Pharmaceutical Nanotechnology

Author(s): Sevda Şenel*

DOI: 10.2174/2211738508666200910101504

Nanotechnology and Animal Health

Page: [26 - 35] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Nanotechnology has been a rapidly expanding area of research with huge potential in many sectors, including animal healthcare. It promises to revolutionize drug and vaccine delivery, diagnostics, and theranostics, which has become an important tool in personalized medicine by integrating therapeutics and diagnostics. Nanotechnology has also been used successfully in animal nutrition. In this review, the application of nanotechnology in animal health will be reviewed with its pros and cons.

Keywords: Animal health, drug delivery, feeding, nanoparticulate systems, production, theranostics, vaccine delivery.

Graphical Abstract

[1]
References Gregoriadis G, Perrie Y. Liposomes. In: Wiley, ed. Encyclopedia of life sciences (ELS). Cichester: John Wiley & Sons In: 2010.
[http://dx.doi.org/10.1002/9780470015902.a0002656.pub2]
[2]
Euliss LE, DuPont JA, Gratton S, DeSimone J. Imparting size, shape, and composition control of materials for nanomedicine. Chem Soc Rev 2006; 35(11): 1095-104.
[http://dx.doi.org/10.1039/b600913c ] [PMID: 17057838]
[3]
Tomalia DA, Fréchet JMJ. A Brief Historical Perspective in Dendrimers and Other Dendritic Polymers. J Polym Sci A Polym Chem 2002; 40: 2719-28.
[http://dx.doi.org/10.1002/pola.10301]
[4]
Gref R, Couvreur P. Nanocapsules: Preparation, Characterisation and Therapeutic Applications Nanoparticulates as Drug Carriers. London: Imperial College Press 2006; pp. 255-76.
[http://dx.doi.org/10.1142/9781860949074_0012]
[5]
Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2010; 2(4): 282-9.
[http://dx.doi.org/10.4103/0975-7406.72127 ] [PMID: 21180459]
[6]
World Organisation for Animal Health. One health. 2020. Available at: https://www. oie.int/en/for-the-media/onehealth/
[7]
World Health Organization. One Health. Available at: https://www.who.int/news-room/q-a-detail/one-health
[8]
Statista Distribution of global animal health care market volume in 2018, by species 2018. Available at: https://www.statista.com/statistics/258209/animal-health-market-volume-by-species-2012/
[9]
Coutant T, Vergneau-Grosset C, Langlois I. Overview of drug delivery methods in exotics, including their anatomic and physiologic considerations. Vet Clin North Am Exot Anim Pract 2018; 21(2): 215-59.
[http://dx.doi.org/10.1016/j.cvex.2018.01.006 ] [PMID: 29655468]
[10]
Coutant T, Laniesse D, Sykes JM IV. Advances in therapeutics and delayed drug release. Vet Clin North Am Exot Anim Pract 2019; 22(3): 501-20.
[http://dx.doi.org/10.1016/j.cvex.2019.05.006 ] [PMID: 31395328]
[11]
Ahmed I, Kasraian K. Pharmaceutical challenges in veterinary product development. Adv Drug Deliv Rev 2002; 54(6): 871-82.
[http://dx.doi.org/10.1016/S0169-409X(02)00074-1 ] [PMID: 12363436]
[12]
Wyse CA, McLellan J, Dickie AM, Sutton DG, Preston T, Yam PS. A review of methods for assessment of the rate of gastric emptying in the dog and cat: 1898-2002. J Vet Intern Med 2003; 17(5): 609-21.
[PMID: 14529126]
[13]
Boillat CS, Gaschen FP, Hosgood GL. Assessment of the relationship between body weight and gastrointestinal transit times measured by use of a wireless motility capsule system in dogs. Am J Vet Res 2010; 71(8): 898-902.
[http://dx.doi.org/10.2460/ajvr.71.8.898 ] [PMID: 20673088]
[14]
Martinez MN, Court MH, Fink-Gremmels J, Mealey KL. Population variability in animal health: Influence on dose-exposure-response relationships: Part I: Drug metabolism and transporter systems. J Vet Pharmacol Ther 2018; 41(4): E57-67.
[http://dx.doi.org/10.1111/jvp.12670 ] [PMID: 29917248]
[15]
Irache JM, Esparza I, Gamazo C, Agüeros M, Espuelas S. Nanomedicine: novel approaches in human and veterinary therapeutics. Vet Parasitol 2011; 180(1-2): 47-71.
[http://dx.doi.org/10.1016/j.vetpar.2011.05.028 ] [PMID: 21680101]
[16]
Underwood C, van Eps AW. Nanomedicine and veterinary science: the reality and the practicality. Vet J 2012; 193(1): 12-23.
[http://dx.doi.org/10.1016/j.tvjl.2012.01.002 ] [PMID: 22365842]
[17]
Ikonomopoulos J. Interaction between veterinary medicine and nanotechnology; the present and the near future: A review. Int J Environ Agric Res 2016; 2(9): 66-71.
[18]
Chariou PL, Ortega-Rivera OA, Steinmetz NF. Nanocarriers for the delivery of medical, veterinary, and agricultural active ingredients. ACS Nano 2020; 14(3): 2678-701.
[http://dx.doi.org/10.1021/acsnano.0c00173 ] [PMID: 32125825]
[19]
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4(2): 145-60.
[http://dx.doi.org/10.1038/nrd1632 ] [PMID: 15688077]
[20]
Vail DM, MacEwen EG, Kurzman ID, et al. Liposome-encapsulated muramyl tripeptide phosphatidylethanolamine adjuvant immunotherapy for splenic hemangiosarcoma in the dog: a randomized multi-institutional clinical trial. Clin Cancer Res 1995; 1(10): 1165-70.
[PMID: 9815908]
[21]
Sadozai H, Saeidi D. Recent developments in liposome-based veterinary therapeutics. ISRN Vet Sci 2013.2013167521
[http://dx.doi.org/10.1155/2013/167521 ] [PMID: 24222862]
[22]
Zabielska-Koczywąs K, Lechowski R. The use of liposomes and nanoparticles as drug delivery systems to improve cancer treatment in dogs and cats. Molecules 2017; 22(12)E2167
[http://dx.doi.org/10.3390/molecules22122167 ] [PMID: 29215573]
[23]
Vail DM, Kurzman ID, Glawe PC, et al. STEALTH liposome-encapsulated cisplatin (SPI-77) versus carboplatin as adjuvant therapy for spontaneously arising osteosarcoma (OSA) in the dog: a randomized multicenter clinical trial. Cancer Chemother Pharmacol 2002; 50(2): 131-6.
[http://dx.doi.org/10.1007/s00280-002-0469-8 ] [PMID: 12172978]
[24]
Hafeman S, London C, Elmslie R, Dow S. Evaluation of liposomal clodronate for treatment of malignant histiocytosis in dogs. Cancer Immunol Immunother 2010; 59(3): 441-52.
[http://dx.doi.org/10.1007/s00262-009-0763-y ] [PMID: 19760220]
[25]
AVMA animal health studies database. Available at: https://ebusiness.avma. org/aahsd/study_search.aspx
[26]
Oliva G, Gradoni L, Ciaramella P, et al. Activity of liposomal amphotericin B (AmBisome) in dogs naturally infected with Leishmania infantum. J Antimicrob Chemother 1995; 36(6): 1013-9.
[http://dx.doi.org/10.1093/jac/36.6.1013 ] [PMID: 8821600]
[27]
Krugner-Higby L, Smith L, Schmidt B, et al. Experimental pharmacodynamics and analgesic efficacy of liposome-encapsulated hydromorphone in dogs. J Am Anim Hosp Assoc 2011; 47(3): 185-95.
[http://dx.doi.org/10.5326/JAAHA-MS-5599 ] [PMID: 21498589]
[28]
Cai S, Zhang T, Forrest WC, et al. Phase I-II clinical trial of hyaluronan-cisplatin nanoconjugate in dogs with naturally occurring malignant tumors. Am J Vet Res 2016; 77(9): 1005-16.
[http://dx.doi.org/10.2460/ajvr.77.9.1005 ] [PMID: 27580113]
[29]
Zhang T, Cai S, Groer C, et al. Hyaluronan-lysine cisplatin drug carrier for treatment of localized cancers: Pharmacokinetics, tolerability, and efficacy in rodents and canines. J Pharm Sci 2016; 105(6): 1891-900.
[http://dx.doi.org/10.1016/j.xphs.2016.03.018 ] [PMID: 27155765]
[30]
Axiak SM, Selting KA, Decedue CJ, et al. Phase I dose escalation safety study of nanoparticulate paclitaxel (CTI 52010) in normal dogs. Int J Nanomedicine 2011; 6: 2205-12.
[http://dx.doi.org/10.2147/IJN.S24823 ] [PMID: 22072863]
[31]
World Health Organization Regional Office for The Eastern Mediterranean. Zoonotic disease: emerging public health threats in the region Available at: http://www.emro.who.int/about-who/rc61/zoonotic-diseases. html
[32]
Vidic J, Manzano M, Chang C-M, Jaffrezic-Renault N. Advanced biosensors for detection of pathogens related to livestock and poultry. Vet Res (Faisalabad) 2017; 48(1): 11.
[http://dx.doi.org/10.1186/s13567-017-0418-5 ] [PMID: 28222780]
[33]
Zarlenga DS, Higgins J. PCR as a diagnostic and quantitative technique in veterinary parasitology. Vet Parasitol 2001; 101(3-4): 215-30.
[http://dx.doi.org/10.1016/S0304-4017(01)00568-4 ] [PMID: 11707298]
[34]
Hoffmann B, Beer M, Reid SM, et al. A review of RT-PCR technologies used in veterinary virology and disease control: sensitive and specific diagnosis of five livestock diseases notifiable to the World Organisation for Animal Health. Vet Microbiol 2009; 139(1-2): 1-23.
[http://dx.doi.org/10.1016/j.vetmic.2009.04.034 ] [PMID: 19497689]
[35]
World Organisation for Animal Health. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (mammals, birds and bees). 7th ed. Paris: World Organisation for Animal Health 2012.
[36]
Neethirajan S. Recent advances in wearable sensors for animal health management. Sens Biosensing Res 2017; 12: 15-29.
[http://dx.doi.org/10.1016/j.sbsr.2016.11.004]
[37]
Malik P, Katyal V, Malik V, Asatkar A, Inwati G, Mukherjee TK. Nanobiosensors: Concepts and variations. ISRN Nanomater 2013; 2013; 327435.
[http://dx.doi.org/10.1155/2013/327435]
[38]
Du X, Zhou J. Application of biosensors to detection of epidemic diseases in animals. Res Vet Sci 2018; 118: 444-8.
[http://dx.doi.org/10.1016/j.rvsc.2018.04.011 ] [PMID: 29730246]
[39]
Kumari V, Rastogi S, Sharma V. Emerging trends in nanobiosensor.In Prasad R, Kumar V, Kumar M, Choudhary D, Eds Nanobiotechnology in Bioformulations. Heidelberg: Springer International Publishing 2019; pp. 419-47.
[http://dx.doi.org/10.1007/978-3-030-17061-5_18]
[40]
Lambe U, Prasad M, Brar B, et al. Nanodiagnostics: a new frontier for veterinary and medical sciences. J Exp Biol Agric Sci 2016; 4(3S): 307-20.
[http://dx.doi.org/10.18006/2016.4(3S).307.320]
[41]
Su H, Li S, Jin Y, et al. Nanomaterial-based biosensors for biological detections. Adv Health Care Technol 2017; 3: 19-29.
[http://dx.doi.org/10.2147/AHCT.S94025]
[42]
Cabuzu D, Cirja A, Puiu R, Grumezescu AM. Biomedical applications of gold nanoparticles. Curr Top Med Chem 2015; 15(16): 1605-13.
[http://dx.doi.org/10.2174/1568026615666150414144750 ] [PMID: 25877087]
[43]
Azzazy HM, Mansour MM, Kazmierczak SC. Nanodiagnostics: a new frontier for clinical laboratory medicine. Clin Chem 2006; 52(7): 1238-46.
[http://dx.doi.org/10.1373/clinchem.2006.066654 ] [PMID: 16709623]
[44]
Hamdy ME, Del Carlo M, Hussein HA, et al. Development of gold nanoparticles biosensor for ultrasensitive diagnosis of foot and mouth disease virus. J Nanobiotechnology 2018; 16(1): 48.
[http://dx.doi.org/10.1186/s12951-018-0374-x ] [PMID: 29751767]
[45]
Kalash RS, Lakshmanan VK, Cho C-S, Park I-K. Theranostics. In: Ebara M Ed Biomaterials Nano architectonics. Oxford, Cambridge: William Andrew Publishing 2016; pp. 197-215.
[http://dx.doi.org/10.1016/B978-0-323-37127-8.00012-1]
[46]
Wang LS, Chuang MC, Ho JA. Nanotheranostics--a review of recent publications. Int J Nanomedicine 2012; 7: 4679-95.
[PMID: 22956869]
[47]
Blau R, Krivitsky A, Epshtein Y, Satchi-Fainaro R. Are nanotheranostics and nanodiagnostics-guided drug delivery stepping stones towards precision medicine? Drug Resist Updat 2016; 27: 39-58.
[http://dx.doi.org/10.1016/j.drup.2016.06.003 ] [PMID: 27449597]
[48]
Lloyd KC, Khanna C, Hendricks W, Trent J, Kotlikoff M. Precision medicine: an opportunity for a paradigm shift in veterinary medicine. J Am Vet Med Assoc 2016; 248(1): 45-8.
[http://dx.doi.org/10.2460/javma.248.1.45 ] [PMID: 26684088]
[49]
Blomme EA, Spear BB. Theranostics in veterinary medicine: where are we heading? Vet J 2010; 185(3): 237-8.
[http://dx.doi.org/10.1016/j.tvjl.2009.09.021 ] [PMID: 19884025]
[50]
Hardy CM, Braid AL. Vaccines for immunological control of fertility in animals. Rev. sci. tech. Off. int. Epiz 2007; 26(2): 461-70.
[http://dx.doi.org/10.20506/rst.26.2.1754 ] [PMID: 17892166]
[51]
Meeusen ENT, Walker J, Peters A, Pastoret P-P, Jungersen G. Current status of veterinary vaccines. Clin Microbiol Rev 2007; 20(3): 489-510.
[http://dx.doi.org/10.1128/CMR.00005-07 ] [PMID: 17630337]
[52]
Roth JA. Veterinary vaccines and their importance to animal health and public health. Procedia Vaccinol 2011; 5: 127-36.
[http://dx.doi.org/10.1016/j.provac.2011.10.009 ] [PMID: 32288915]
[53]
Chambers MA, Graham SP, La Ragione RM. Challenges in Veterinary Vaccine Development and Immunization. Methods Mol Biol 2016; 1404: 3-35.
[http://dx.doi.org/10.1007/978-1-4939-3389-1_1 ] [PMID: 27076287]
[54]
Francis MJ. Recent advances in vaccine technologies. Vet Clin North Am Small Anim Pract 2018; 48(2): 231-41.
[http://dx.doi.org/10.1016/j.cvsm.2017.10.002 ] [PMID: 29217317]
[55]
Scheerlinck JP, Greenwood DL. Particulate delivery systems for animal vaccines. Methods 2006; 40(1): 118-24.
[http://dx.doi.org/10.1016/j.ymeth.2006.05.023 ] [PMID: 16997719]
[56]
Singh M, O’Hagan DT. Recent advances in veterinary vaccine adjuvants. Int J Parasitol 2003; 33(5-6): 469-78.
[http://dx.doi.org/10.1016/S0020-7519(03)00053-5 ] [PMID: 12782048]
[57]
Arca HC, Günbeyaz M, Şenel S. Chitosan-based systems for the delivery of vaccine antigens. Expert Rev Vaccines 2009; 8(7): 937-53.
[http://dx.doi.org/10.1586/erv.09.47 ] [PMID: 19538118]
[58]
Schwendener RA. Liposomes as vaccine delivery systems: a review of the recent advances. Ther Adv Vaccines 2014; 2(6): 159-82.
[http://dx.doi.org/10.1177/2051013614541440 ] [PMID: 25364509]
[59]
Irache JM, Camacho AI, Gamazo C. Vaccine delivery systems for veterinary immunization In: das Neves J, Sarmento B, Eds Mucosal Delivery of Biopharmaceuticals: Biology, Challenges and Strategies Springer US. Boston, MA 2014; pp. 379-406.
[http://dx.doi.org/10.1007/978-1-4614-9524-6_17]
[60]
Sharma S, Hinds LA. Formulation and delivery of vaccines: Ongoing challenges for animal management. J Pharm Bioallied Sci 2012; 4(4): 258-66.
[http://dx.doi.org/10.4103/0975-7406.103231 ] [PMID: 23248557]
[61]
Bowersock TL, Martin S. Vaccine delivery to animals. Adv Drug Deliv Rev 1999; 38(2): 167-94.
[http://dx.doi.org/10.1016/S0169-409X(99)00015-0 ] [PMID: 10837755]
[62]
Gerdts V, Mutwiri GK, Tikoo SK, Babiuk LA. Mucosal delivery of vaccines in domestic animals. Vet Res 2006; 37(3): 487-510.
[http://dx.doi.org/10.1051/vetres:2006012 ] [PMID: 16611560]
[63]
Calderon-Nieva D, Goonewardene KB, Gomis S, Foldvari M. Veterinary vaccine nanotechnology: pulmonary and nasal delivery in livestock animals. Drug Deliv Transl Res 2017; 7(4): 558-70.
[http://dx.doi.org/10.1007/s13346-017-0400-9 ] [PMID: 28639138]
[64]
Miquel-Clopés A, Bentley EG, Stewart JP, Carding SR. Mucosal vaccines and technology. Clin Exp Immunol 2019; 196(2): 205-14.
[PMID: 30963541]
[65]
Allison AG, Gregoriadis G. Liposomes as immunological adjuvants. Nature 1974; 252(5480): 252.
[http://dx.doi.org/10.1038/252252a0 ] [PMID: 4424229]
[66]
Perrie Y, Crofts F, Devitt A, Griffiths H R, Kastner E, Nadella V. Designing liposomal adjuvants for the next generation of vaccines Adv Drug Deliv Rev 2016; 99(Pt A): 85-96.
[http://dx.doi.org/10.1016/j.addr.2015.11.005]
[67]
Yaguchi K, Ohgitani T, Noro T, Kaneshige T, Shimizu Y. Vaccination of chickens with liposomal inactivated avian pathogenic Escherichia coli (APEC) vaccine by eye drop or coarse spray administration. Avian Dis 2009; 53(2): 245-9.
[http://dx.doi.org/10.1637/8475-092908-Reg.1 ] [PMID: 19630231]
[68]
Onuigbo EB, Okore VC, Ofokansi KC, et al. Preliminary evaluation of the immunoenhancement potential of Newcastle disease vaccine formulated as a cationic liposome. Avian Pathol 2012; 41(4): 355-60.
[http://dx.doi.org/10.1080/03079457.2012.691154 ] [PMID: 22834549]
[69]
Hiszczyńska-Sawicka E, Li H, Boyu Xu J, et al. Induction of immune responses in sheep by vaccination with liposome-entrapped DNA complexes encoding Toxoplasma gondii MIC3 gene. Pol J Vet Sci 2012; 15(1): 3-9.
[http://dx.doi.org/10.2478/v10181-011-0107-7 ] [PMID: 22708351]
[70]
Morein B, Hu KF, Abusugra I. Current status and potential application of ISCOMs in veterinary medicine. Adv Drug Deliv Rev 2004; 56(10): 1367-82.
[http://dx.doi.org/10.1016/j.addr.2004.02.004 ] [PMID: 15191787]
[71]
Sjölander A, Drane D, Maraskovsky E, et al. Immune responses to ISCOM formulations in animal and primate models. Vaccine 2001; 19(17-19): 2661-5.
[http://dx.doi.org/10.1016/S0264-410X(00)00497-7 ] [PMID: 11257406]
[72]
Sun H-X, Xie Y, Ye Y-P. ISCOMs and ISCOMATRIX. Vaccine 2009; 27(33): 4388-401.
[http://dx.doi.org/10.1016/j.vaccine.2009.05.032 ] [PMID: 19450632]
[73]
Bigaeva E. Doorn Ev, Liu H, Hak E. Meta-analysis on randomized controlled trials of vaccines with QS-21 or ISCOMATRIX adjuvant: Safety and tolerability. PLoS One 2016; 11(5)e0154757
[http://dx.doi.org/10.1371/journal.pone.0154757 ] [PMID: 27149269]
[74]
Crouch CF, Daly J, Henley W, Hannant D, Wilkins J, Francis MJ. The use of a systemic prime/mucosal boost strategy with an equine influenza ISCOM vaccine to induce protective immunity in horses. Vet Immunol Immunopathol 2005; 108(3-4): 345-55.
[http://dx.doi.org/10.1016/j.vetimm.2005.06.009 ] [PMID: 16098611]
[75]
Cimica V, Galarza JM. Adjuvant formulations for virus-like particle (VLP) based vaccines. Clin Immunol 2017; 183: 99-108.
[http://dx.doi.org/10.1016/j.clim.2017.08.004 ] [PMID: 28780375]
[76]
Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin Immunol 2017; 34: 123-32.
[http://dx.doi.org/10.1016/j.smim.2017.08.014 ] [PMID: 28887001]
[77]
Crisci E, Bárcena J, Montoya M. Virus-like particles: the new frontier of vaccines for animal viral infections. Vet Immunol Immunopathol 2012; 148(3-4): 211-25.
[http://dx.doi.org/10.1016/j.vetimm.2012.04.026 ] [PMID: 22705417]
[78]
Liu F, Ge S, Li L, Wu X, Liu Z, Wang Z. Virus-like particles: potential veterinary vaccine immunogens. Res Vet Sci 2012; 93(2): 553-9.
[http://dx.doi.org/10.1016/j.rvsc.2011.10.018 ] [PMID: 22100244]
[79]
Şenel S, McClure SJ. Potential applications of chitosan in veterinary medicine. Adv Drug Deliv Rev 2004; 56(10): 1467-80.
[http://dx.doi.org/10.1016/j.addr.2004.02.007 ] [PMID: 15191793]
[80]
Dhakal S, Renukaradhya GJ. Nanoparticle-based vaccine development and evaluation against viral infections in pigs. Vet Res (Faisalabad) 2019; 50(1): 90.
[http://dx.doi.org/10.1186/s13567-019-0712-5 ] [PMID: 31694705]
[81]
FAO Headquarters. Animal Production and Health Report-Impact of Animal Nutrition on Animal Welfare Rome 2011. Available at: http://www.fao.org/3/a-i3148e.pdf
[82]
Konkol D, Wojnarowski K. The use of nanominerals in animal nutrition as a way to ımprove the composition and quality of animal products. J Chem 2018 2018. 5927058
[http://dx.doi.org/10.1155/2018/5927058]
[83]
Hill EK, Li J. Current and future prospects for nanotechnology in animal production. J Anim Sci Biotechnol 2017; 8: 26.
[http://dx.doi.org/10.1186/s40104-017-0157-5 ] [PMID: 28316783]
[84]
Swain PS, Rao SBN, Rajendran D, Dominic G, Selvaraju S. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Anim Nutr 2016; 2(3): 134-41.
[http://dx.doi.org/10.1016/j.aninu.2016.06.003 ] [PMID: 29767083]
[85]
Radwan NL, Eldin TS, El-Zaiat A, Mostafa MA. Effect of dietary nano-selenium supplementation on sele- nium content and oxidative stability in table eggs and pro- ductive performance of laying hens. Int J Poult Sci 2015; 14: 161-76.
[http://dx.doi.org/10.3923/ijps.2015.161.176]
[86]
Salah Eldin TA, Hamady GAA, Abdel-Moneim MA, Farroh KY, El-Raffaei WHM. Nutritional evaluation of selenium-methionine nanocomposite as a novel dietary supplement for laying hens. Journal of Animal Health and Production 2015; 3: 64-72.
[http://dx.doi.org/10.14737/journal.jahp/2015/3.3.64.72]
[87]
Rajendran D. Application of Nano Minerals in Animal Production System. Res J Biotechnol 2013; 8: 1-3.
[88]
Gopi M, Beulah Pearlin V, Kumar RD, Muthuvel S, Govindasamy P. Role of nanoparticles in animal and poultry nutrition: Modes of action and applications in formulating feed additives and food processing. Int J Pharmacol 2017; 13(7): 724-31.
[http://dx.doi.org/10.3923/ijp.2017.724.731]