Osteomyelitis: Focus on Conventional Treatments and Innovative Drug Delivery Systems

Page: [532 - 545] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Osteomyelitis is a bone marrow infection which generally involves cortical plates and which may occur after bone trauma, orthopedic/maxillofacial surgery or after vascular insufficiency episodes. It mostly affects people from the Third World Countries, the elderly and patients affected by systemic diseases e.g. autoimmune disorders, AIDS, osteoporosis and microvascular disease. The highest percentage of osteomyelitis cases (almost 75%) is caused by Staphylococcus spp., and in particular by Staphylococcus aureus (more than 50%). The ideal classification and the diagnosis of osteomyelitis are two important tools which help the physicians to choose the best therapeutic strategies. Currently, common therapies provide an extensive debridement in association with intravenous administration of antibiotics (penicillin or clindamycin, vancomycin and fluoroquinolones among all for resistant microorganisms), to avoid the formation of sequestra. However, conventional therapeutic approach involves several drawbacks like low concentration of antibiotics in the infected site, leading to resistance and adverse effects due to the intravenous administration. For these reasons, in the last years several studies have been focused on the development of drug delivery systems such as cements, beads, scaffolds and ceramics made of hydroxyapatite (HA), calcium phosphate (CaP) and β-tricalcium phosphate (β-TCP) which demonstrated to be biocompatible, poorly toxic and capable to allow osteointegration and a prolonged drug release. The aim of this review is to provide a focus on current therapies and latest developed drug delivery systems with particular attention on those based on CaP and its derivatives, hoping that this work could allow further direction in the field of osteomyelitis.

Keywords: Osteomyelitis, drug delivery systems, antibiotic, bone, calcium phosphate, hydroxyapatite, cement.

Graphical Abstract

[1]
Kushner, G.M. Osteomyelitis and osteoradionecrosis.Peterson’s Princ. Oral Maxillofac. Surg, 3rd ed; Miloro, M., Ed.; BC Decker: Lewinston, ME, 2004, pp. 300-324.
[2]
Sedghizadeh, P.P.; Kumar, S.K.; Gorur, A.; Schaudinn, C.; Shuler, C.F.; Costerton, J.W. Microbial biofilms in osteomyelitis of the jaw and osteonecrosis of the jaw secondary to bisphosphonate therapy. J. Am. Dent. Assoc., 2009, 140(10), 1259-1265.
[http://dx.doi.org/10.14219/jada.archive.2009.0049] [PMID: 19797556]
[3]
Rubin, R.J.; Harrington, C.A.; Poon, A.; Dietrich, K.; Greene, J.A.; Moiduddin, A. The economic impact of Staphylococcus aureus infection in New York City hospitals. Emerg. Infect. Dis., 1999, 5(1), 9-17.
[http://dx.doi.org/10.3201/eid0501.990102] [PMID: 10081667]
[4]
Calhoun, J.H.; Manring, M.M.; Shirtliff, M. Osteomyelitis of the long bones. Semin. Plast. Surg., 2009, 23(2), 59-72.
[http://dx.doi.org/10.1055/s-0029-1214158] [PMID: 20567728]
[5]
Lee, J.S.; Lee, J.; Choi, J.P.; Song, J.Y.; Ha, C.W.; Lee, J.H. Clinical guidelines for the antimicrobial treatment of bone and joint infections in Korea. Infect. Chemother., 2014, 46(2), 125-138.
[http://dx.doi.org/10.3947/ic.2014.46.2.125] [PMID: 25024877]
[6]
Mader, J.T.; Shirtliff, M.; Calhoun, J.H. Staging and staging application in osteomyelitis Musculoskelet. Infect., 1997, 1303-1309.
[7]
Cierny, G., III; Mader, J.T.; Penninck, J.J. A clinical staging system for adult osteomyelitis. Clin. Orthop. Relat. Res., 2003, (414), 7-24.
[http://dx.doi.org/10.1097/01.blo.0000088564.81746.62] [PMID: 12966271]
[8]
Arciola, C.R.; An, Y.H.; Campoccia, D.; Donati, M.E.; Montanaro, L. Etiology of implant orthopedic infections: a survey on 1027 clinical isolates. Int. J. Artif. Organs, 2005, 28(11), 1091-1100.
[http://dx.doi.org/10.1177/039139880502801106] [PMID: 16353115]
[9]
Pulido, L.; Ghanem, E.; Joshi, A.; Purtill, J.J.; Parvizi, J. Periprosthetic joint infection: the incidence, timing, and predisposing factors. Clin. Orthop. Relat. Res., 2008, 466(7), 1710-1715.
[http://dx.doi.org/10.1007/s11999-008-0209-4] [PMID: 18421542]
[10]
Brady, R.A.; Leid, J.G.; Calhoun, J.H.; Costerton, J.W.; Shirtliff, M.E. Osteomyelitis and the role of biofilms in chronic infection. FEMS Immunol. Med. Microbiol., 2008, 52(1), 13-22.
[http://dx.doi.org/10.1111/j.1574-695X.2007.00357.x] [PMID: 18081847]
[11]
Goda, A.; Maruyama, F.; Michi, Y.; Nakagawa, I.; Harada, K. Analysis of the factors affecting the formation of the microbiome associated with chronic osteomyelitis of the jaw. Clin. Microbiol. Infect., 2014, 20(5), O309-O317.
[http://dx.doi.org/10.1111/1469-0691.12400] [PMID: 24112138]
[12]
Gabrielli, E.; Fothergill, A.W.; Brescini, L.; Sutton, D.A.; Marchionni, E.; Orsetti, E.; Staffolani, S.; Castelli, P.; Gesuita, R.; Barchiesi, F. Osteomyelitis caused by Aspergillus species: a review of 310 reported cases. Clin. Microbiol. Infect., 2014, 20(6), 559-565.
[http://dx.doi.org/10.1111/1469-0691.12389] [PMID: 24303995]
[13]
Masters, E.A.; Trombetta, R.P.; de Mesy Bentley, K.L.; Boyce, B.F.; Gill, A.L.; Gill, S.R.; Nishitani, K.; Ishikawa, M.; Morita, Y.; Ito, H.; Bello-Irizarry, S.N.; Ninomiya, M.; Brodell, J.D., Jr; Lee, C.C.; Hao, S.P.; Oh, I.; Xie, C.; Awad, H.A.; Daiss, J.L.; Owen, J.R.; Kates, S.L.; Schwarz, E.M.; Muthukrishnan, G. Evolving concepts in bone infection: redefining “biofilm”, “acute vs. chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy”. Bone Res., 2019, 7, 20.
[http://dx.doi.org/10.1038/s41413-019-0061-z] [PMID: 31646012]
[14]
De, A.; Raj, H.J.; Maiti, P.K. Biofilm in osteomyelitis caused by a rare pathogen, Morganella morganii: A case report. J. Clin. Diagn. Res., 2016, 10(6), DD06-DD08.
[http://dx.doi.org/10.7860/JCDR/2016/18666.7990] [PMID: 27504288]
[15]
Lima, A.L.L.; Oliveira, P.R.; Carvalho, V.C.; Cimerman, S.; Savio, E.; Sosa, A. Diretrizes panamericanas para el tratamiento de las osteomielitis e infecciones de tejidos blandos group. recommendations for the treatment of osteomyelitis. Braz. J. Infect. Dis., 2014, 18(5), 526-534.
[http://dx.doi.org/10.1016/j.bjid.2013.12.005] [PMID: 24698709]
[16]
Dym, H.; Zeidan, J. Microbiology of acute and chronic osteomyelitis and antibiotic treatment. Dent. Clin. North Am., 2017, 61(2), 271-282.
[http://dx.doi.org/10.1016/j.cden.2016.12.001] [PMID: 28317566]
[17]
Baur, D.A.; Altay, M.A.; Flores-Hidalgo, A.; Ort, Y.; Quereshy, F.A. Chronic osteomyelitis of the mandible: diagnosis and management-an institution’s experience over 7 years. J. Oral Maxillofac. Surg., 2015, 73(4), 655-665.
[http://dx.doi.org/10.1016/j.joms.2014.10.017] [PMID: 25577460]
[18]
Saigal, G.; Azouz, E.M.; Abdenour, G. Imaging of osteomyelitis with special reference to children. Semin. Musculoskelet. Radiol., 2004, 8(3), 255-265.
[http://dx.doi.org/10.1055/s-2004-835365] [PMID: 15478028]
[19]
Cobb, L.H.; McCabe, E.M.; Priddy, L.B. Therapeutics and delivery vehicles for local treatment of osteomyelitis. J. Orthop. Res., 2020, 18, 526-534.
[PMID: 32285973]
[20]
Hudson, J.W. Osteomyelitis of the jaws: a 50-year perspective. J. Oral Maxillofac. Surg., 1993, 51(12), 1294-1301.
[http://dx.doi.org/10.1016/S0278-2391(10)80131-4] [PMID: 8229407]
[21]
Rao, N.; Ziran, B.H.; Lipsky, B.A. Treating osteomyelitis: antibiotics and surgery. Plast. Reconstr. Surg., 2011, 127(Suppl. 1), 177S-187S.
[http://dx.doi.org/10.1097/PRS.0b013e3182001f0f] [PMID: 21200289]
[22]
Gbadoé, A.D.; Dogba, A.; Dagnra, A.Y.; Atakouma, Y.; Tékou, H.; Assimadi, J.K. Acute osteomyelitis in the child with sickle cell disease in a tropical zone: value of oral fluoroquinolones. Arch. Pediatr., 2001, 8(12), 1305-1310.
[PMID: 11811024]
[23]
Schurman, D.J.; Johnson, B.L.J., Jr; Finerman, G.; Amstutz, H.C. Antibiotic bone penetration. Concentrations of methicillin and clindamycin phosphate in human bone taken during total hip replacement. Clin. Orthop. Relat. Res., 1975, (111), 142-146.
[http://dx.doi.org/10.1097/00003086-197509000-00019] [PMID: 1157411]
[24]
Nandi, S.K.; Bandyopadhyay, S.; Das, P.; Samanta, I.; Mukherjee, P.; Roy, S.; Kundu, B. Understanding osteomyelitis and its treatment through local drug delivery system. Biotechnol. Adv., 2016, 34(8), 1305-1317.
[http://dx.doi.org/10.1016/j.biotechadv.2016.09.005] [PMID: 27693717]
[25]
Buchholz, H.W.; Engelbrecht, H. Depot effects of various antibiotics mixed with Palacos resins. Chirurgia (Bucur.), 1970, 41(11), 511-515.
[PMID: 5487941]
[26]
Gogia, J.S.; Meehan, J.P.; Di Cesare, P.E.; Jamali, A.A. Local antibiotic therapy in osteomyelitis. Semin. Plast. Surg., 2009, 23(2), 100-107.
[http://dx.doi.org/10.1055/s-0029-1214162] [PMID: 20567732]
[27]
Klemm, K. Gentamicin-PMMA-beads in treating bone and soft tissue infections (author’s transl). Zentralbl. Chir., 1979, 104(14), 934-942.
[PMID: 494865]
[28]
Walenkamp, G.H.I. Antibiotic Loaded Cement: From Research to Clinical Evidence. In: Infect. Local Treat. Orthop. Surg; Meani, E.; Romanò, C.; Crosby, L.; Hofmann, G.; Calonego, G., Eds.; Springer: Berlin, Heidelberg, 2007, pp. 170-175.
[http://dx.doi.org/10.1007/978-3-540-47999-4_20]
[29]
Walenkamp, G. Small PMMA beads improve gentamicin release. Acta Orthop. Scand., 1989, 60(6), 668-669.
[http://dx.doi.org/10.3109/17453678909149599] [PMID: 2624085]
[30]
Nelson, C.L.; Griffin, F.M.; Harrison, B.H.; Cooper, R.E. In vitro elution characteristics of commercially and noncommercially prepared antibiotic PMMA beads. Clin. Orthop. Relat. Res., 1992, (284), 303-309.
[http://dx.doi.org/10.1097/00003086-199211000-00042] [PMID: 1395310]
[31]
Hanssen, A.D.; Spangehl, M.J. Practical applications of antibiotic-loaded bone cement for treatment of infected joint replacements. Clin. Orthop. Relat. Res., 2004, (427), 79-85.
[http://dx.doi.org/10.1097/01.blo.0000143806.72379.7d] [PMID: 15552141]
[32]
Mader, J.T.; Calhoun, J.; Cobos, J. In vitro evaluation of antibiotic diffusion from antibiotic-impregnated biodegradable beads and polymethylmethacrylate beads. Antimicrob. Agents Chemother., 1997, 41(2), 415-418.
[http://dx.doi.org/10.1128/AAC.41.2.415] [PMID: 9021200]
[33]
Xie, Z.; Liu, X.; Jia, W.; Zhang, C.; Huang, W.; Wang, J. Treatment of osteomyelitis and repair of bone defect by degradable bioactive borate glass releasing vancomycin. J. Control. Release, 2009, 139(2), 118-126.
[http://dx.doi.org/10.1016/j.jconrel.2009.06.012] [PMID: 19545593]
[34]
Neut, D.; van de Belt, H.; Stokroos, I.; van Horn, J.R.; van der Mei, H.C.; Busscher, H.J. Biomaterial-associated infection of gentamicin-loaded PMMA beads in orthopaedic revision surgery. J. Antimicrob. Chemother., 2001, 47(6), 885-891.
[http://dx.doi.org/10.1093/jac/47.6.885] [PMID: 11389124]
[35]
Rutledge, B.; Huyette, D.; Day, D.; Anglen, J. Treatment of osteomyelitis with local antibiotics delivered via bioabsorbable polymer. Clin. Orthop. Relat. Res., 2003, (411), 280-287.
[http://dx.doi.org/10.1097/01.blo.0000065836.93465.ed] [PMID: 12782886]
[36]
Bereznowski, Z. In vivo assessment of methyl methacrylate metabolism and toxicity. Int. J. Biochem. Cell Biol., 1995, 27(12), 1311-1316.
[http://dx.doi.org/10.1016/1357-2725(95)00101-T] [PMID: 8581827]
[37]
Uskoković, V.; Desai, T.A. Nanoparticulate drug delivery platforms for advancing bone infection therapies. Expert Opin. Drug Deliv., 2014, 11(12), 1899-1912.
[http://dx.doi.org/10.1517/17425247.2014.944860] [PMID: 25109804]
[38]
Desai, T.A.; Uskoković, V. Calcium phosphate nanoparticles: A future therapeutic platform for the treatment of osteomyelitis? Ther. Deliv., 2013, 4(6), 643-645.
[http://dx.doi.org/10.4155/tde.13.33] [PMID: 23738660]
[39]
Fink, B.; Rechtenbach, A.; Büchner, H.; Vogt, S.; Hahn, M. Articulating spacers used in two-stage revision of infected hip and knee prostheses abrade with time. Clin. Orthop. Relat. Res., 2011, 469(4), 1095-1102.
[http://dx.doi.org/10.1007/s11999-010-1479-1] [PMID: 20665141]
[40]
McPherson, E.J.; Lewonowski, K.; Dorr, L.D. Techniques in arthroplasty. Use of an articulated PMMA spacer in the infected total knee arthroplasty. J. Arthroplasty, 1995, 10(1), 87-89.
[http://dx.doi.org/10.1016/S0883-5403(05)80105-6] [PMID: 7730836]
[41]
Paz, E.; Sanz-Ruiz, P.; Abenojar, J.; Vaquero-Martín, J.; Forriol, F.; Del Real, J.C. Evaluation of elution and mechanical properties of high-dose antibiotic-loaded bone cement: Comparative “in vitro” study of the influence of vancomycin and cefazolin. J. Arthroplasty, 2015, 30(8), 1423-1429.
[http://dx.doi.org/10.1016/j.arth.2015.02.040] [PMID: 25791672]
[42]
van Vugt, T.A.G.; Arts, J.J.; Geurts, J.A.P. Antibiotic-loaded polymethylmethacrylate beads and spacers in treatment of orthopedic infections and the role of biofilm formation. Front. Microbiol., 2019, 10, 1626.
[http://dx.doi.org/10.3389/fmicb.2019.01626] [PMID: 31402901]
[43]
Kanellakopoulou, K.; Kolia, M.; Anastassiadis, A.; Korakis, T.; Giamarellos-Bourboulis, E.J.; Andreopoulos, A.; Dounis, E.; Giamarellou, H. Lactic acid polymers as biodegradable carriers of fluoroquinolones: an in vitro study. Antimicrob. Agents Chemother., 1999, 43(3), 714-716.
[http://dx.doi.org/10.1128/AAC.43.3.714] [PMID: 10049299]
[44]
Kanellakopoulou, K.; Galanakis, N.; Giamarellos-Bourboulis, E.J.; Rifiotis, C.; Papakostas, K.; Andreopoulos, A.; Dounis, E.; Karagianakos, P.; Giamarellou, H. Treatment of experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus with a biodegradable system of lactic acid polymer releasing pefloxacin. J. Antimicrob. Chemother., 2000, 46(2), 311-314.
[http://dx.doi.org/10.1093/jac/46.2.311] [PMID: 10933660]
[45]
Rogers-Foy, J.M.; Powers, D.L.; Brosnan, D.A.; Barefoot, S.F.; Friedman, R.J.; LaBerge, M. Hydroxyapatite composites designed for antibiotic drug delivery and bone reconstruction: a caprine model. J. Invest. Surg., 1999, 12(5), 263-275.
[http://dx.doi.org/10.1080/089419399272386] [PMID: 10599002]
[46]
Cameron, H.U.; Macnab, I.; Pilliar, R.M. Evaluation of biodegradable ceramic. J. Biomed. Mater. Res., 1977, 11(2), 179-186.
[http://dx.doi.org/10.1002/jbm.820110204] [PMID: 853042]
[47]
Damien, C.J.; Parsons, J.R. Bone graft and bone graft substitutes: a review of current technology and applications. J. Appl. Biomater., 1991, 2(3), 187-208.
[http://dx.doi.org/10.1002/jab.770020307] [PMID: 10149083]
[48]
Makarov, C.; Cohen, V.; Raz-Pasteur, A.; Gotman, I. In vitro elution of vancomycin from biodegradable osteoconductive calcium phosphate-polycaprolactone composite beads for treatment of osteomyelitis. Eur. J. Pharm. Sci., 2014, 62, 49-56.
[http://dx.doi.org/10.1016/j.ejps.2014.05.008] [PMID: 24859314]
[49]
Hess, U.; Mikolajczyk, G.; Treccani, L.; Streckbein, P.; Heiss, C.; Odenbach, S.; Rezwan, K. Multi-loaded ceramic beads/matrix scaffolds obtained by combining ionotropic and freeze gelation for sustained and tuneable vancomycin release. Mater. Sci. Eng. C, 2016, 67, 542-553.
[http://dx.doi.org/10.1016/j.msec.2016.05.042] [PMID: 27287153]
[50]
Lulu, G.A.; Karunanidhi, A.; Mohamad Yusof, L.; Abba, Y.; Mohd Fauzi, F.; Othman, F. In vivo efficacy of tobramycin-loaded synthetic calcium phosphate beads in a rabbit model of staphylococcal osteomyelitis. Ann. Clin. Microbiol. Antimicrob., 2018, 17(1), 46.
[http://dx.doi.org/10.1186/s12941-018-0296-3] [PMID: 30593272]
[51]
Zhao, Z.; Wang, G.; Zhang, Y.; Luo, W.; Liu, S.; Liu, Y.; Zhou, Y.; Zhang, Y. The effect of calcium sulfate/calcium phosphate composite for the treatment of chronic osteomyelitis compared with calcium sulfate. Ann. Palliat. Med., 2020, 9(4), 1821-1833.
[http://dx.doi.org/10.21037/apm.2020.03.23] [PMID: 32279517]
[52]
Mistry, S.; Roy, S.; Maitra, N.J.; Kundu, B.; Chanda, A.; Datta, S.; Joy, M. A novel, multi-barrier, drug eluting calcium sulfate/biphasic calcium phosphate biodegradable composite bone cement for treatment of experimental MRSA osteomyelitis in rabbit model. J. Control. Release, 2016, 239, 169-181.
[http://dx.doi.org/10.1016/j.jconrel.2016.08.014] [PMID: 27582374]
[53]
Ghosh, S.; Wu, V.; Pernal, S.; Uskoković, V. Self-setting calcium phosphate cements with tunable antibiotic release rates for advanced antimicrobial applications. ACS Appl. Mater. Interfaces, 2016, 8(12), 7691-7708.
[http://dx.doi.org/10.1021/acsami.6b01160] [PMID: 26958867]
[54]
Schnieders, J.; Gbureck, U.; Vorndran, E.; Schossig, M.; Kissel, T. The effect of porosity on drug release kinetics from vancomycin microsphere/calcium phosphate cement composites J. Biomed. Mater. Res. - Part B Appl. Biomater., 2011, 99, 391-.
[55]
Lazarettos, J.; Efstathopoulos, N.; Papagelopoulos, P.J.; Savvidou, O.D.; Kanellakopoulou, K.; Giamarellou, H.; Giamarellos-Bourboulis, E.J.; Nikolaou, V.; Kapranou, A.; Papalois, A.; Papachristou, G. A bioresorbable calcium phosphate delivery system with teicoplanin for treating MRSA osteomyelitis. Clin. Orthop. Relat. Res., 2004, (423), 253-258.
[http://dx.doi.org/10.1097/01.blo.0000127422.06956.35] [PMID: 15232458]
[56]
Stallmann, H.P.; Faber, C.; Bronckers, A.L.J.J.; Nieuw Amerongen, A.V.; Wuisman, P.I. Osteomyelitis prevention in rabbits using antimicrobial peptide hLF1-11- or gentamicin-containing calcium phosphate cement. J. Antimicrob. Chemother., 2004, 54(2), 472-476.
[http://dx.doi.org/10.1093/jac/dkh346] [PMID: 15231767]
[57]
Joosten, U.; Joist, A.; Frebel, T.; Brandt, B.; Diederichs, S.; von Eiff, C. Evaluation of an in situ setting injectable calcium phosphate as a new carrier material for gentamicin in the treatment of chronic osteomyelitis: studies in vitro and in vivo. Biomaterials, 2004, 25(18), 4287-4295.
[http://dx.doi.org/10.1016/j.biomaterials.2003.10.083] [PMID: 15046919]
[58]
Peng, K.T.; Chiang, Y.C.; Huang, T.Y.; Chen, P.C.; Chang, P.J.; Lee, C.W. Curcumin nanoparticles are a promising anti-bacterial and anti-inflammatory agent for treating periprosthetic joint infections. Int. J. Nanomedicine, 2019, 14, 469-481.
[http://dx.doi.org/10.2147/IJN.S191504] [PMID: 30666108]
[59]
Chainani-Wu, N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J. Altern. Complement. Med., 2003, 9(1), 161-168.
[http://dx.doi.org/10.1089/107555303321223035] [PMID: 12676044]
[60]
Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218.
[http://dx.doi.org/10.1208/s12248-012-9432-8] [PMID: 23143785]
[61]
Yen, F.L.; Wu, T.H.; Tzeng, C.W.; Lin, L.T.; Lin, C.C. Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities. J. Agric. Food Chem., 2010, 58(12), 7376-7382.
[http://dx.doi.org/10.1021/jf100135h] [PMID: 20486686]
[62]
Berebichez-Fridman, R.; Montero-Olvera, P.; Gómez-García, R.; Berebichez-Fastlicht, E. An intramedullary nail coated with antibiotic and growth factor nanoparticles: An individualized state-of-the-art treatment for chronic osteomyelitis with bone defects. Med. Hypotheses, 2017, 105, 63-68.
[http://dx.doi.org/10.1016/j.mehy.2017.06.023] [PMID: 28735655]
[63]
Posadowska, U.; Brzychczy-Wloch, M.; Pamula, E. Injectable gellan gum-based nanoparticles-loaded system for the local delivery of vancomycin in osteomyelitis treatment. J. Mater. Sci. Mater. Med., 2016, 27(1), 9.
[http://dx.doi.org/10.1007/s10856-015-5604-2] [PMID: 26621310]
[64]
Posadowska, U.; Brzychczy-Włoch, M.; Pamuła, E. Gentamicin loaded PLGA nanoparticles as local drug delivery system for the osteomyelitis treatment. Acta Bioeng. Biomech., 2015, 17(3), 41-48.
[PMID: 26687562]
[65]
Bastari, K.; Arshath, M.; Ng, Z.H.M.; Chia, J.H.; Yow, Z.X.D.; Sana, B.; Tan, M.F.; Lim, S.; Loo, S.C. A controlled release of antibiotics from calcium phosphate-coated poly(lactic-co-glycolic acid) particles and their in vitro efficacy against Staphylococcus aureus biofilm. J. Mater. Sci. Mater. Med., 2014, 25(3), 747-757.
[http://dx.doi.org/10.1007/s10856-013-5125-9] [PMID: 24370968]
[66]
Uskoković, V.; Desai, T.A. Phase composition control of calcium phosphate nanoparticles for tunable drug delivery kinetics and treatment of osteomyelitis. I. Preparation and drug release. J. Biomed. Mater. Res. A, 2013, 101(5), 1416-1426.
[http://dx.doi.org/10.1002/jbm.a.34426] [PMID: 23115118]
[67]
Uskoković, V.; Desai, T.A. Phase composition control of calcium phosphate nanoparticles for tunable drug delivery kinetics and treatment of osteomyelitis. II. Antibacterial and osteoblastic response. J. Biomed. Mater. Res. A, 2013, 101(5), 1427-1436.
[http://dx.doi.org/10.1002/jbm.a.34437] [PMID: 23115128]
[68]
Uskoković, V.; Hoover, C.; Vukomanović, M.; Uskoković, D.P.; Desai, T.A. Osteogenic and antimicrobial nanoparticulate calcium phosphate and poly-(D,L-lactide-co-glycolide) powders for the treatment of osteomyelitis. Mater. Sci. Eng. C, 2013, 33(6), 3362-3373.
[http://dx.doi.org/10.1016/j.msec.2013.04.023] [PMID: 23706222]
[69]
Zhang, P.; Qin, J.; Zhang, B.; Zheng, Y.; Yang, L.; Shen, Y.; Zuo, B.; Zhang, F. Gentamicin-loaded silk/nanosilver composite scaffolds for MRSA-induced chronic osteomyelitis. R. Soc. Open Sci., 2019, 6(5), 182102.
[http://dx.doi.org/10.1098/rsos.182102] [PMID: 31218036]
[70]
Shahnaz, Q.; Haik, Y.; Mensah-Brown, E.; Bashir, G.; Fernandez- Cabezudo, M.J.; Al-Ramadi, B.K. Metallic nanoparticles to eradicate bacterial bone infection. Nanomedicine Nanotechnology. Biol. Med. (Aligarh), 2017, 13, 2241-2250.
[71]
Zhang, D.; Liu, W.; Wu, X.D.; He, X.; Lin, X.; Wang, H.; Li, J.; Jiang, J.; Huang, W. Efficacy of novel nano-hydroxyapatite/polyurethane composite scaffolds with silver phosphate particles in chronic osteomyelitis. J. Mater. Sci. Mater. Med., 2019, 30(6), 59.
[http://dx.doi.org/10.1007/s10856-019-6261-7] [PMID: 31127361]
[72]
Matos, A.C.; Marques, C.F.; Pinto, R.V.; Ribeiro, I.A.C.; Gonçalves, L.M.; Vaz, M.A.; Ferreira, J.M.; Almeida, A.J.; Bettencourt, A.F. Novel doped calcium phosphate-PMMA bone cement composites as levofloxacin delivery systems. Int. J. Pharm., 2015, 490(1-2), 200-208.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.038] [PMID: 26002570]
[73]
Sunita Prem, V.; Sampath Kumar, T.S. Tailoring calcium-deficient hydroxyapatite nanocarriers for enhanced release of antibiotics. J. Biomed. Nanotechnol., 2008, 4, 203-209.
[74]
Sampath Kumar, T.S.; Madhumathi, K.; Rubaiya, Y.; Doble, M. Dual mode antibacterial activity of ion substituted calcium phosphate nanocarriers for bone infections. Front. Bioeng. Biotechnol., 2015, 3, 59.
[http://dx.doi.org/10.3389/fbioe.2015.00059] [PMID: 25984512]
[75]
Thanyaphoo, S.; Kaewsrichan, J. Synthesis and evaluation of novel glass ceramics as drug delivery systems in osteomyelitis. J. Pharm. Sci., 2012, 101(8), 2870-2882.
[http://dx.doi.org/10.1002/jps.23230] [PMID: 22674208]
[76]
Ferguson, J.; Diefenbeck, M.; McNally, M. Ceramic Biocomposites as Biodegradable Antibiotic Carriers in the Treatment of Bone Infections. J. Bone Jt. Infect., 2017, 2(1), 38-51.
[http://dx.doi.org/10.7150/jbji.17234] [PMID: 28529863]
[77]
El-Ghannam, A.; Jahed, K.; Govindaswami, M. Resorbable bioactive ceramic for treatment of bone infection. J. Biomed. Mater. Res. A, 2010, 94(1), 308-316.
[http://dx.doi.org/10.1002/jbm.a.32705] [PMID: 20186734]
[78]
Stemberger, A.; Grimm, H.; Bader, F.; Rahn, H.D.; Ascherl, R. Local treatment of bone and soft tissue infections with the collagen- gentamicin sponge. Eur. J. Surg. Suppl., 1997, 578(578), 17-26.
[PMID: 9167145]
[79]
Wachol-Drewek, Z.; Pfeiffer, M.; Scholl, E. Comparative investigation of drug delivery of collagen implants saturated in antibiotic solutions and a sponge containing gentamicin. Biomaterials, 1996, 17(17), 1733-1738.
[http://dx.doi.org/10.1016/0142-9612(96)87654-X] [PMID: 8866036]
[80]
Pawar, V.; Srivastava, R. Chitosan-polycaprolactone blend sponges for management of chronic osteomyelitis: A preliminary characterization and in vitro evaluation. Int. J. Pharm., 2019, 568, 118553.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118553] [PMID: 31344444]
[81]
Brown, M.E.; Zou, Y.; Peyyala, R.; Huja, S.S.; Cunningham, L.L.; Milbrandt, T.A.; Dziubla, T.D.; Puleo, D.A. Testing of a bioactive, moldable bone graft substitute in an infected, critically sized segmental defect model. J. Biomed. Mater. Res. B Appl. Biomater., 2018, 106(5), 1878-1886.
[http://dx.doi.org/10.1002/jbm.b.34001] [PMID: 28926192]
[82]
Wu, W.; Ye, C.; Zheng, Q.; Wu, G.; Cheng, Z. A therapeutic delivery system for chronic osteomyelitis via a multi-drug implant based on three-dimensional printing technology. J. Biomater. Appl., 2016, 31(2), 250-260.
[http://dx.doi.org/10.1177/0885328216640660] [PMID: 27013218]
[83]
Dorati, R.; De Trizio, A.; Genta, I.; Merelli, A.; Modena, T.; Conti, B. Gentamicin-loaded thermosetting hydrogel and moldable composite scaffold: Formulation study and biologic evaluation. J. Pharm. Sci., 2017, 106(6), 1596-1607.
[http://dx.doi.org/10.1016/j.xphs.2017.02.031] [PMID: 28283432]
[84]
De Trizio, A.; Srisuk, P.; Costa, R.R.; Fraga, A.G.; Modena, T.; Genta, I. Natural based eumelanin nanoparticles functionalization and preliminary evaluation as carrier for gentamicin. React. Funct. Polym., 2017, 114, 38-48.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2017.03.004]