b01595] [PMID: 25848823]
[54]
Falivene, L.; Cavallo, L. Guidelines to select the N-heterocyclic carbene for the organopolymerization of monomers with a polar group. Macromolecules, 2017, 50, 1394-1401.
[http://dx.doi.org/10.1021/acs.macromol.6b02646]
[55]
Pratt, R.C.; Lohmeijer, B.G.G.; Long, D.A.; Waymouth, R.M.; Hedrick, J.L. Triazabicyclodecene: a simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters. J. Am. Chem. Soc., 2006, 128(14), 4556-4557.
[http://dx.doi.org/10.1021/ja060662+] [PMID: 16594676]
[56]
Lohmeijer, B.G.G.; Pratt, R.C.; Leibfarth, F.; Logan, J.W.; Long, D.A.; Dove, A.P.; Nederberg, F.; Choi, J.; Wade, C.; Waymouth, R.M.; Hedrick, J.L. Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters. Macromolecules, 2006, 39, 8574-8583.
[http://dx.doi.org/10.1021/ma0619381]
[57]
Sabot, C.; Kumar, K.A.; Meunier, S.; Mioskowski, C. A convenient aminolysis of esters catalyzed by 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) under solvent-free conditions. Tetrahedron Lett., 2007, 48, 3863-3866.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.146]
[58]
Nederberg, F.; Lohmeijer, B.G.G.; Leibfarth, F.; Pratt, R.C.; Choi, J.; Dove, A.P.; Waymouth, R.M.; Hedrick, J.L. Organocatalytic ring opening polymerization of trimethylene carbonate. Biomacromolecules, 2007, 8(1), 153-160.
[http://dx.doi.org/10.1021/bm060795n] [PMID: 17206801]
[59]
Pratt, R.C.; Lohmeijer, B.G.G.; Long, D.A.; Lundberg, P.N.P.; Dove, A.P.; Li, H.; Wade, C.G.; Waymouth, R.M.; Hedrick, J.L. Exploration, optimization, and application of supramolecular thiourea-amine catalysts for the synthesis of lactide (co)polymers. Macromolecules, 2006, 39, 7863-7871.
[http://dx.doi.org/10.1021/ma061607o]
[60]
Makiuchi, N.; Sudo, A.; Endo, T. Substituent effect of N-aryl-N′-pyridyl ureas as thermal latent initiators on ring-opening polymerization of epoxide. J. Polym. Sci. A Polym. Chem., 2015, 53, 2569-2574.
[http://dx.doi.org/10.1002/pola.27726]
[61]
Fastnacht, K.V.; Spink, S.S.; Dharmaratne, N.U.; Pothupitiya, J.U.; Datta, P.P.; Kiesewetter, E.T.; Kiesewetter, M.K. Bis- and tris-urea H-bond donors for ring-opening polymerization: unprecedented activity and control from an organocatalyst. ACS Macro Lett., 2016, 5, 982-986.
[http://dx.doi.org/10.1021/acsmacrolett.6b00527]
[62]
Xu, S.; Sun, H.; Liu, J.; Xu, J.; Pan, X.; Dong, H.; Liu, Y.; Li, Z.; Guo, K. Internal Lewis pair enhanced H-bond donor: boronate-urea and tertiary amine co-catalysis in ring-opening polymerization. Polym. Chem., 2016, 7, 6843-6853.
[http://dx.doi.org/10.1039/C6PY01436D]
[63]
Dharmaratne, N.U.; Pothupitiya, J.U.; Bannin, T.J.; Kazakov, O.I.; Kiesewetter, M.K. Triclocarban: commercial antibacterial and highly effective h-bond donating catalyst for ring-opening polymerization. ACS Macro Lett., 2017, 6, 421-425.
[http://dx.doi.org/10.1021/acsmacrolett.7b00111]
[64]
Pothupitiya, J.U.; Hewawasam, R.S.; Kiesewetter, M.K. Urea and thiourea H-bond donating catalysts for ring-opening polymerization: mechanistic insights via (non)linear free energy relationships. Macromolecules, 2018, 51, 3203-3211.
[http://dx.doi.org/10.1021/acs.macromol.8b00321]
[65]
Jiang, Z.; Zhao, J.; Zhang, G. Ionic Organocatalyst with a urea anion and tetra-n-butyl ammonium cation for rapid, selective, and versatile ring-opening polymerization of lactide. ACS Macro Lett., 2019, 8, 759-765.
[http://dx.doi.org/10.1021/acsmacrolett.9b00418]
[66]
Dharmaratne, N.U.; Pothupitiya, J.U.; Kiesewetter, M.K. The mechanistic duality of (thio)urea organocatalysts for ring-opening polymerization. Org. Biomol. Chem., 2019, 17(13), 3305-3313.
[http://dx.doi.org/10.1039/C8OB03174F] [PMID: 30834919]
[67]
Lv, C.; Zhou, L.; Yuan, R.; Mahmood, Q.; Xu, G.; Wang, Q. Isoselective ring-opening polymerization and asymmetric kinetic resolution polymerization of rac-lactide catalyzed by bifunctional iminophosphorane–thiourea/urea catalysts. New J. Chem., 2020, 44, 1648-1655.
[http://dx.doi.org/10.1039/C9NJ05074D]
[68]
Dove, A.P.; Pratt, R.C.; Lohmeijer, B.G.G.; Waymouth, R.M.; Hedrick, J.L. Thiourea-based bifunctional organocatalysis: supramolecular recognition for living polymerization. J. Am. Chem. Soc., 2005, 127(40), 13798-13799.
[http://dx.doi.org/10.1021/ja0543346] [PMID: 16201794]
[69]
Pounder, R.J.; Fox, D.J.; Barker, I.A.; Bennison, M.J.; Dove, A.P. Ring-opening polymerization of an O-carboxyanhydride monomer derived from l-malic acid. Polym. Chem., 2011, 2, 2204-2212.
[http://dx.doi.org/10.1039/c1py00254f]
[70]
Lu, Y.; Yin, L.; Zhang, Y.; Zhonghai, Z.; Xu, Y.; Tong, R.; Cheng, J. Synthesis of water-soluble poly(α-hydroxy acids) from living ring-opening polymerization of O-benzyl-L-serine carboxyanhydrides. ACS Macro Lett., 2012, 1(4), 441-444.
[http://dx.doi.org/10.1021/mz200165c] [PMID: 23359651]
[71]
Buchard, A.; Carbery, D.R.; Davidson, M.G.; Ivanova, P.K.; Jeffery, B.J.; Kociok-Köhn, G.I.; Lowe, J.P. Preparation of stereoregular isotactic poly(mandelic acid) through organocatalytic ring-opening polymerization of a cyclic O-carboxyanhydride. Angew. Chem. Int. Ed. Engl., 2014, 53(50), 13858-13861.
[http://dx.doi.org/10.1002/anie.201407525] [PMID: 25314676]
[72]
Martin Vaca, B.; Bourissou, D. O-carboxyanhydrides: useful tools for the preparation of well-defined functionalized polyesters. ACS Macro Lett., 2015, 4, 792-798.
[http://dx.doi.org/10.1021/acsmacrolett.5b00376]
[73]
Bexis, P.; De Winter, J.; Coulembier, O.; Dove, A.P. Isotactic degradable polyesters derived from O-carboxyanhydrides of l-lactic and l-malic acid using a single organocatalyst/initiator system. Eur. Polym. J., 2017, 95, 660-670.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.05.038]
[74]
Yamaoka, Y.; Miyabe, H.; Yasui, Y.; Takemoto, Y. Chiral-thiourea-catalyzed direct Mannich reaction. Synthesis, 2007, 2007, 2571-2575.
[http://dx.doi.org/10.1055/s-2007-983795]
[75]
Okino, T.; Hoashi, Y.; Takemoto, Y. Enantioselective Michael reaction of malonates to nitroolefins catalyzed by bifunctional organocatalysts. J. Am. Chem. Soc., 2003, 125(42), 12672-12673.
[http://dx.doi.org/10.1021/ja036972z] [PMID: 14558791]
[76]
Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. Enantio- and diastereoselective Michael reaction of 1,3-dicarbonyl compounds to nitroolefins catalyzed by a bifunctional thiourea. J. Am. Chem. Soc., 2005, 127(1), 119-125.
[http://dx.doi.org/10.1021/ja044370p] [PMID: 15631461]
[77]
Li, M.; Tao, Y.; Tang, J.; Wang, Y.; Zhang, X.; Tao, Y.; Wang, X. Synergetic organocatalysis for eliminating epimerization in ring-opening polymerizations enables synthesis of stereoregular isotactic polyester. J. Am. Chem. Soc., 2019, 141(1), 281-289.
[http://dx.doi.org/10.1021/jacs.8b09739] [PMID: 30511838]
[78]
Lin, B.; Waymouth, R.M. Urea anions: simple, fast, and selective catalysts for ring-opening polymerizations. J. Am. Chem. Soc., 2017, 139(4), 1645-1652.
[http://dx.doi.org/10.1021/jacs.6b11864] [PMID: 28105810]
[79]
Zhang, X.; Jones, G.O.; Hedrick, J.L.; Waymouth, R.M. Fast and selective ring-opening polymerizations by alkoxides and thioureas. Nat. Chem., 2016, 8(11), 1047-1053.
[http://dx.doi.org/10.1038/nchem.2574] [PMID: 27768102]
[80]
Mespouille, L.; Coulembier, O.; Kawalec, M.; Dove, A.P.; Dubois, P. Implementation of metal-free ring-opening polymerization in the preparation of aliphatic polycarbonate materials. Prog. Polym. Sci., 2014, 39, 1144-1164.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.02.003]
[81]
Du, G.; Wei, Y.; Zhang, W.; Dong, Y.; Lin, Z.; He, H.; Zhang, S.; Li, X. Bis(imino)diphenylamido rare-earth metal dialkyl complexes: synthesis, structure, and catalytic activity in living ring-opening ε-caprolactone polymerization and copolymerization with γ-butyrolactone. Dalton Trans., 2013, 42(4), 1278-1286.
[http://dx.doi.org/10.1039/C2DT31932B] [PMID: 23143470]
[82]
Stevels, W.M.; Ankoné, M.J.K.; Dijkstra, P.J.; Feijen, J. a versatile and highly efficient catalyst system for the preparation of polyesters based on lanthanide tris(2,6-di-tert-butylphenolate)s and various alcohols. Macromolecules, 1996, 29, 3332-3333.
[http://dx.doi.org/10.1021/ma951813o]
[83]
Nishiura, M.; Hou, Z.; Koizumi, T-a.; Imamoto, T.; Wakatsuki, Y. Ring-opening polymerization and copolymerization of lactones by samarium(II) aryloxide complexes. Macromolecules, 1999, 32, 8245-8251.
[http://dx.doi.org/10.1021/ma990101l]
[84]
Mingotaud, A-F.; Dargelas, F.; Cansell, F. Cationic and anionic ring-opening polymerization in supercritical CO2. Macromol. Symp., 2000, 153, 77-86.
[http://dx.doi.org/10.1002/1521-3900(200003)153:1<77:AID-MASY77>3.0.CO;2-D]
[85]
Dyer, H.E.; Huijser, S.; Schwarz, A.D.; Wang, C.; Duchateau, R.; Mount-ford, P. Zwitterionic bis(phenolate)amine lanthanide complexes for the ring-opening polymerisation of cyclic esters. Dalton Trans., 2008, 2008(1), 32-35.
[http://dx.doi.org/10.1039/B714583G] [PMID: 18399223]
[86]
Binda, P.I.; Delbridge, E.E.; Abrahamson, H.B.; Skelton, B.W. Coordination of substitutionally inert phenolate ligands to lanthanide(II) and (III) compounds--catalysts for ring-opening polymerization of cyclic esters. Dalton Trans., 2009, 2009(15), 2777-2787.
[http://dx.doi.org/10.1039/b821770j] [PMID: 19333501]
[87]
Robert, D.; Kondracka, M.; Okuda, J. Cationic rare-earth metal bis(tetrahydridoborato) complexes: direct synthesis, structure and ring-opening polymerisation activity toward cyclic esters. Dalton Trans., 2008, 2008(20), 2667-2669.
[http://dx.doi.org/10.1039/b801030g] [PMID: 18688395]
[88]
Poirier, V.; Roisnel, T.; Carpentier, J-F.; Sarazin, Y. Versatile catalytic systems based on complexes of zinc, magnesium and calcium supported by a bulky bis(morpholinomethyl)phenoxy ligand for the large-scale immortal ring-opening polymerisation of cyclic esters. Dalton Trans., 2009, 2009(44), 9820-9827.
[http://dx.doi.org/10.1039/b917799j] [PMID: 19885529]
[89]
Thevenon, A.; Romain, C.; Bennington, M.S.; White, A.J.P.; Davidson, H.J.; Brooker, S.; Williams, C.K. Dizinc lactide polymerization catalysts: hyperactivity by control of ligand conformation and metallic cooperativity. Angew. Chem. Int. Ed. Engl., 2016, 55(30), 8680-8685.
[http://dx.doi.org/10.1002/anie.201602930] [PMID: 27295339]
[90]
Labet, M.; Thielemans, W. Synthesis of polycaprolactone: a review. Chem. Soc. Rev., 2009, 38(12), 3484-3504.
[http://dx.doi.org/10.1039/b820162p] [PMID: 20449064]
[91]
Lin, B.; Waymouth, R.M. Organic ring-opening polymerization catalysts: reactivity control by balancing acidity. Macromolecules, 2018, 51, 2932-2938.
[http://dx.doi.org/10.1021/acs.macromol.8b00540]
[92]
Zhang, C-J.; Hu, L-F.; Wu, H-L.; Cao, X-H.; Zhang, X-H. Dual organocatalysts for highly active and selective synthesis of linear poly(γ-butyrolactone)s with high molecular weights. Macromolecules, 2018, 51, 8705-8711.
[http://dx.doi.org/10.1021/acs.macromol.8b01757]
[93]
Lin, L.; Han, D.; Qin, J.; Wang, S.; Xiao, M.; Sun, L.; Meng, Y. Nonstrained γ-butyrolactone to high-molecular-weight poly(γ-butyrolactone): facile bulk polymerization using economical ureas/alkoxides. Macromolecules, 2018, 51, 9317-9322.
[http://dx.doi.org/10.1021/acs.macromol.8b01860]
[94]
Zhu, J-B.; Watson, E.M.; Tang, J.; Chen, E.Y.X. A synthetic polymer system with repeatable chemical recyclability. Science, 2018, 360(6387), 398-403.
[http://dx.doi.org/10.1126/science.aar5498] [PMID: 29700260]
[95]
Zhu, J-B.; Chen, E.Y.X. Living Coordination Polymerization of a Six-Five bicyclic lactone to produce completely recyclable polyester. Angew. Chem. Int. Ed. Engl., 2018, 57(38), 12558-12562.
[http://dx.doi.org/10.1002/anie.201808003] [PMID: 30088314]
[96]
Cywar, R.M.; Zhu, J-B.; Chen, E.Y.X. Selective or living organopolymerization of a six-five bicyclic lactone to produce fully recyclable polyesters. Polym. Chem., 2019, 10, 3097-3106.
[http://dx.doi.org/10.1039/C9PY00190E]
[97]
Rostami, A.; Colin, A.; Li, X.Y.; Chudzinski, M.G.; Lough, A.J.; Taylor, M.S.N. ′-diarylsquaramides: general, high-yielding synthesis and applications in colorimetric anion sensing. J. Org. Chem., 2010, 75(12), 3983-3992.
[http://dx.doi.org/10.1021/jo100104g] [PMID: 20486682]
[98]
Busschaert, N.; Elmes, R.B.P.; Czech, D.D.; Wu, X.; Kirby, I.L.; Peck, E.M.; Hendzel, K.D.; Shaw, S.K.; Chan, B.; Smith, B.D.; Jolliffe, K.A.; Gale, P.A. Thiosquaramides: pH switchable anion transporters. Chem. Sci. (Camb.), 2014, 5(9), 3617-3626.
[http://dx.doi.org/10.1039/C4SC01629G] [PMID: 26146535]
[99]
Connell, A.; Holliman, P.J.; Jones, E.W.; Furnell, L.; Kershaw, C.; Davies, M.L.; Gwenin, C.D.; Pitak, M.B.; Coles, S.J.; Cooke, G. Multiple linker half-squarylium dyes for dye-sensitized solar cells; are two linkers better than one? J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 2883-2894.
[http://dx.doi.org/10.1039/C4TA06896C]
[100]
Rostami, A.; Sadeh, E.; Ahmadi, S. Exploration of tertiary aminosquaramide bifunctional organocatalyst in controlled/living ring-opening polymerization of l-lactide. J. Polym. Sci. A Polym. Chem., 2017, 55, 2483-2493.
[http://dx.doi.org/10.1002/pola.28641]
[101]
Liu, J.; Xu, J.; Li, Z.; Xu, S.; Wang, X.; Wang, H.; Guo, T.; Gao, Y.; Zhang, L.; Guo, K. Squaramide and amine binary H-bond organocatalysis in polymerizations of cyclic carbonates, lactones, and lactides. Polym. Chem., 2017, 8, 7054-7068.
[http://dx.doi.org/10.1039/C7PY01671A]