Toxicity Risks of Nanomaterials Used in the Building Construction Materials

Page: [26 - 43] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Introduction: In recent years, there has been a growing research interest on the applications of a range of nanostructured materials in construction industry (i.e., asphalt concrete, bricks, concrete, timber, steel, and mortar), manufacturing, electronics, cosmetics, and medicine. The use of nanoscale structures in the construction industry offers exceptional physicochemical characteristics for the modification of construction materials. Nanomaterials, which are being used in cement and concretes, are carbon nanomaterials (Graphene, CNTs, CNFs), nanosilica, nano Al2O3, nanometakaoline, nano CaCO3, nano Fe2O3 and nanoTiO2.

Methods: These materials improve the properties of concretes by modifying the microstructure and also improve the mechanical properties. The improvement in mechanical and durability properties of concretes in the presence of nanoparticles is due to their smaller size (<100 nm), high surface area, and energy.

Results: Nevertheless, all these nanoscale particles find their way (either directly or indirectly) to various environmental matrices, such as groundwater, surface water, rivers, seas, lakes, and soil. The potential bioaccumulation of metal oxide nanostructures results in undesirable effects on animals, aquatic biota, plants, and humans. Therefore, it has become crucial to determine toxicity levels during the use of these multifunctional nanoscale materials.

Conclusion: This study presents an overview of the advantages and disadvantages of nanomaterials in concretes and related materials. A particular emphasis has been given to discuss the potential toxicity risks of nanomaterials used in building construction materials.

Keywords: Nanomaterials, construction materials, concretes, coatings, toxicity, environmental implications.

Graphical Abstract

[1]
Raki L. Cement and concrete nanoscience and nanotechnology. Materials (Basel) 2010; 3: 918-42.
[http://dx.doi.org/10.3390/ma3020918]
[2]
Florence Sanchez. Nanotechnology in concrete – A review. Constr Build Mater 2010; 24: 2060-71.
[http://dx.doi.org/10.1016/j.conbuildmat.2010.03.014]
[3]
Singh NB. Nanoscience of cement and concrete. materials today: proceedings 2017; 4: 5478-87..
[4]
Liew MS, Nguyen-Tri P, Nguyen TA, Kakooei S, Eds. Smart nanoconcretes and cement-based materials: Properties, modeling and applications. USA: Elsevier 2019.
[5]
Shi X, Tuan AZ. Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating. Surf Coat Tech 2009; 204(3): 237-45.
[http://dx.doi.org/10.1016/j.surfcoat.2009.06.048]
[6]
Anh T. Effect of nanoparticles on the thermal and mechanical properties of epoxy coatings. J Nanosci Nanotechnol 2016; 16(9): 9874-81.
[http://dx.doi.org/10.1166/jnn.2016.12162]
[7]
Tri Phuong Nguyen, Nguyen T,uan Anh , et al. Nanocomposite coatings: preparation, characterization, properties, and applications. Int J Corrosion 2018.
[8]
Huu N, Tuan AN. Protection of steel rebar in salt contaminated cement mortar by using epoxy nanocomposite coatings. Int J Electrochem 2018; 20188386426
[http://dx.doi.org/10.1155/2018/8386426]
[9]
Nguyen TV, Dao PH, Nguyen TA, et al. Photocatalytic degradation and heat reflectance recovery of waterborne acrylic polymer/ZnO nanocomposite coating. J Appl Polym Sci 2020; 49: 116.
[http://dx.doi.org/10.1002/app.49116]
[10]
Dong YS, Lina PH, Wang HX. Electroplating preparation of Ni-Al2O3 graded composite coatings using a rotating cathode. Surf Coat Tech 2006; 200: 3633-6.
[http://dx.doi.org/10.1016/j.surfcoat.2004.11.024]
[11]
Banovic SW, Barmak K, Marder AR. Characterization of single and discretelystepped electro-composite coatings of nickel-alumina. J Mater Sci Lett 1999; 34: 3203-11.
[http://dx.doi.org/10.1023/A:1004633923681]
[12]
Li CJ, Yang GJ, Li CX, Wang YY, Ma J, Gao PH. Characterization of Nano-Structured WC-Co Deposited by Cold Spraying. J Therm Spray Technol 2007; 16(5-6): 1011-20.
[http://dx.doi.org/10.1007/s11666-007-9096-6]
[13]
Luo XT, Yang GJ, Li CJ. Thermal stability of microstructure and hardness of cold-sprayed cBN/NiCrAl nanocomposite coating. J Therm Spray Technol 2012; 21(3-4): 578-85.
[http://dx.doi.org/10.1007/s11666-011-9719-9]
[14]
Luo X-T, Yang G-J, Lia C-J. Kondoh Katsuyoshi, High strain rate induced localized amorphization in cubic BN/NiCrAl nanocomposite through high velocity impact. Scr Mater 2011; 65: 581-4.
[http://dx.doi.org/10.1016/j.scriptamat.2011.06.030]
[15]
Luo X-T, Li C-J. Large sized cubic BN reinforced nanocomposite with improved abrasive wear resistance deposited by cold spray. Mater Des 2015; 83: 249-56.
[http://dx.doi.org/10.1016/j.matdes.2015.06.009]
[16]
Bogdanović U, Vodnik V, Mitrić M, et al. Nanomaterial with high antimicrobial efficacy--copper/polyaniline nanocomposite. ACS Appl Mater Interfaces 2015; 7(3): 1955-66.
[http://dx.doi.org/10.1021/am507746m] [PMID: 25552193]
[17]
Toledano R, Mandler D. Electrochemical codeposition of thin gold nanoparticles/sol-gel nanocomposite films. Chem Mater 2010; 22: 3943-51.
[http://dx.doi.org/10.1021/cm1005295]
[18]
Golgoona A, Aliofkhazraeia M, Toorania M, Moradia MH, Sabour RA. Corrosion and wear properties of nanoclay- polyester nanocomposite coatings fabricated by electrostatic method, procedia. Mater Sci 2015; 11: 536-41.
[19]
Chang LM, An MZ, Guo HF, Shi SY. Microstructure and properties of Ni–Co/nano-Al2O3 composite coatings by pulse reversal current electrodeposition. Appl Surf Sci 2006; 253: 2132.
[http://dx.doi.org/10.1016/j.apsusc.2006.04.018]
[20]
Woo DJ, Sneed B, Peeral F, et al. Synthesis of nanodiamond-reinforced aluminum metal composite powders and coatings using high-energy ball milling and cold spray. Carbon 2013; 63: 404-15.
[http://dx.doi.org/10.1016/j.carbon.2013.07.001]
[21]
Musil J. Hard and superhard nanocomposite coatings. Surf Coat Tech 2000; 125: 322-30.
[http://dx.doi.org/10.1016/S0257-8972(99)00586-1]
[22]
Wang F, Arai S, Endo M. Electrochemical Preparation and Characterization of Nickel/Ultra-Dispersed PTFE Composite Films from Aqueous Solution. Mater Trans 2004; 45: 1311-6.
[http://dx.doi.org/10.2320/matertrans.45.1311]
[23]
Liu C, Zhao Q. Influence of surface-energy components of Ni-P-TiO2-PTFE nanocomposite coatings on bacterial adhesion. Langmuir 2011; 27(15): 9512-9.
[http://dx.doi.org/10.1021/la200910f] [PMID: 21675718]
[24]
Ankita Sharma and A.K. Singh. Electroless Ni-P-PTFE-Al2O3 dispersion nanocomposite, coating for corrosion and wear resistance. J Mat Eng Perf 2014; 23(1): 142-51.
[25]
Koleva D, Boshkov N, Raichevski D, Veleva L. Electrochemical corrosion behaviour and surface morphology of electrodeposited zinc, zinc–cobalt and their composite coatings Transactions of the IMF. 2005 83(4): 188-93..
[http://dx.doi.org/10.1179/002029605X61676]
[26]
Yuan R, Wu S, Yu P, et al. Superamphiphobic and electroactive nanocomposite toward self-cleaning, antiwear, and anticorrosion coatings. ACS Appl Mater Interfaces 2016; 8(19): 12481-93.
[http://dx.doi.org/10.1021/acsami.6b03961] [PMID: 27136103]
[27]
Zhang S, Sun G, He Y, Fu R, Gu Y, Chen S. Preparation, characterization, and electrochromic properties of nanocellulose-based polyaniline nanocomposite films. ACS Appl Mater Interfaces 2017; 9(19): 16426-34.
[http://dx.doi.org/10.1021/acsami.7b02794] [PMID: 28447775]
[28]
Kaboorania A, Auclaira N, Riedla B, Landrya V. Mechanical properties of UV-cured cellulose nanocrystal (CNC) nanocomposite coating for wood furniture. Prog Org Coat 2017; 104: 91-6.
[http://dx.doi.org/10.1016/j.porgcoat.2016.11.031]
[29]
Sarah B. Chapter 17: Smart coatings., in: Noble Metal - Metal Oxide Hybrid Nanoparticles: Fundamentals and Application. , Eds. Satyabrata Mohapatra. Tuan Anh Nguyen, Phuong Nguyen- TriElsevier, USA 2018..
[30]
Babulanam S, Estrada W, Hakim MO, et al. Smart window coatings: some recent advances. Spie 1987; 823: 64-71.
[http://dx.doi.org/10.1117/12.941869]
[31]
Kamalisarvestani M, Saidur R, Mekhilef S, Javadi FS. Performance, materials and coating technologies of thermochromic thin films on smart windows. Renew Sustain Energy Rev 2013; 26: 353-64.
[http://dx.doi.org/10.1016/j.rser.2013.05.038]
[32]
Li Y, Ji S, Gao Y, Luo H, Kanehira M. Core-shell VO2@TiO2 nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings. Sci Rep 2013; 3: 1370.
[http://dx.doi.org/10.1038/srep01370] [PMID: 23546301]
[33]
Baetens R, Jelle BP, Gustavsen A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol Energy Mater Sol Cells 2010; 94(2): 87-105.
[http://dx.doi.org/10.1016/j.solmat.2009.08.021]
[34]
Svensson JSEM, Granqvist CG. Electrochromic coatings for smart windows. Sol Energy Mater 1985; 12(6): 391-402.
[http://dx.doi.org/10.1016/0165-1633(85)90033-4]
[35]
Nguyen TD, Nguyen TA, Pham MC, Piro B, Normand B, Takenouti H. Mechanism for Protection of Iron Corrosion by an Intrinsically Electronic Conducting Polymer. J Electroanal Chem 2004; 572: 225-334.
[http://dx.doi.org/10.1016/j.jelechem.2003.09.028]
[36]
Nguyen TA, Nguyen VK, Vu VB, Pham MC. Research and fabrication of conducting polyaniline nanoparticles by electrochemical and chemical methods Proceedings of the International Symposium on Smart Materials, Nano-, and Micro-Smart Systems, Sydney 2004; 40: 616..
[37]
Nguyen TA, Pham MC, Hisasi T. A Mechanistic Investigation for Corrosion Protection of Iron by Polyaniline Coating using Localized Electrochemical Measurements Proceedings of the 13th Asian Pacific Corrosion Control Conference. Osaka, Japan. 2003; p. 12..
[38]
Liu T, Liu B, Wang J, et al. Smart window coating based on F-TiO2-KxWO3 nanocomposites with heat shielding, ultraviolet isolating, hydrophilic and photocatalytic performance. Sci Rep 2016; 6: 27373.
[http://dx.doi.org/10.1038/srep27373] [PMID: 27265778]
[39]
Ferrando R, Jellinek J, Johnston RL. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 2008; 108(3): 845-910.
[http://dx.doi.org/10.1021/cr040090g] [PMID: 18335972]
[40]
C. Miterer P.H. Mayrhofer. M. Beschliesser, P. Losbichler P. Warbichler, F. Hofer, P.N. Gibson, W. Gissler, H. Hruby, J. Musil, J. Vlcˇek, Microstructure and properties of nanocomposite Ti-B-N and Ti-B-C coatings. Surf Coat Tech 1999; 120-121: 405.
[41]
Misina M, Musil J, Kadlec S. Composite TiN-Ni thin films deposited by reactive magnetron sputter ion-plating. Surf Coat Tech 1998; 110: 168.
[http://dx.doi.org/10.1016/S0257-8972(98)00688-4]
[42]
Musil J, Karvankova P. Hard and superhard Zr-Ni-N nanocomposite films, J. Kasl. Surf Coat Tech 2001; 139: 101.
[http://dx.doi.org/10.1016/S0257-8972(01)00989-6]
[43]
Musil J, Zeman P, Hrubý H, Mayrhofer PH. ZrN/Cu nanocomposite film-a novel superhard material. Surf Coat Tech 1999; 120-121: 179.
[http://dx.doi.org/10.1016/S0257-8972(99)00482-X]
[44]
Zeman P, Cerstvy R, Mayrhofer PH, Mitterer C, Musil J. Structure and properties of hard and superhard Zr-Cu-N nanocomposite coatings. Mater Sci Eng A 2000; 289: 189.
[http://dx.doi.org/10.1016/S0921-5093(00)00917-5]
[45]
Musil J, Leipner I, Kolega M. Nanocrystalline and nanocomposite CrCu and CrCu-N films prepared by magnetron sputtering. Surf Coat Tech 1999; 115: 32-7.
[http://dx.doi.org/10.1016/S0257-8972(99)00065-1]
[46]
Voevodin AA, O’Neill JP, Zabinski JS. Nanocomposite tribological coatings for aerospace applications. Surf Coat Tech 1999; 116-119: 36.
[http://dx.doi.org/10.1016/S0257-8972(99)00228-5]
[47]
Zhang S, Fu YQ, Du HJ, Zeng XT, Liu YC. Magnetron sputtering of nanocomposite (Ti,Cr)CN/DLC coatings. Surf Coat Tech 2003; 162: 42-8.
[http://dx.doi.org/10.1016/S0257-8972(02)00561-3]
[48]
Veprek S, Haussmann M. Novel thermodynamically stable and oxidation resistant superhard coating materials. Surf Coat Tech 1996; 86-87: 394.
[http://dx.doi.org/10.1016/S0257-8972(96)02988-X]
[49]
Nguyen TA, Nguyen TH, Pham TL, Dinh TMTD, Thai H, Shi X. Application of nano-SiO2 and nano-Fe2O3 for protection of steel rebar in chloride contaminated concrete: epoxy nanocomposite coatings and nano-modified mortars. J Nanosci Nanotechnol 2017; 17(1): 427-36.
[http://dx.doi.org/10.1166/jnn.2017.12396] [PMID: 29624293]
[50]
Rashad Alaa M. A synopsis about the effect of nano-Al2O3, nano-Fe2O3, nano-Fe3O4 and nano-clay on some properties of cementitious materials - A short guide for Civil Engineer. Mater Des 2013; 52: 143-57.
[http://dx.doi.org/10.1016/j.matdes.2013.05.035]
[51]
Rashad Alaa M. Effects of ZnO2, ZrO2, Cu2O3, CuO, CaCO3, SF, FA, cement and geothermal silica waste nanoparticles on properties of cementitious materials - A short guide for Civil Engineer. Constr Build Mater 2013; 48: 1120-33.
[http://dx.doi.org/10.1016/j.conbuildmat.2013.06.083]
[52]
Singh LP, Ali D, Tyagi I, Sharma U, Singh R, Hou P. Durability studies of nano-engineered fly ash concrete. Constr Build Mater 2019; 194: 205-15.
[http://dx.doi.org/10.1016/j.conbuildmat.2018.11.022]
[53]
Singh LP, Karade SR, Bhattacharyya SK, Yousuf MM, Ahalawat S. Beneficial role of nanosilica in cement based materials - A review. Constr Build Mater 2013; 47: 1069-77.
[http://dx.doi.org/10.1016/j.conbuildmat.2013.05.052]
[54]
RechesYonathan. Nanoparticles as concrete additives: Review and perspectives. Constr Build Mater 2018; 175: 483-95.
[http://dx.doi.org/10.1016/j.conbuildmat.2018.04.214]
[55]
Ezzatollah Shamsaei . Graphene-based nanosheets for stronger and more durable concrete: A review. Constr Build Mater 2018; 183: 642-60.
[http://dx.doi.org/10.1016/j.conbuildmat.2018.06.201]
[56]
Liew KM, Kai MF, Zhang LW. Nanotechnology innovations for the construction industry. Compos, Part A Appl Sci Manuf 2016; 91: 301-23.
[http://dx.doi.org/10.1016/j.compositesa.2016.10.020]
[57]
Hanus Monica J, Harris Andrew T. Nanotechnology innovations for the construction industry. Prog Mater Sci 2013; 58: 1056-102.
[http://dx.doi.org/10.1016/j.pmatsci.2013.04.001]
[58]
Tao S, Li Z. GuoJian, Gong Hao, GuChunping (2019)Research progress on CNTs/CNFs-modified cement-based composites - A review. Constr Build Mater 2019; 202: 290-307.
[http://dx.doi.org/10.1016/j.conbuildmat.2019.01.024]
[59]
Nazari Ali and RiahiShadi. The effects of curing medium on the flexural strength and water permeability of cementitious composites containing Fe2O3 nanofillers. Int J Mater Res 2011; 102(10): 1312-7.
[http://dx.doi.org/10.3139/146.110574]
[60]
Silvestre J, Silvestre N, de Brito J. Review on concrete nanotechnology. Eur J Environ Civ Eng 2015; 2015: 1-33.
[61]
Arefi MR, Rezaei-Zarchi S. ArefiMohammad R, Rezaei-Zarchi S. Synthesis of zinc oxide nanoparticles and their effect on the compressive strength and setting time of self-compacted concrete paste as cementitious composites. Int J Mol Sci 2012; 13(4): 4340-50.
[http://dx.doi.org/10.3390/ijms13044340] [PMID: 22605981]
[62]
Wang D, Shi C. Farzadnia Nima, Shi Zhenguo, Jia Huangfei, OuZhihua (2018) A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Constr Build Mater 2018; 181(30): 659-72.
[http://dx.doi.org/10.1016/j.conbuildmat.2018.06.075]
[63]
Xu Z, Zhou Z, Du Peng CX. Effects of nano-silica on hydration properties of tricalcium silicate. Constr Build Mater 2016; 125: 1169-77.
[http://dx.doi.org/10.1016/j.conbuildmat.2016.09.003]
[64]
Zhan P, He Z, Ma Z, Liang C, Zhang X, Addisayehu AA. Utilization of nano-metakaolin in concrete: A review. J Build Eng 2020.30101259
[http://dx.doi.org/10.1016/j.jobe.2020.101259]
[65]
Telkes M. Remarks on thermal energy storage using sodium sulfate decahydrate and water’. Sol Energy 1978; 20: 107.
[http://dx.doi.org/10.1016/0038-092X(78)90150-0]
[66]
Telkes M. Thermal storage for solar heating and cooling. Proceedings of the workshop on solar energy storage subsystems for the heating and cooling of buildings. Charlottesville, Virginia, USA. 1975.
[67]
Lane GA. Adding strontium chloride or calcium hydroxide to calcium chloride hexahydrate heat storage material. Sol Energy 1981; 27: 73-5.
[http://dx.doi.org/10.1016/0038-092X(81)90023-2]
[68]
Kandelousi MS. “Introductory Chapter: Nano-Enhanced Phase-Change Material” Thermal Energy Battery with Nano-enhanced PCM. IntechOpen 2018.
[69]
Du K, et al. A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Appl Energy 2018; 220: 242-73.
[http://dx.doi.org/10.1016/j.apenergy.2018.03.005]
[70]
Souayfane F, Fardoun F, Biwole P-H. Phase change materials (PCM) for cooling applications in buildings: A review. Energy Build 2016; 129: 396-431.
[http://dx.doi.org/10.1016/j.enbuild.2016.04.006]
[71]
Rodriguez-Ubinas E, Ruiz-Valero L, Vega S, Neila J. Applications of Phase Change Material in highly energy-efficient houses. Energy Build 2012; 50: 49-62.
[http://dx.doi.org/10.1016/j.enbuild.2012.03.018]
[72]
Zhang S, Niu J. Cooling performance of nocturnal radiative cooling combined with microencapsulated phase change material (MPCM) slurry storage. Energy Build 2012; 54: 122-30.
[http://dx.doi.org/10.1016/j.enbuild.2012.07.041]
[73]
Ma Z, et al. Solar-assisted HVAC systems with integrated phase change materials. Sustainable Air Conditioning Systems 2018; p. 21.
[http://dx.doi.org/10.5772/intechopen.72187]
[74]
Xiong Q, et al. Nanoparticle application for heat transfer and irreversibility analysis in an air conditioning unit. J Mol Liq 2019; 292111372
[http://dx.doi.org/10.1016/j.molliq.2019.111372]
[75]
Hong T, et al. Study on the Optimization of PCM Integrated Air-Conditioning Duct for the Demand Shifting. IOP Conference Series: Earth and Environmental Science. Vol. 238
[http://dx.doi.org/10.1088/1755-1315/238/1/012045]
[76]
Pasupathy A, Velraj R, Seeniraj RV. Phase change material based building architecture for thermal management in residential and commercial establishments. Renew Sustain Energy Rev 2008; 12: 39-64.
[http://dx.doi.org/10.1016/j.rser.2006.05.010]
[77]
Eddhahak-Ouni A, Drissi S, Colin J, Neji J, Care S. Experimental and multi-scale analysis of the thermal properties of Portland cement concretes embedded with Microencapsulated Phase Change Materials (PCMs). Appl Therm Eng 2014; 11: 50.
[http://dx.doi.org/10.1016/j.applthermaleng.2013.11.050]
[78]
Frigione M, Lettieri M, Sarcinella A. Phase Change Materials for Energy Efficiency in Buildings and Their Use in Mortars. Materials (Basel) 2019; 12(8): 1260.
[http://dx.doi.org/10.3390/ma12081260] [PMID: 30999615]
[79]
Beyza B, Kemal C, Yeliz K, et al. Robust microencapsulated phase change materials in concrete mixes for sustainable buildings. Int J Energy Res 2016; 3: 63.
[http://dx.doi.org/10.1002/er.3603]
[80]
Nguyen-Tri P, Nguyen TA. Smart nanoconcretes: An introductionSmart nanoconcretes and cement-based materials: Properties, modeling and applications. Elsevier 2019; pp. 3-8.https://www.sciencedirect.com/science/article/pii/B9780128178546000155
[81]
Ling TC, Drissi S, Mo KH. Use of phase change materials in nano-concrete for energy savingsSmart Nanoconcretes and Cement-Based Materials. USA: Elsevier 2019; pp. 351-81.https://www.sciencedirect.com/science/article/pii/B9780128178546000155
[82]
Pomianowski M, Jensen RL. Heat storage in concrete deck with nano- and micro-encapsulated PCMSmart Nanoconcretes and Cement-Based Materials. USA: Elsevier 2019; pp. 313-31.https://www.sciencedirect.com/science/article/pii/B9780128178546000131
[83]
Nanotoxicity: Prevention, fundamentals and antibacterial application of nanomaterialsEditors: Susai Rajendran, Anita Mukherjee, Tuan Anh Nguyen, Chandraiah Godugu, . Ritesh K Shukla 2020.
[84]
Abdeltif A, Assadi AA, Nguyen-Tri P, Nguyen TA, Rtimi S, Eds. Nanomaterials in Air remediations. USA: Elsevier 2020.
[85]
Kühnel D, Marquardt C, Nau K, Krug HF, Mathes B, Steinbach C. Environmental impacts of nanomaterials: providing comprehensive information on exposure, transport and ecotoxicity-the project DaNa2. 0. Environ Sci Eur 2014; 26(1): 21.
[http://dx.doi.org/10.1186/s12302-014-0021-6]
[86]
Rasheed T, Adeel M, Nabeel F, Bilal M, Iqbal HMN. TiO2/SiO2 decorated carbon nanostructured materials as a multifunctional platform for emerging pollutants removal. Sci Total Environ 2019; 688: 299-311.
[http://dx.doi.org/10.1016/j.scitotenv.2019.06.200] [PMID: 31229826]
[87]
Aziz A, Ali N, Khan A, et al. Chitosan zinc sulfide nanoparticles, characterization and their photocatalytic degradation efficiency for azo dyes. International Journal of Biological Macromolecules 2020.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.310]
[88]
Ali N, Khan A, Nawaz S, et al. Characterization and deployment of surface-engineered chitosan-triethylenetetramine nanocomposite hybrid nano-adsorbent for divalent cations decontamination. Int J Biol Macromol 2020; 152: 663-71.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.218] [PMID: 32088221]
[89]
Ali N, Said A, Ali F, Raziq F, Ali Z, Bilal M, et al. Photocatalytic degradation of congo red dye from aqueous environment using cobalt ferrite nanostructures: development, characterization, and photocatalytic performance. Water Air Soil Pollut 2020; 231(2): 50.
[http://dx.doi.org/10.1007/s11270-020-4410-8]
[90]
Ain QU, Munir H, Jelani F, Anjum F, Bilal M. Antibacterial potential of biomaterial derived nanoparticles for drug delivery application. Mater Res Express 2020; 6(12)125426
[http://dx.doi.org/10.1088/2053-1591/ab715d]
[91]
Girigoswami K. Toxicity of metal oxide nanoparticlesCellular and Molecular Toxicology of Nanoparticles. Cham: Springer 2018; pp. 99-122.
[92]
Bilal M, Mehmood S, Iqbal H. The Beast of Beauty: Environmental and Health Concerns of Toxic Components in Cosmetics. Cosmetics 2020; 7(1): 13.
[http://dx.doi.org/10.3390/cosmetics7010013]
[93]
Sarkar A, Ghosh M, Sil PC. Nanotoxicity: oxidative stress mediated toxicity of metal and metal oxide nanoparticles. J Nanosci Nanotechnol 2014; 14(1): 730-43.
[http://dx.doi.org/10.1166/jnn.2014.8752] [PMID: 24730293]
[94]
Pan Y, Leifert A, Ruau D, et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 2009; 5(18): 2067-76.
[http://dx.doi.org/10.1002/smll.200900466] [PMID: 19642089]
[95]
Donaldson K, Stone V. Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann Ist Super Sanita 2003; 39(3): 405-10.
[PMID: 15098562]
[96]
Donaldson K, Tran CL. Inflammation caused by particles and fibers. Inhal Toxicol 2002; 14(1): 5-27.
[http://dx.doi.org/10.1080/089583701753338613] [PMID: 12122558]
[97]
Bilal M, Zhao Y, Rasheed T, et al. Biogenic Nanoparticle‒Chitosan Conjugates with Antimicrobial, Antibiofilm, and Anticancer Potentialities: Development and Characterization. Int J Environ Res Public Health 2019; 16(4): 598.
[http://dx.doi.org/10.3390/ijerph16040598] [PMID: 30791374]
[98]
Liu P, Zhou R, Yin T, et al. Novel bio-fabrication of silver nanoparticles using the cell-free extract of Lysinibacillus fusiformis sp. and their potent activity against pathogenic fungi. Materials Research Express 2020; 6(12): 1250-2.
[99]
Yao Y, Zang Y, Qu J, Tang M, Zhang T. The toxicity of metallic nanoparticles on liver: the subcellular damages, mechanisms, and outcomes. Int J Nanomedicine 2019; 14: 8787-804.
[http://dx.doi.org/10.2147/IJN.S212907] [PMID: 31806972]
[100]
Yah CS, Iyuke SE, Simate GS. A review of nanoparticles toxicity and their routes of exposures. Indian J Pharm Sci 2012; 8(1): 299-314.
[101]
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 2018; 9(1): 1050-74.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[102]
Pacheco I, Buzea C. Metal nanoparticles and their toxicity Metal Nanoparticles: Synthesis and Applications in Pharmaceutical Sciences . 2018.
[103]
Skovmand A, Jacobsen Lauvås A, Christensen P, Vogel U, Sørig Hougaard K, Goericke-Pesch S. Pulmonary exposure to carbonaceous nanomaterials and sperm quality. Part Fibre Toxicol 2018; 15(1): 10.
[http://dx.doi.org/10.1186/s12989-018-0242-8] [PMID: 29386028]
[104]
Qu G, Wang X, Liu Q, et al. The ex vivo and in vivo biological performances of graphene oxide and the impact of surfactant on graphene oxide’s biocompatibility. J Environ Sci (China) 2013; 25(5): 873-81.
[http://dx.doi.org/10.1016/S1001-0742(12)60252-6] [PMID: 24218816]
[105]
Kaur G, Mehta SK. Developments of Polysorbate (Tween) based microemulsions: Preclinical drug delivery, toxicity and antimicrobial applications. Int J Pharm 2017; 529(1-2): 134-60.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.059] [PMID: 28642203]
[106]
Akhavan O, Ghaderi E, Hashemi E, Akbari E. Dose-dependent effects of nanoscale graphene oxide on reproduction capability of mammals. Carbon 2015; 95: 309-17.
[http://dx.doi.org/10.1016/j.carbon.2015.08.017]
[107]
Liang S, Xu S, Zhang D, He J, Chu M. Reproductive toxicity of nanoscale graphene oxide in male mice. Nanotoxicology 2015; 9(1): 92-105.
[http://dx.doi.org/10.3109/17435390.2014.893380] [PMID: 24621344]
[108]
Husain M, Wu D, Saber AT, et al. Intratracheally instilled titanium dioxide nanoparticles translocate to heart and liver and activate complement cascade in the heart of C57BL/6 mice. Nanotoxicology 2015; 9(8): 1013-22.
[http://dx.doi.org/10.3109/17435390.2014.996192] [PMID: 25993494]
[109]
Kinaret P, Ilves M, Fortino V, et al. Inhalation and oropharyngeal aspiration exposure to rod-like carbon nanotubes induce similar airway inflammation and biological responses in mouse lungs. ACS Nano 2017; 11(1): 291-303.
[http://dx.doi.org/10.1021/acsnano.6b05652] [PMID: 28045493]
[110]
Wang R, Song B, Wu J, Zhang Y, Chen A, Shao L. Potential adverse effects of nanoparticles on the reproductive system. Int J Nanomedicine 2018; 13: 8487-506.
[http://dx.doi.org/10.2147/IJN.S170723] [PMID: 30587973]
[111]
Dale O, Nilsen T, Olaussen G, et al. Transepithelial transport of morphine and mannitol in Caco-2 cells: the influence of chitosans of different molecular weights and degrees of acetylation. J Pharm Pharmacol 2006; 58(7): 909-15.
[http://dx.doi.org/10.1211/jpp.58.7.0005] [PMID: 16805950]
[112]
Huang YC, Vieira A, Huang KL, Yeh MK, Chiang CH. Pulmonary inflammation caused by chitosan microparticles. J Biomed Mater Res A 2005; 75(2): 283-7.
[http://dx.doi.org/10.1002/jbm.a.30421] [PMID: 16059899]
[113]
Grabowski N, Hillaireau H, Vergnaud J, et al. Surface coating mediates the toxicity of polymeric nanoparticles towards human-like macrophages. Int J Pharm 2015; 482(1-2): 75-83.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.042] [PMID: 25448553]