Emerging Sustainable Nanomaterials and their Applications in Catalysis and Corrosion Control

Page: [540 - 553] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: The different field of chemistry needs various greener pathways in our search toward attaining sustainability. True sustainability comes through circularity. Circular processes i.e., circular economy, circular chemistry, etc. are the only logical solutions for all challenges/ issues related to sustainability. Chemistry of matter changes with size. Nanoscale materials thus show magical properties and have a broad range of applications.

Objective: Nanomaterials always fascinate researchers because of their unique and novel properties. Engineered nanomaterials hold great promise for catalysis, corrosion control, medicine, electronics, environmental remediation, and other fields. But when the nanomaterials or any new/novel materials are synthesized without considering environmental impacts at the beginning of the process, their long-term effects could undermine those advances. Sustainable nanomaterials have great capability to overcome the challenges associated with engineered nanomaterials. Presently, sustainable materials are needed to sustain life on earth. Size and shape controlled synthesis of nanomaterials is challenging to explore the various applications of nanomaterials.

Conclusion: Application of nanomaterials in catalysis and protective coating of metals to prevent corrosion make it more sustainable. Present article briefly reviewed the fundamental aspects of nanomaterials, sustainable approaches of nanomaterials synthesis, and their sustainable applications i.e., catalysis and corrosion control.

Keywords: Sustainable nanomaterial, catalysis, recyclability, circularity, corrosion control, circular chemistry, circular economy, integrated nanocatalyst.

Graphical Abstract

[1]
Marion, P.; Bernela, B.; Piccirilli, A.; Estrine, B.; Patouillard, N.; Guilbot, J.; Jérôme, F. Sustainable chemistry: How to produce better and more from less? Green Chem., 2017, 19(21), 4973-4989.
[http://dx.doi.org/10.1039/C7GC02006F]
[2]
Peters, G.; Svanström, M. Environmental Sustainability for Engineers and Applied Scientists; Cambridge University Press: Cambridge, 2019.
[http://dx.doi.org/10.1017/9781316711408]
[3]
Bastianoni, S.; Coscieme, L.; Caro, D.; Marchettini, N.; Pulselli, F.M. The needs of sustainability: The overarching contribution of systems approach. Ecol. Indic., 2019, 100, 69-73.
[http://dx.doi.org/10.1016/j.ecolind.2018.08.024]
[4]
Arora, N.K. Environmental sustainability - necessary for survival. Environ. Sustain., 2018, 1, 1-2.
[http://dx.doi.org/10.1007/s42398-018-0013-3]
[5]
Royal Society of Chemistry. Chemistry’s role in energy and sustainability, https://www.rsc.org/news-events/features/2015/sep/global-challenges-chemistry-solutions/2020
[6]
Keijer, T.; Bakker, V.; Slootweg, J.C. Circular chemistry to enable a circular economy. Nat. Chem., 2019, 11(3), 190-195.
[http://dx.doi.org/10.1038/s41557-019-0226-9] [PMID: 30792512]
[7]
Serrà, A.; Artal, R.; García-Amorós, J.; Sepúlveda, B.; Gómez, E.; Nogués, J.; Philippe, L. Hybrid Ni@ZnO@ZnS‐Microalgae for circular economy: A smart route to the efficient integration of solar photocatalytic water decontamination and bioethanol production. Adv. Sci. (Weinh.), 2019, 7(3), 1902447.
[http://dx.doi.org/10.1002/advs.201902447] [PMID: 32042564]
[8]
Velenturf, A.P.M.; Archer, S.A.; Gomes, H.I.; Christgen, B.; Lag-Brotons, A.J.; Purnell, P. Circular economy and the matter of integrated resources. Sci. Total Environ., 2019, 689, 963-969.
[http://dx.doi.org/10.1016/j.scitotenv.2019.06.449] [PMID: 31280177]
[9]
Uvarov, N.F.; Boldyrev, V.V. Size effects in the chemistry of heterogeneous systems. Russ. Chem. Rev., 2001, 70(4), 265-284.
[http://dx.doi.org/10.1070/RC2001v070n04ABEH000638]
[10]
Kagan, C.R.; Fernandez, L.E.; Gogotsi, Y.; Hammond, P.T.; Hersam, M.C. Nel, A.E.; Penner, R.M.; Willson, C.G.; Weiss, P.S. Nel, A.E.; Penner, R.M.; Willson, C.G.; Weiss, P.S. Nano day: Celebrating the next decade of nanoscience and nanotechnology. ACS Nano, 2016, 10(10), 9093-9103.
[http://dx.doi.org/10.1021/acsnano.6b06655] [PMID: 27712059]
[11]
Frazier, R.M.; Weber, M.; Adams, J.H. The opportunity for graphene nanomaterials in energy applications. Nanomater. Energy, 2013, 2(4), 212-215.
[http://dx.doi.org/10.1680/nme.13.00017]
[12]
Khin, M.M.; Nair, A.S.; Babu, V.J.; Murugan, R.; Ramakrishna, S. A review on nanomaterials for environmental remediation. Energy Environ. Sci., 2012, 5(8), 8075-8109.
[http://dx.doi.org/10.1039/c2ee21818f]
[13]
Pan, H.; Li, H.; Zhang, H.; Wang, A.; Yang, S. Functional nanomaterials-Catalyzed production of biodiesel. Curr. Nanosci., 2020, 16(3), 376-391.
[http://dx.doi.org/10.2174/1573413715666190411142820]
[14]
Tiwari, P.M.; Vig, K.; Dennis, V.A.; Singh, S.R. Functionalized gold nanoparticles and their biomedical applications. Nanomaterials (Basel), 2011, 1(1), 31-63.
[http://dx.doi.org/10.3390/nano1010031] [PMID: 28348279]
[15]
Biswas, A.K.; Islam, M.R.; Choudhury, Z.S.; Mostafa, A.; Kadir, M.F. Nanotechnology based approaches in cancer therapeutics. Adv. Nat. Sci. Nanosci. Nanotechnol., 2014, 5, 043001.
[http://dx.doi.org/10.1088/2043-6262/5/4/043001]
[16]
Chertok, B.; Moffat, B.A.; David, A.E.; Yu, F.; Bergemann, C.; Ross, B.D.; Yang, V.C. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials, 2008, 29(4), 487-496.
[http://dx.doi.org/10.1016/j.biomaterials.2007.08.050] [PMID: 17964647]
[17]
Mora-Huertas, C.E.; Fessi, H.; Elaissari, A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm., 2010, 385(1-2), 113-142.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.018] [PMID: 19825408]
[18]
Toro-Córdova, A.; Sanz, B.; Goya, G.F. A concise review of nanomaterials for drug delivery and release. Curr. Nanosci., 2020, 16(3), 399-412.
[http://dx.doi.org/10.2174/1573413715666190724150816]
[19]
Mathew, J.; Joy, J.; George, S.C. Potential applications of nanotechnology in transportation: A review. J. King Saud Univ. Sci., 2019, 31(4), 586-594.
[http://dx.doi.org/10.1016/j.jksus.2018.03.015]
[20]
Singh, S.B. Iron and iron oxide-based eco-nanomaterials for catalysis and water remediation.Handbook of Ecomaterials; Martínez, L.; Kharissova, O.; Kharisov, B.; (eds.).; Springer: Switzerland AG, 2019, pp. 301-321.
[http://dx.doi.org/10.1007/978-3-319-68255-6_61]
[21]
Qu, X.; Brame, J.; Li, Q.; Alvarez, P.J.J. Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc. Chem. Res., 2013, 46(3), 834-843.
[http://dx.doi.org/10.1021/ar300029v] [PMID: 22738389]
[22]
Bagheri, S.; Julkapli, N.M. Nanocatalysts in Environmental Applications, 2018.
[http://dx.doi.org/10.1007/978-3-319-69557-0]
[23]
Wei, H.; Wang, Y.; Guo, J.; Shen, N.Z.; Jiang, D.; Zhang, X.; Yan, X.; Zhu, J.; Wang, Q.; Shao, L.; Lin, H.; Wei, S.; Guo, Z. Advanced micro/nanocapsules for self-healing smart anticorrosion coatings. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(2), 469-480.
[http://dx.doi.org/10.1039/C4TA04791E]
[24]
Samadzadeh, M.; Boura, S.H.; Peikari, M.; Kasiriha, S.M.; Ashrafi, A. A review on self-healing coatings based on micro/nanocapsules. Prog. Org. Coat., 2010, 68(3), 159-164.
[http://dx.doi.org/10.1016/j.porgcoat.2010.01.006]
[25]
Serp, P.; Philippot, K. Nanomaterials in Catalysis; Wiley‐VCH Verlag GmbH & Co. KGaA: New Jersey, USA, 2012.
[26]
Singh, S.B.; Tandon, P.K. Catalysis: A brief review on nano-catalyst. J. Energy Chem. Eng., 2014, 2(3), 106-115.
[27]
Kalidindi, S.B.; Jagirdar, B.R. Nanocatalysis and prospects of green chemistry. ChemSusChem, 2012, 5(1), 65-75.
[http://dx.doi.org/10.1002/cssc.201100377] [PMID: 22190344]
[28]
Matsoukis, T.; Desai, T.; Lee, K. Engineered nanoparticles and their applications. J. Nanomater., 2015, 2015, 651273.
[29]
Gottschalk, F.; Nowack, B. The release of engineered nanomaterials to the environment. J. Environ. Monit., 2011, 13(5), 1145-1155.
[http://dx.doi.org/10.1039/c0em00547a] [PMID: 21387066]
[30]
Singh, N.; Manshian, B.; Jenkins, G.J.S.; Griffiths, S.M.; Williams, P.M.; Maffeis, T.G.G.; Wright, C.J.; Doak, S.H. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials, 2009, 30(23-24), 3891-3914.
[http://dx.doi.org/10.1016/j.biomaterials.2009.04.009] [PMID: 19427031]
[31]
Helland, A.; Scheringer, M.; Siegrist, M.; Kastenholz, H.G.; Wiek, A.; Scholz, R.W. Risk assessment of engineered nanomaterials: a survey of industrial approaches. Environ. Sci. Technol., 2008, 42(2), 640-646.
[http://dx.doi.org/10.1021/es062807i] [PMID: 18284176]
[32]
Lu, Y.; Ozcan, S. Green nanomaterials: On track for a sustainable future. Nano Today, 2015, 10(4), 417-420.
[http://dx.doi.org/10.1016/j.nantod.2015.04.010]
[33]
Bhattacharya, P.; Du, D.; Lin, Y. Bioinspired nanoscale materials for biomedical and energy applications. J. R. Soc. Interface, 2014, 11(95), 20131067.
[http://dx.doi.org/10.1098/rsif.2013.1067] [PMID: 24740959]
[34]
Gawande, M.B. Sustainable nanocatalysts for organic synthetic transformations. Org. Chem. Curr. Res, 2014, 3(2), e137.
[35]
Babbitt, C.W.; Moore, E.A. Sustainable nanomaterials by design. Nat. Nanotechnol., 2018, 13(8), 621-623.
[http://dx.doi.org/10.1038/s41565-018-0235-7] [PMID: 30082803]
[36]
Mohammed, N.; Grishkewich, N.; Tam, K.C. Cellulose nanomaterials: Promising sustainable nanomaterials for application in water/wastewater treatment processes. Environ. Sci. Nano, 2018, 5, 623-658.
[http://dx.doi.org/10.1039/C7EN01029J]
[37]
Varma, R.S. Nano-catalysts with magnetic core: Sustainable options for greener synthesis. Sustain. Chem. Process., 2014, 2(1), 11.
[http://dx.doi.org/10.1186/2043-7129-2-11]
[38]
Ludwig, J.R.; Schindler, C.S. Catalyst: Sustainable catalysis. Chem, 2017, 2(3), 313-316.
[http://dx.doi.org/10.1016/j.chempr.2017.02.014]
[39]
Holland, P.L. Reaction: Opportunities for sustainable catalysts. Chem, 2017, 2(4), 443-444.
[http://dx.doi.org/10.1016/j.chempr.2017.03.017]
[40]
Constable, D.J.C. Reaction: Sustainable catalysis without metals. Chem, 2017, 2(4), 446-447.
[http://dx.doi.org/10.1016/j.chempr.2017.03.020]
[41]
Centi, G.; Perathoner, S. Catalysis: Role and challenges for a sustainable energy. Top. Catal., 2009, 52, 948-961.
[http://dx.doi.org/10.1007/s11244-009-9245-x]
[42]
Giuliani, C.; Pascucci, M.; Riccucci, C.; Messina, E.; Salzano de Luna, M.; Lavorgna, M.; Ingo, G.M.; Di Carlo, G. Chitosan-based coatings for corrosion protection of copper-based alloys: A promising more sustainable approach for cultural heritage applications. Prog. Org. Coat., 2018, 122, 138-146.
[http://dx.doi.org/10.1016/j.porgcoat.2018.05.002]
[43]
Silva, H.G.C.; Terradillos, P.G.; Zornoza, E.; Mendoza-Rangel, J.M.; Castro-Borges, P.; Alvarado, C.A.J. Improving sustainability through corrosion resistance of reinforced concrete by using a manufactured blended cement and fly ash. Sustainability, 2018, 10(6), 2004.
[http://dx.doi.org/10.3390/su10062004]
[44]
Gupta, N.K.; Joshi, P.G.; Srivastava, V.; Quraishi, M.A. Chitosan: A macromolecule as green corrosion inhibitor for mild steel in sulfamic acid useful for sugar industry. Int. J. Biol. Macromol., 2018, 106, 704-711.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.064] [PMID: 28818723]
[45]
Goncalves, G.; Marques, P.; Vila, M. Graphene-Based Materials in Health and Environment: New Paradigms; Springer: Switzerland, 2016.
[http://dx.doi.org/10.1007/978-3-319-45639-3]
[46]
Lah, N.A.C.; Zubir, M.N.M.; Samykano, M.A. Engineered nanomaterial in electronics and electrical industries. Handbook of Nanomaterials for Industrial Applications; Hussain, C.M., Ed.; Elsevier: Amsterdam, 2018, pp. 324-364.
[http://dx.doi.org/10.1016/B978-0-12-813351-4.00021-3]
[47]
Starodub, M.F. Nanomaterials for securityNATO Science for Peace and Security Series A: Chemistry and Biology; Bonča, J.; Kruchinin, S.; (Eds.).; Springer: Switzerland AG,, 2016.
[48]
Tandon, P.K.; Shukla, R.C.; Singh, S.B. Removal of arsenic(III) from water with clay-supported zerovalent iron nanoparticles synthesized with the help of tea liquor. Ind. Eng. Chem. Res., 2013, 52(30), 10052-10058.
[http://dx.doi.org/10.1021/ie400702k]
[49]
Singh, S.B.; Hussain, C.M. Nano-graphene as groundbreaking miracle material: Catalytic and commercial perspectives. ChemistrySelect, 2018, 3(33), 9533-9544.
[http://dx.doi.org/10.1002/slct.201802211]
[50]
Dolez, P.I. Nanomaterials definitions, classifications, and applications.Nanoengineering: Global approaches to health and safety issues; Patricia, I.D., Ed.; Elsevier: Amsterdam, 2015, pp. 3-40.
[http://dx.doi.org/10.1016/B978-0-444-62747-6.00001-4]
[51]
Loosli, F.; Yi, Z.; Wang, J.; Baalousha, M. Improved extraction efficiency of natural nanomaterials in soils to facilitate their characterization using a multimethod approach. Sci. Total Environ., 2019, 677, 34-46.
[http://dx.doi.org/10.1016/j.scitotenv.2019.04.301] [PMID: 31051381]
[52]
de la Rosa, G.; García-Castañeda, C.; Vázquez-Núñez, E.; López-Camacho, P.Y.; Basurto-Islas, G.; Castro-Beltrán, R.; Alba-Rosales, J.E. Synthesis and production of engineered nanomaterials for laboratory and industrial use. Exposure to engineered nanomaterials in the environment; Marmiroli, N.; White, J.C; Song, J., Ed.; Elsevier: Amsterdam, 2019, pp. 3-30.
[http://dx.doi.org/10.1016/B978-0-12-814835-8.00001-7]
[53]
Varma, R.S. Greener and sustainable trends in synthesis of organics and nanomaterials. ACS Sustain. Chem.& Eng., 2016, 4(11), 5866-5878.
[http://dx.doi.org/10.1021/acssuschemeng.6b01623] [PMID: 32704457]
[54]
Pirtarighat, S.; Ghannadnia, M.; Baghshahi, S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J. Nanostruct. Chem., 2019, 9, 1-9.
[http://dx.doi.org/10.1007/s40097-018-0291-4]
[55]
Luo, F.; Chen, Z.; Megharaj, M.; Naidu, R.; Naidu, R.; Scott, T.B.; Hallam, K.R. Biomolecules in grape leaf extract involved in one-step synthesis of iron-based nanoparticles. RSC Advances, 2014, 4(96), 53467-53474.
[http://dx.doi.org/10.1039/C4RA08808E]
[56]
Kharissova, O.V.; Dias, H.V.R.; Kharisov, B.I.; Pérez, B.O.; Pérez, V.M.J. The greener synthesis of nanoparticles. Trends Biotechnol., 2013, 31(4), 240-248.
[http://dx.doi.org/10.1016/j.tibtech.2013.01.003] [PMID: 23434153]
[57]
Wang, Z.; Fang, C.; Megharaj, M. Characterization of iron-polyphenol nanoparticles synthesized by three plant extracts and their Fenton oxidation of azo dye. ACS Sustain. Chem.& Eng., 2014, 2(4), 1022-1025.
[http://dx.doi.org/10.1021/sc500021n]
[58]
Khan, M.S.J.; Khan, S.B.; Kamal, T.; Asiri, A.M. Agarose biopolymer coating on polyurethane sponge as host for catalytic silver metal nanoparticles. Polym. Test., 2018, 78, 105983.
[http://dx.doi.org/10.1016/j.polymertesting.2019.105983]
[59]
Kamal, T.; Ahmad, I.; Khan, S.B.; Asiri, A.M. Bacterial cellulose as support for biopolymer stabilized catalytic cobalt nanoparticles. Int. J. Biol. Macromol., 2019, 135, 1162-1170.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.057] [PMID: 31145951]
[60]
Kamal, T.; Ahmad, I.; Khan, S.B.; Asiri, A.M. Agar hydrogel supported metal nanoparticles catalyst for pollutants degradation in water. Desalination Water Treat., 2018, 136, 290-298.
[http://dx.doi.org/10.5004/dwt.2018.23230]
[61]
Khan, F.U. Asimullah; Khan, S.B.; Kamal, T.; Asiri, A.M.; Khan, I.U.; Akhtar, K. Novel combination of zero-valent Cu and Ag nanoparticles @ cellulose acetate nanocomposite for the reduction of 4-nitro phenol. Int. J. Biol. Macromol., 2017, 102, 868-877.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.062] [PMID: 28428128]
[62]
Khan, M.S.J.; Kamal, T.; Ali, F.; Asiri, A.M.; Khan, S.B. Chitosan-coated polyurethane sponge supported metal nanoparticles for catalytic reduction of organic pollutants. Int. J. Biol. Macromol., 2019, 132, 772-783.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.205] [PMID: 30928377]
[63]
Ali, F.; Khan, S.B.; Kamal, T.; Alamry, K.A.; Bakhsh, E.M.; Asiri, A.M.; Sobahi, T.R.A. Synthesis and characterization of metal nanoparticles templated chitosan-SiO2 catalyst for the reduction of nitrophenols and dyes. Carbohydr. Polym., 2018, 192, 217-230.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.029] [PMID: 29691016]
[64]
Ali, N. Awais; Kamal, T.; Ul-Islam, M.; Khan, A.; Shah, S.J.; Zada, A. Chitosan-coated cotton cloth supported copper nanoparticles for toxic dye reduction. Int. J. Biol. Macromol., 2018, 111, 832-838.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.092] [PMID: 29355628]
[65]
Ali, F.; Khan, S.B.; Kamal, T.; Anwar, Y.; Alamry, K.A.; Asiri, A.M. Bactericidal and catalytic performance of green nanocomposite based-on chitosan/carbon black fiber supported monometallic and bimetallic nanoparticles. Chemosphere, 2017, 188, 588-598.
[http://dx.doi.org/10.1016/j.chemosphere.2017.08.118] [PMID: 28917211]
[66]
Kamal, T.; Khan, S.B.; Haider, S.; Alghamdi, Y.G.; Asiri, A.M. Thin layer chitosan-coated cellulose filter paper as substrate for immobilization of catalytic cobalt nanoparticles Int. J. Biol. Macromol, 2017, 104(Pt A), 56-62.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.157]
[67]
Ahmad, I.; Kamal, T.; Khan, S.B.; Asiri, A.M. An efficient and easily retrievable dip catalyst based on silver nanoparticles/chitosan-coated cellulose filter paper. Cellulose, 2016, 23, 3577-3588.
[http://dx.doi.org/10.1007/s10570-016-1053-4]
[68]
Ranaivoarimanana, N.J.; Kanomata, K.; Kitaoka, T. Concerted catalysis by nanocellulose and proline in organocatalytic Michael additions. Molecules, 2019, 24(7), 1231.
[http://dx.doi.org/10.3390/molecules24071231] [PMID: 30934821]
[69]
Kaushik, M.; Moores, A. Review: Nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem., 2016, 18, 622-637.
[http://dx.doi.org/10.1039/C5GC02500A]
[70]
Zhou, Z.; Lu, C.; Wu, X.; Zhang, X. Cellulose nanocrystals as a novel support for CuO nanoparticles catalysts: Facile synthesis and their application to 4-nitrophenol reduction. RSC Advances, 2013, 3(48), 26066-26073.
[http://dx.doi.org/10.1039/c3ra43006e]
[71]
Gopiraman, M.; Bang, H.; Yuan, G.; Yin, C.; Song, K.H.; Lee, J.S.; Chung, I.M.; Karvembu, R.; Kim, I.S. Noble metal/functionalized cellulose nanofiber composites for catalytic applications. Carbohydr. Polym., 2015, 132, 554-564.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.051] [PMID: 26256382]
[72]
Wang, D.; Astruc, D. Fast-growing field of magnetically recyclable nanocatalysts. Chem. Rev., 2014, 114(14), 6949-6985.
[http://dx.doi.org/10.1021/cr500134h] [PMID: 24892491]
[73]
Zhang, D.; Zhou, C.; Sun, Z.; Wu, L-Z.; Tung, C-H.; Zhang, T. Magnetically recyclable nanocatalysts (MRNCs): a versatile integration of high catalytic activity and facile recovery. Nanoscale, 2012, 4(20), 6244-6255.
[http://dx.doi.org/10.1039/c2nr31929b] [PMID: 22965398]
[74]
Polshettiwar, V.; Baruwati, B.; Varma, R.S. Magnetic nanoparticle-supported glutathione: a conceptually sustainable organocatalyst. Chem. Commun. (Camb.), 2009, 14(14), 1837-1839.
[http://dx.doi.org/10.1039/b900784a] [PMID: 19319418]
[75]
Mohammadi, H.; Shaterian, H.R. Sulfonated magnetic nanocatalyst and application for synthesis of novel Spiro[acridine-9,5′-thiazole]-1,4′-dione derivatives. Res. Chem. Intermed., 2020, 46, 1109-1125.
[http://dx.doi.org/10.1007/s11164-019-04022-9]
[76]
Zolfagharini, S.; Kolvari, E.; Koukabi, N.; Hosseini, M.M. Core-shell zirconia-coated magnetic nanoparticles offering a strong option to prepare a novel and magnetized heteropolyacid based heterogeneous nanocatalyst for three- and four-component reactions. Arab. J. Chem., 2020, 13(1), 227-241.
[http://dx.doi.org/10.1016/j.arabjc.2017.04.004]
[77]
Sharma, R.K.; Gaur, R.; Yadav, M.; Goswami, A.; Zbořil, R.; Gawande, M.B. An efficient copper-based magnetic nanocatalyst for the fixation of carbon dioxide at atmospheric pressure. Sci. Rep., 2018, 8(1), 1901.
[http://dx.doi.org/10.1038/s41598-018-19551-3] [PMID: 29382886]
[78]
Leary, R.; Westwood, A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon, 2011, 49, 741-772.
[http://dx.doi.org/10.1016/j.carbon.2010.10.010]
[79]
Li, Q.; Mahendra, S.; Lyon, D.Y.; Brunet, L.; Liga, M.V.; Li, D.; Alvarez, P.J.J. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res., 2008, 42(18), 4591-4602.
[http://dx.doi.org/10.1016/j.watres.2008.08.015] [PMID: 18804836]
[80]
Sanzone, G.; Zimbone, M.; Cacciato, G.; Ruffino, F.; Carles, R.; Privitera, V.; Grimaldi, M.G. Ag/TiO2 nanocomposite for visible light-driven photocatalysis. Superlattices Microstruct., 2018, 123, 394-402.
[http://dx.doi.org/10.1016/j.spmi.2018.09.028]
[81]
Wang, W.; Li, G.; Xia, D.; An, T.; Zhao, H.; Wong, P.K. Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges. Environ. Sci. Nano, 2017, 4, 782-799.
[http://dx.doi.org/10.1039/C7EN00063D]
[82]
Li, X-S.; Ma, X-Y.; Liu, J-L.; Sun, Z-G.; Zhu, B.; Zhu, A-M. Plasma-promoted Au/TiO2 nanocatalysts for photocatalytic formaldehyde oxidation under visible-light irradiation. Catal. Today, 2019, 337, 132-138.
[http://dx.doi.org/10.1016/j.cattod.2019.03.033]
[83]
Fernández-Rodríguez, C.; Doña-Rodríguez, J.M.; González-Díaz, O.; Seck, I.; Zerbani, D.; Portillo, D.; Perez-Peña, J. Synthesis of highly photoactive TiO2 and Pt/TiO2 nanocatalysts for substrate-specific photocatalytic applications. Appl. Catal. B, 2012, 125, 383-389.
[http://dx.doi.org/10.1016/j.apcatb.2012.04.042]
[84]
Yang, X.; Wu, L.; Du, L.; Li, X. Photocatalytic water splitting towards hydrogen production on gold nanoparticles (NPs) entrapped in TiO2 nanotubes. Catal. Lett., 2015, 145, 1771-1777.
[http://dx.doi.org/10.1007/s10562-015-1568-6]
[85]
Machado, B.F.; Serp, P. Graphene-based materials for catalysis. Catal. Sci. Technol., 2012, 2, 54-75.
[http://dx.doi.org/10.1039/C1CY00361E]
[86]
Ussia, M.; Bruno, E.; Spina, E.; Vitalini, D.; Pellegrino, G.; Ruffino, F.; Privitera, V.; Carroccio, S.C. Freestanding photocatalytic materials based on 3D graphene and polyporphyrins. Sci. Rep., 2018, 8(1), 5001.
[http://dx.doi.org/10.1038/s41598-018-23345-y] [PMID: 29568060]
[87]
Hu, M.; Yao, Z.; Wang, X. Graphene-based nanomaterials for catalysis. Ind. Eng. Chem. Res., 2017, 56(13), 3477-3502.
[http://dx.doi.org/10.1021/acs.iecr.6b05048]
[88]
Karachi, N.; Hosseini, M.; Parsaee, Z.; Razavi, R. Novel high performance reduced graphene oxide based nanocatalyst decorated with Rh2O3/Rh-NPs for CO2 photoreduction. J. Photoch. Photobiol. A, 2018, 364, 344-354.
[http://dx.doi.org/10.1016/j.jphotochem.2018.06.024]
[89]
Zakeri, M.; Abouzari-lotf, E.; Miyake, M.; Mehdipour-Ataei, S.; Shameli, K. Phosphoric acid functionalized graphene oxide: A highly dispersible carbon-based nanocatalyst for the green synthesis of bio-active pyrazoles. Arab. J. Chem., 2019, 12(2), 188-197.
[http://dx.doi.org/10.1016/j.arabjc.2017.11.006]
[90]
Gawande, M.B.; Zboril, R.; Malgras, V.; Yamauchi, Y. Integrated nanocatalysts: A unique class of heterogeneous catalysts. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 8241-8245.
[http://dx.doi.org/10.1039/C5TA00119F]
[91]
Zeng, H.C. Integrated nanocatalysts. Acc. Chem. Res., 2013, 46(2), 226-235.
[http://dx.doi.org/10.1021/ar3001662] [PMID: 23214436]
[92]
Zhang, G.; Zeng, H.C. Integrated nanocatalysts with mesoporous silica/silicate and microporous MOF materials. Coord. Chem. Rev., 2016, 320-321, 181-192.
[http://dx.doi.org/10.1016/j.ccr.2016.03.003]
[93]
Li, H.; Ma, L.; Zhou, L.; Gao, J.; Huang, Z.; He, Y.; Jiang, Y. An integrated nanocatalyst combining enzymatic and metal-organic framework catalysts for cascade degradation of organophosphate nerve agents. Chem. Commun. (Camb.), 2018, 54(76), 10754-10757.
[http://dx.doi.org/10.1039/C8CC06727A] [PMID: 30191934]
[94]
Liu, X.; Dai, J.; Li, W.; Wang, K.; Huang, J.; Li, Q.; Zhan, G. Green fabrication of integrated Au/CuO/Oyster shell nanocatalysts with Oyster shells as alternative supports for CO oxidation. ACS Sustain. Chem.& Eng., 2019, 7(21), 17768-17777.
[http://dx.doi.org/10.1021/acssuschemeng.9b04181]
[95]
Phanthong, P.; Reubroycharoen, P.; Hao, X.; Xu, G.; Abudula, A.; Guan, G. Nanocellulose: Extraction and application. Carbon Resour. Convers., 2018, 1(1), 32-43.
[http://dx.doi.org/10.1016/j.crcon.2018.05.004]
[96]
He, Y.; Boluk, Y.; Pan, J.; Ahniyaz, A.; Deltin, T.; Claesson, P.M. Comparative study of CNC and CNF as additives in waterborne acrylate-based anti-corrosion coatings J; Disper. Sci. Technol, 2019.
[97]
Borsoi, C.; Scienza, L.C.; Zattera, A.J.; Ferreira, C.A. Effect of the incorporation of micro and nanocellulose particles on the anticorrosive properties of epoxy coatings applied on carbon steel. Mater. Res., 2018, 21(6), e20170269.
[http://dx.doi.org/10.1590/1980-5373-mr-2017-0269]
[98]
Essien, E.A.; Kavaz, D.; Ituen, E.B.; Umoren, S.A. Synthesis, characterization and anticorrosion property of olive leaves extract-titanium nanoparticles composite. J. Adhes. Sci. Technol., 2018, 32(16), 1773-1794.
[http://dx.doi.org/10.1080/01694243.2018.1445800]
[99]
Rahman, O.U.; Shi, S.; Ding, J.; Wang, D.; Ahmad, S.; Yu, H. Lignin nanoparticles: Synthesis, characterization and corrosion protection performance. New J. Chem., 2018, 42, 3415-3425.
[http://dx.doi.org/10.1039/C7NJ04103A]
[100]
Borisova, D.; Möhwald, H.; Shchukin, D.G. Mesoporous silica nanoparticles for active corrosion protection. ACS Nano, 2011, 5(3), 1939-1946.
[http://dx.doi.org/10.1021/nn102871v] [PMID: 21344888]
[101]
Singh, S.B. Nanocapsules: an engineered nanomaterial for smart self-healing coating and catalysis.Handbook of Nanomaterials for Manufacturing Applications; Hussain, C.M., Ed.; Elsevier: Amsterdam, 2020, Vol. 1, pp. 175-189.
[http://dx.doi.org/10.1016/B978-0-12-821381-0.00007-7]
[102]
Kong, L.; Xu, D.; He, Z.; Wang, F.; Gui, S.; Fan, J.; Pan, X.; Dai, X.; Dong, X.; Liu, B.; Li, Y. Nanocellulose-reinforced polyurethane for waterborne wood coating. Molecules, 2019, 24(17), 3151.
[http://dx.doi.org/10.3390/molecules24173151] [PMID: 31470628]
[103]
Bagale, U.D.; Sonawane, S.H.; Bhanvase, B.A.; Kulkarni, R.D.; Gogate, P.R. Green synthesis of nanocapsules for self-healing anticorrosion coating using ultrasound-assisted approach. Green Process. Synth., 2018, 7(2), 147-159.
[http://dx.doi.org/10.1515/gps-2016-0160]