Abstract
Tuberculosis (TB) is a devastating disease responsible for millions of humans’ deaths worldwide.
It is caused by a mycobacterial organism, the tubercle bacillus or Mycobacterium tuberculosis.
Although TB can be treated, cured and can be prevented if patients take prescribed medicines, scientists
have never come close to wiping it out due to a sharp rise in the incidence of multidrug-resistant (MDR)
and extensively drug-resistant (XDR) mycobacterium strains. Due to long regimen treatment and emergence
of MDR and XDR-TB, it is urgent to re-engineer and reposition old drugs for developing new
antimycobacterial entities with novel mechanisms of action to achieve effective TB control even against
the resistant forms of TB. To combat the dreadful MDR and XDR-TB, potential targets are being extensively
searched for the last couple of years for the design and discovery of active potential antitubercular
chemotherapeutics. To explore the disease virulence, potential new tubercular target enzymes such as
InhA, MmpL3, ATP synthase, DprE1, QcrB and MenA have been taken into consideration in the present
study and the structure-based design of the corresponding target inhibitors which are under clinical
investigation has been attempted to identify structural features for the discovery of new chemical entities
(NCEs) having specificity towards MDR and XDR Mycobacterium tuberculosis (M. tuberculosis).
Keywords:
Potential anti-tubercular targets, InhA, MmpL3, ATP synthase, DprE1, QcrB, MenA, Structure-based drug design.
Graphical Abstract
[1]
WHO Tuberculosis Fact sheet No 104; World Health Organization: Geneva, 2015.
[2]
Mandell, G.; Bennett, J.; Dolin, R. Douglas, and Bennett’s principles and practice of infectious diseases; Elsevier: Amsterdam, 2010.
[8]
CDC Treatment of Tuberculosis, American Thoracic Society, CDC and Infectious Diseases Society of America. Am. J. Respir. Crit. Care Med., 2003, 167.
[24]
Fillingame, R.H. The Bacteria; Krulwich, T.A., Ed.; Academic: New York, 1990, Vol. XII, pp. 345-391.
[27]
Mikusova, K.; Makarov, V.; Neres, J. DprE1 - from the discovery to the promising tuberculosis drug target. Curr. Pharm. 2014, 20(27)
[32]
Minnikin, D.E. Lipids: complex lipids, their chemistry, biosynthesis and roles. InThe Biology of Mycobacteria; Ratledge, C.; Stanford, J., Eds.; Academic Press: London, 1982, pp. 95-184.
[112]
Kalia, D.; Kumar, A.; Meenaa, G.; Sethia, K.P.; Sharma, R.; Trivedi, P.; Khan, S.R.; Singh, A.; Singh, A.S.; Sharma, S.; Roy, K.K.; Kant, R.; Krishnan, M.Y.; Singh, B.N.; Sinha, S.; Chaturvedi, V Synthesis and anti-tubercular activity of conformationally-constrained and bisquinoline analogs of TMC207 Med. Chem. Commun. , 2015, 1554-1563.
[127]
Pethe, K.; Bifani, P.; Jang, J.; Kang, S.; Park, S.; Ahn, S.; Jiricek, J.; Jung, J.; Jeon, H.K.; Cechetto, J.; Christophe, T.; Lee, H.; Kempf, M.; Jackson, M.; Lenaerts, A.J.; Pham, H.; Jones, V.; Seo, M.J.; Kim, Y.M.; Seo, M.; Seo, J.J.; Park, D.; Ko, Y.; Choi, I.; Kim, R.; Kim, S.Y.; Lim, S.; Yim, S.A.; Nam, J.; Kang, H.; Kwon, H.; Oh, C.T.; Cho, Y.; Jang, Y.; Kim, J.; Chua, A.; Tan, B.H.; Nanjundappa, M.B.; Rao, S.P.; Barnes, W.S.; Wintjens, R.; Walker, J.R.; Alonso, S.; Lee, S.; Kim, J.; Oh, S.; Oh, T.; Nehrbass, U.; Han, S.J.; No, Z.; Lee, J.; Brodin, P.; Cho, S.N.; Nam, K.; Kim, J. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis.
Nat. Med., 2013,
19(9), 1157-1160.
[
http://dx.doi.org/10.1038/nm.3262] [PMID:
23913123]
[136]
Kalia, N.P.; Hasenoehrl, E.J.; Ab Rahman, N.B.; Koh, V.H.; Ang, M.L.T.; Sajorda, D.R.; Hards, K.; Grüber, G.; Alonso, S.; Cook, G.M.; Berney, M.; Pethe, K.P. Exploiting the synthetic lethality between terminal respiratory oxidases to kill Mycobacterium tuberculosis and clear host infection Natl., 2017, 114(28), 7426-7431.