Characterization of Antimicrobial Compound Produced from Hericium erinaceus Combating Campylobacter jejuni NCTC11168

Page: [200 - 208] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Campylobacter jejuni is the most common cause of enteric infections, particularly among children, resulting in severe diarrhea. Increasing drug resistance of this bacterium against standard antibiotics favors investigations into additional anti-Campylobacter medications that are already used to overcome effects on enteric infections.

Methods: Anti-bacterial activity using well diffusion assay of seventeen fungal extracts was tested against C. jejuni NCTC11168. The obtained results of antibacterial screening showed that different tested fungal isolates have different antimicrobial activities, where Hericium erinaceus extract was the highest activity against the tested bacterium.

Results: Fractionation pattern has been done by column chromatography. Furthermore, purity was estimated by thin layer chromatography (TLC). Minimal inhibitory concertation (MIC) for the purified compound was 7.81μg/ml. Cytotoxicity for the purified compound was evaluated to be 170μg/ml. 1HNMR, IR and GC-Mass were performed for illustration of the suggested structure of the bioactive compound purified from H. erinaceus.

Conclusion: The data presented here suggested that H. erinaceus could potentially be used in modern applications aimed at the treatment or prevention of Campylobacter jejuni infection.

Keywords: Antibacterial activity, fungal extracts, Hericium erinaceus, Campylobacter jejuni, bioactive metabolites, cytotoxicity.

Graphical Abstract

[1]
Nag, R.; Whyte, P.; Markey, B.K.; O’Flaherty, V.; Bolton, D.; Fenton, O.; Richards, K.G.; Cummins, E. Ranking hazards pertaining to human health concerns from land application of anaerobic digestate. Sci. Total Environ., 2020, 710, 136297p.136297.DOI.org/10.1016/j.scitotenv.2019.136297
[http://dx.doi.org/10.1016/j.scitotenv.2019.136297] [PMID: 32050363]
[2]
Chai, S.J.; Gu, W.; O’Connor, K.A.; Richardson, L.C.; Tauxe, R.V. Incubation periods of enteric illnesses in foodborne outbreaks, United States, 1998-2013. Epidemiol. Infect., 2019, 147, e285.
[http://dx.doi.org/10.1017/S0950268819001651] [PMID: 31587689]
[3]
Kim, J.; Hyeeun Park, H.; Kim, J.; Kim, J. H.; Jung, J. I.; Cho, S.; Ryu, S.; Jeon, B. Comparative Analysis of Aerotolerance, Antibiotic Resistance, and Virulence Gene Prevalence in Campylobacter jejuni Isolates from Retail Raw Chicken and Duck Meat in South Korea Microorganisms, 2019, 7(10), 433.
[4]
Tam, C.C.; O’Brien, S.J.; Tompkins, D.S.; Bolton, F.J.; Berry, L.; Dodds, J.; Choudhury, D.; Halstead, F.; Iturriza-Gómara, M.; Mather, K.; Rait, G.; Ridge, A.; Rodrigues, L.C.; Wain, J.; Wood, B.; Gray, J.J. IID2 Study Executive Committee. Changes in causes of acute gastroenteritis in the United Kingdom over 15 years: microbiologic findings from 2 prospective, population-based studies of infectious intestinal disease. Clin. Infect. Dis., 2012, 54(9), 1275-1286.
[http://dx.doi.org/10.1093/cid/cis028] [PMID: 22412058]
[5]
Gomes, C.N.; Frazão, M.R.; Passaglia, J.; Duque, S.S.; Medeiros, M.I.C.; Falcão, J.P. Molecular Epidemiology and Resistance Profile of Campylobacter jejuni and Campylobacter coli Strains Isolated from Different Sources in Brazil. Microb. Drug Resist., 2019,
[http://dx.doi.org/10.1089/mdr.2019.0266] [PMID: 31794692]
[6]
World Health Organization. WHO. Critically important antimicrobials for human medicine. 4th revision 2016, 1-31.
[7]
Gemmel, M.R.; Berry, S.; Mukhopadhya, I.; Hansen, R.; Nielsen, H.L.; Bajaj-Elliott, M.; Nielsen, H.; Hold, G.L. Comparative genomics of Campylobacter concisus: Analysis of clinical strains reveals genome diversity and pathogenic potential Emerg. Microbes Infect, 2018, 7, 116.
[8]
Rossi, L.M.; Rangasamy, P.; Zhang, J.; Qiu, X.Q.; Wu, G.Y. Research advances in the development of peptide antibiotics. J. Pharm. Sci., 2008, 97(3), 1060-1070.DOI.org/10.1002/jps.21053
[http://dx.doi.org/10.1002/jps.21053] [PMID: 17694545]
[9]
Bills, G.F.; Platas, G.; Fillola, A.; Jiménez, M.R.; Collado, J.; Vicente, F. Enhancement of antibiotic and secondary metabolite detection from filamentous fungi by growth on nutritional arrays J Appl Microbiol, 2008, 104(6), 1644-1658.
[10]
Shen, Z.; Wang, Y.; Zhang, Q.; Shen, J. Antimicrobial Resistance in Campylobacter spp. Microbiol. Spectr., 2018, 6(2)
[http://dx.doi.org/10.1128/microbiolspec.ARBA-0013-2017] [PMID: 29623873]
[11]
Anand, K. Mary Drozd; Ruby P.M.; Xiulan X.;Yosra A. H., Janet A., James R F., Corey N., Jillian T., Patrick J B., Gireesh R. Novel Anti-Campylobacter Compounds Identified Using High Throughput Screening of a Pre-selected Enriched Small Molecules Library. Front. Microbiol., 2016, 7, 405.
[http://dx.doi.org/10.3389/fmicb.2016.00405]
[12]
Singh, R.P.; Kumari, P.; Reddy, C.R. Antimicrobial compounds from seaweeds-associated bacteria and fungi. Appl. Microbiol. Biotechnol., 2015, 99(4), 1571-1586.
[http://dx.doi.org/10.1007/s00253-014-6334-y] [PMID: 25549621]
[13]
Rudd, D.; Benkendorff, K.; Voelcker, N.H. Solvent separating secondary metabolites directly from biosynthetic tissue for surface-assisted laser desorption ionisation mass spectrometry. Mar. Drugs, 2015, 13(3), 1410-1431.
[http://dx.doi.org/10.3390/md13031410] [PMID: 25786067]
[14]
Yanibada, B.; Boudra, H.; Debrauwer, L.; Martin, C.; Morgavi, D.P.; Canlet, C. Evaluation of sample preparation methods for NMR-based metabolomics of cow milk. Heliyon, 2018, 4(10)e00856DOI.org/10.1016/j.heliyon.2018.e00856
[http://dx.doi.org/10.1016/j.heliyon.2018.e00856] [PMID: 30364606]
[15]
Charfi, F.; Smaoui, H.; Kechrid, A. Non-susceptibility trends and serotype coverage by conjugate pneumococcal vaccines in a Tunisian paediatric population: a 10-year study. Vaccine, 2012, 30(Suppl. 6), G18-G24.
[http://dx.doi.org/10.1016/j.vaccine.2012.07.017] [PMID: 23228353]
[16]
Goualié, B.G.; Akpa, E.E.; Kakou-N'Gazoa, S.E.; Ouattara, H.G.; Niamke, S.L.; Dosso, M. Antimicrobial resistance and virulence associated genes in Campylobacter jejuni isolated from chicken in Côte d'Ivoire J Infect Dev Ctries., 2019, 13(8), 671-677.
[17]
Igwaran, A.; Okoh, A. Campylobacteriosis Agents in Meat Carcasses Collected from Two District Municipalities in the Eastern Cape Province, South Africa Foods, 2020, 16(9), 2.
[18]
Guillamón, E.; García-Lafuente, A.; Lozano, M.; D’Arrigo, M.; Rostagno, M.A.; Villares, A.; Martínez, J.A. Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia, 2010, 81(7), 715-723.Doi.org/10.1016/j.fitote.2010.06.005
[http://dx.doi.org/10.1016/j.fitote.2010.06.005] [PMID: 20550954]
[19]
Chang, C.H.; Chen, Y.; Yew, X.X.; Chen, H.X.; Kim, J.X.; Chang, C.C.; Peng, C.C.; Peng, R.Y. Improvement of erinacine A productivity in Hericium erinaceus mycelia and its neuroprotective bioactivity against the glutamate-insulted apoptosis. Lebensm. Wiss. Technol., 2016, 65, 1100-1108.
[http://dx.doi.org/10.1016/j.lwt.2015.08.014]
[20]
Liu, F.; Han, S.; Ni, Y.Y. Isolation and purification of four flavanones from peel of Citrus changshanensis J. Food Process. Pres., 2017, 41DOI.org/10.1111/jfpp.13278
[21]
Kovanda, L.; Zhang, W.; Wei, X.; Luo, J.; Wu, X.; Atwill, E.R.; Vaessen, S.; Li, X.; Liu, Y. In Vitro Antimicrobial Activities of Organic Acids and Their Derivatives on Several Species of Gram-Negative and Gram-Positive Bacteria. Molecules, 2019, 24(20), E3770.
[http://dx.doi.org/10.3390/molecules24203770] [PMID: 31635062]
[22]
CLSI Performance Standards for Antimicrobial Susceptibility Testing.
[23]
Gomha, S.M.; Riyadh, S.M.; Mahmmoud, E.A.; Elaasser, M.M. Synthesis and Anticancer Activities of Thiazoles, 1,3-Thiazines, and Thiazolidine Using Chitosan-Grafted-Poly(vinylpyridine) as Basic Catalyst Heterocycles, 2015, 91(6), 1227-1273.
[24]
Burkhardt, K.; Fiedler, H.P. New cineromycin and Musacins obtained by metabolic pattern analysis of Streptomyces griseovirdis. Taxonomy, fermentation, isolation and biological activity. J. Antibiot. (Tokyo), 1996, 49(4), 340-344.
[http://dx.doi.org/10.7164/antibiotics.49.432] [PMID: 8641995]
[25]
Sharma, Deeksha; Pramanik, Avijit Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D. Don 3 Biotech, 2016, 6(210). DOI.org/10.1007/s13205-016-0518-3
[26]
Ogbonna, O.J.; Ekpete, W.B.; Onyekpe, P.I.; Udenze, E.C.C.; Ogbeihe, G.O. Antimicrobial agent production by fungi isolates from petroleum product contaminated soil. Arch. Appl. Sci. Res., 2013, 5(3), 1-6.
[http://dx.doi.org/10.0975/aasr/2013/508]
[27]
Cummings, J.; Lee, G.; Mortsdor, T. A. Ritter, Zhong K., “Alzheimer’s disease drug development pipeline. Alzheimer’s & Dementia: Trans. Res. & Clin. Interv., 2017, 3, 367-384. DOI.org/ 10.1016/j.trci.2017.05.002
[PMID: 29067343]
[28]
Friedman, M. Chemistry, nutrition, and health-promoting properties of Hericium erinaceus (lion’s mane) mushroom fruiting bodies and mycelia and their bioactive compounds. J. Agric. Food Chem., 2015, 63(32), 7108-7123.
[http://dx.doi.org/10.1021/acs.jafc.5b02914] [PMID: 26244378]
[29]
Kovač, J.; Šimunović, K.; Wu, Z.; Klančnik, A.; Bucar, F.; Zhang, Q.; Možina, S.S. Antibiotic resistance modulation and modes of action of (-)-α-pinene in Campylobacter jejuni. PLoS One, 2015, 10(4)e0122871
[http://dx.doi.org/10.1371/journal.pone.0122871] [PMID: 25830640]
[30]
Hidayathulla, S.; Shahat, A.A.; Ahamad, S.R.; Al Moqbil, A.A.N.; Alsaid, M.S.; Divakar, D.D. GC/MS analysis and characterization of 2-Hexadecen-1-ol and beta sitosterol from Schimpera arabica extract for its bioactive potential as antioxidant and antimicrobial. J. Appl. Microbiol., 2018, 124(5), 1082-1091.
[http://dx.doi.org/10.1111/jam.13704] [PMID: 29356238]
[31]
Ginovyan, M.; Ayvazyan, A.; Nikoyan, A.; Tumanyan, L.; Trchounian, A. Phytochemical Screening and Detection of Antibacterial Components from Crude Extracts of Some Armenian Herbs Using TLC-Bioautographic Technique. Curr. Microbiol., 2020, 77(7), 1223-1232.
[http://dx.doi.org/10.1007/s00284-020-01929-0] [PMID: 32107627]
[32]
Okamoto, K.; Shimada, A.; Shirai, R.; Sakamoto, H.; Yoshida, S.; Ojima, F.; Ishiguro, Y.; Sakai, T.; Kawagishi, H. Antimicrobial chlorinated orcinol derivatives from mycelia of Hericium erinaceum. Phytochemistry, 1993, 34, 1445-1446. DOI.org/10.1016/ 0031-9422(91)80050-B
[http://dx.doi.org/10.1016/0031-9422(91)80050-B]
[33]
Wong, K.; Vikineswary, S.; Noorlidah, A.; Umah, R.; Murali, N. Antimicrobial and Antioxidant Activities of H. erinaceus Food Technol. Biotechnol, 2009, 47(1), 47-55.
[34]
Benjarong, T.; Sylvie, R.; Kevin, D.; Kathrin, W.; Marc, S. Hericium erinaceus, an amazing medicinal mushroom. Mycol. Prog., 2015, 14, 91.
[http://dx.doi.org/10.1007/s11557-015-1105-4]
[35]
Lee, J.S.; Wee, J.W.; Lee, H.Y.; An, H.S KEffects of ascorbic acid and uracil on exo-polysaccharide production with Hericium erinaceus in liquid culture Biotechnol. Bioprocess Eng, 2010, 15, 453-459.459.DOI.org/10.1007/s12257-008-0265-3
[36]
Thawthong, A.; Karunarathna, S.C.; Thongklang, N.; Chukeatirote, E.; Kakumyan, P.; Chamyuang, S.; Rizal, L.M.; Mortimer, P.E.; Xu, J.; Callac, P.; Hyde, K.D. Discovering and domesticating wild tropical cultivatable mushrooms. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 2014, 41, 731-764.
[37]
Cheung, L.; Cheung, P.; Ooi, V. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem., 2003, 81, 249-255.
[http://dx.doi.org/10.1016/S0308-8146(02)00419-3]
[38]
Wong, K.; Naidu, M.; David, R.P.; Abdulla, M.; Abdullah, N.; Kuppusamy, U.; Sabaratnam, V. Functional recovery enhancement following injury to rodent peroneal nerve by Lion's Mane mushroom, Hericium erinaceus (Bull.: Fr.) Pers. (Aphyllophoromycetideae) Int J Med Mushrooms, 2009, 11, 225-236.
[39]
Lee, J.; Kyoung, M.; Jae, Y.; Eock, Ke. Study of Macrophage Activation and Structural Characteristics of Purified Polysaccharides from the Fruiting Body of Hericium erinaceus J. Microbiol. Biotechnol., 2009, 19(9), 951-959.