Melatonin Protects HT22 Hippocampal Cells from H2O2-induced Injury by Increasing Beclin1 and Atg Protein Levels to Activate Autophagy

Page: [446 - 454] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: The aging of hippocampal neurons leads to a substantial decline in memory formation, storage and processing. The neuroprotective effect of melatonin has been confirmed, however, its protective mechanism remains unclear.

Objective: In this study, mouse hippocampus-derived neuronal HT22 cells were used to investigate whether melatonin protects the hippocampus from hydrogen peroxide (H2O2)-induced injury by regulating autophagy.

Methods: Rapamycin (an activator of autophagy) and 3-methyladenine (3MA, an inhibitor of autophagy) were used to induce or inhibit autophagy, respectively. HT22 cells were treated with 200 μM H2O2 in the presence or absence of 50 μM melatonin. Cell counting kit 8 (CCK-8), β-galactosidase and Hoechst staining were used to measure the viability, aging and apoptosis of cells, respectively. Western blot analysis was used to detect the levels of autophagy-related proteins.

Results: The activation of autophagy by rapamycin alleviated H2O2-induced oxidative injury, as evidenced by morphological changes and decreased viability, while the inhibition of autophagy by 3MA exacerbated H2O2- induced injury. The inhibitory effect of melatonin on H2O2-induced injury was similar to that of rapamycin. Melatonin also alleviated H2O2-induced aging and apoptosis. Melatonin activated autophagy in the presence or absence of H2O2, as evidenced by an increased Lc3b 14/16 kd ratio and a decreased P62 level. In addition, H2O2 decreased the levels of Beclin1 and Atg5/12/16, which were reversed by rapamycin or melatonin. The effects of melatonin on H2O2-induced injury, autophagy and protein expressions were effectively reversed by 3MA.

Conclusion: In conclusion, these results demonstrate that melatonin protects HT22 hippocampal neurons from H2O2-induced injury by increasing the levels of the Beclin1 and Atg proteins to activate autophagy.

Keywords: Autophagy, Atg, Beclin1, hippocampus, aging, melatonin.

[1]
Wimmer ME, Hernandez PJ, Blackwell J, Abel T. Aging impairs hippocampus-dependent long-term memory for object location in mice. Neurobiol Aging 2012; 33(9): 2220-4.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.07.007] [PMID: 21872364]
[2]
Shivarama Shetty M, Sajikumar S. ‘Tagging’ along memories in aging: Synaptic tagging and capture mechanisms in the aged hippocampus. Ageing Res Rev 2017; 35: 22-35.
[http://dx.doi.org/10.1016/j.arr.2016.12.008] [PMID: 28065806]
[3]
Bettio LEB, Rajendran L, Gil-Mohapel J. The effects of aging in the hippocampus and cognitive decline. Neurosci Biobehav Rev 2017; 79: 66-86.
[http://dx.doi.org/10.1016/j.neubiorev.2017.04.030] [PMID: 28476525]
[4]
Nelson PT, Smith CD, Abner EL, et al. Hippocampal sclerosis of aging, a prevalent and high-morbidity brain disease. Acta Neuropathol 2013; 126(2): 161-77.
[http://dx.doi.org/10.1007/s00401-013-1154-1] [PMID: 23864344]
[5]
Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11(3): 298-300.
[http://dx.doi.org/10.1093/geronj/11.3.298] [PMID: 13332224]
[6]
Ishii T, Takanashi Y, Sugita K, et al. Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain. Aging Cell 2017; 16(1): 39-51.
[http://dx.doi.org/10.1111/acel.12523] [PMID: 27623715]
[7]
Giorgio M, Trinei M, Migliaccio E, Pelicci PG. Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol 2007; 8(9): 722-8.
[http://dx.doi.org/10.1038/nrm2240] [PMID: 17700625]
[8]
Zhao X, Fang J, Li S, et al. Artemisinin attenuated hydrogen peroxide (H2O2)-induced oxidative injury in SH-SY5Y and hippocampal neurons via the activation of AMPK pathway. Int J Mol Sci 2019; 20(11): 20.
[http://dx.doi.org/10.3390/ijms20112680] [PMID: 31151322]
[9]
Jenwitheesuk A, Nopparat C, Mukda S, Wongchitrat P, Govitrapong P. Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways. Int J Mol Sci 2014; 15(9): 16848-84.
[http://dx.doi.org/10.3390/ijms150916848] [PMID: 25247581]
[10]
Chen W, Sun Y, Liu K, Sun X. Autophagy: a double-edged sword for neuronal survival after cerebral ischemia. Neural Regen Res 2014; 9(12): 1210-6.
[http://dx.doi.org/10.4103/1673-5374.135329] [PMID: 25206784]
[11]
Wei K, Wang P, Miao CY. A double-edged sword with therapeutic potential: an updated role of autophagy in ischemic cerebral injury. CNS Neurosci Ther 2012; 18(11): 879-86.
[http://dx.doi.org/10.1111/cns.12005] [PMID: 22998350]
[12]
Ma X, Lin W, Lin Z, et al. Liraglutide alleviates H2O2-induced retinal ganglion cells injury by inhibiting autophagy through mitochondrial pathways. Peptides 2017; 92: 1-8.
[http://dx.doi.org/10.1016/j.peptides.2017.04.008] [PMID: 28450048]
[13]
Wang M, Li YJ, Ding Y, et al. Silibinin prevents autophagic cell death upon oxidative stress in cortical neurons and cerebral ischemia-reperfusion injury. Mol Neurobiol 2016; 53(2): 932-43.
[http://dx.doi.org/10.1007/s12035-014-9062-5] [PMID: 25561437]
[14]
He JL, Dong XH, Li ZH, Wang XY, Fu ZA, Shen N. Pterostilbene inhibits reactive oxygen species production and apoptosis in primary spinal cord neurons by activating autophagy via the mechanistic target of rapamycin signaling pathway. Mol Med Rep 2018; 17(3): 4406-14.
[http://dx.doi.org/10.3892/mmr.2018.8412] [PMID: 29328494]
[15]
Oh JM, Choi EK, Carp RI, Kim YS. Oxidative stress impairs autophagic flux in prion protein-deficient hippocampal cells. Autophagy 2012; 8(10): 1448-61.
[http://dx.doi.org/10.4161/auto.21164] [PMID: 22889724]
[16]
Cardinali DP, Srinivasan V, Brzezinski A, Brown GM. Melatonin and its analogs in insomnia and depression. J Pineal Res 2012; 52(4): 365-75.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00962.x] [PMID: 21951153]
[17]
Shukla M, Chinchalongporn V, Govitrapong P, Reiter RJ. The role of melatonin in targeting cell signaling pathways in neurodegeneration. Ann N Y Acad Sci 2019; 1443(1): 75-96.
[http://dx.doi.org/10.1111/nyas.14005] [PMID: 30756405]
[18]
Genario R, Giacomini ACVV, Demin KA, et al. The evolutionarily conserved role of melatonin in CNS disorders and behavioral regulation: Translational lessons from zebrafish. Neurosci Biobehav Rev 2019; 99: 117-27.
[http://dx.doi.org/10.1016/j.neubiorev.2018.12.025] [PMID: 30611799]
[19]
Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M, Dubocovich ML. MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective. Annu Rev Pharmacol Toxicol 2016; 56: 361-83.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124742] [PMID: 26514204]
[20]
Adikwu E, Brambaifa N, Obianime W. Melatonin and alpha lipoic acid restore electrolytes and kidney morphology of lopinavir/ritonavir-treated rats. J Nephropharmacol 2019; 9: e06-6.
[http://dx.doi.org/10.15171/npj.2020.06]
[21]
Adikwu E, Bokolo B. Melatonin and N- Acetylcysteine as remedies for tramadol-induced hepatotoxicity in albino rats. Adv Pharm Bull 2017; 7(3): 367-74.
[http://dx.doi.org/10.15171/apb.2017.044] [PMID: 29071218]
[22]
Shu T, Fan L, Wu T, et al. Melatonin promotes neuroprotection of induced pluripotent stem cells-derived neural stem cells subjected to H2O2-induced injury in vitro. Eur J Pharmacol 2018; 825: 143-50.
[http://dx.doi.org/10.1016/j.ejphar.2018.02.027] [PMID: 29462594]
[23]
Jeong JK, Moon MH, Lee YJ, Seol JW, Park SY. Melatonin-induced autophagy protects against human prion protein-mediated neurotoxicity. J Pineal Res 2012; 53(2): 138-46.
[http://dx.doi.org/10.1111/j.1600-079X.2012.00980.x] [PMID: 22335252]
[24]
Shukla M, Govitrapong P, Boontem P, Reiter RJ, Satayavivad J. Mechanisms of melatonin in alleviating alzheimer’s disease. Curr Neuropharmacol 2017; 15(7): 1010-31.
[http://dx.doi.org/10.2174/1570159X15666170313123454] [PMID: 28294066]
[25]
Lee JH, Yoon YM, Han YS, Jung SK, Lee SH. Melatonin protects mesenchymal stem cells from autophagy-mediated death under ischaemic ER-stress conditions by increasing prion protein expression. Cell Prolif 2019; 52(2)e12545
[http://dx.doi.org/10.1111/cpr.12545] [PMID: 30430685]
[26]
Nopparat C, Sinjanakhom P, Govitrapong P. Melatonin reverses H2 O2 -induced senescence in SH-SY5Y cells by enhancing autophagy via sirtuin 1 deacetylation of the RelA/p65 subunit of NF-κB. J Pineal Res 2017; 63(1): 63.
[http://dx.doi.org/10.1111/jpi.12407] [PMID: 28295567]
[27]
Ling R, Chen JP, Shao J, Reinhard M. Degradation of organic compounds during the corrosion of ZVI by hydrogen peroxide at neutral pH: Kinetics, mechanisms and effect of corrosion promoting and inhibiting ions. Water Res 2018; 134: 44-53.
[http://dx.doi.org/10.1016/j.watres.2018.01.065] [PMID: 29407650]
[28]
Du L, Chen E, Wu T, Ruan Y, Wu S. Resveratrol attenuates hydrogen peroxide-induced aging through upregulation of autophagy in human umbilical vein endothelial cells. Drug Des Devel Ther 2019; 13: 747-55.
[http://dx.doi.org/10.2147/DDDT.S179894] [PMID: 30863014]
[29]
Cai B, Ma W, Bi C, et al. Long noncoding RNA H19 mediates melatonin inhibition of premature senescence of c-kit(+) cardiac progenitor cells by promoting miR-675. J Pineal Res 2016; 61(1): 82-95.
[http://dx.doi.org/10.1111/jpi.12331] [PMID: 27062045]
[30]
Nopparat C, Chantadul V, Permpoonputtana K, Govitrapong P. The anti-inflammatory effect of melatonin in SH-SY5Y neuroblastoma cells exposed to sublethal dose of hydrogen peroxide. Mech Ageing Dev 2017; 164: 49-60.
[http://dx.doi.org/10.1016/j.mad.2017.04.001] [PMID: 28408139]
[31]
Li R, Yin F, Guo YY, Zhao KC, Ruan Q, Qi YM. Knockdown of ANRIL aggravates H2O2-induced injury in PC-12 cells by targeting microRNA-125a. Biomed Pharmacother 2017; 92: 952-61.
[http://dx.doi.org/10.1016/j.biopha.2017.05.122] [PMID: 28609843]
[32]
Kashiwagi T, Yan H, Hamasaki T, et al. Electrochemically reduced water protects neural cells from oxidative damage. Oxid Med Cell Longev 2014; 2014869121
[http://dx.doi.org/10.1155/2014/869121] [PMID: 25383141]
[33]
Qi H, Su FY, Wan S, Chen Y, Cheng YQ, Liu AJ. The antiaging activity and cerebral protection of rapamycin at micro-doses. CNS Neurosci Ther 2014; 20(11): 991-8.
[http://dx.doi.org/10.1111/cns.12338] [PMID: 25327787]
[34]
Kong XX, Zhang HY, Chen ZQ, Fan XF, Gong YS. Inhibition of Beclin 1 enhances apoptosis by H2O2 in glioma U251 cells. Sheng Li Xue Bao 2011; 63(3): 238-44.
[PMID: 21681342]
[35]
Lezoualc’h F, Skutella T, Widmann M, Behl C. Melatonin prevents oxidative stress-induced cell death in hippocampal cells. Neuroreport 1996; 7(13): 2071-7.
[http://dx.doi.org/10.1097/00001756-199609020-00003] [PMID: 8930961]
[36]
Sánchez-Bretaño A, Baba K, Janjua U, Piano I, Gargini C, Tosini G. Melatonin partially protects 661W cells from H2O2-induced death by inhibiting Fas/FasL-caspase-3. Mol Vis 2017; 23: 844-52.
[PMID: 29259391]
[37]
Chetsawang B, Putthaprasart C, Phansuwan-Pujito P, Govitrapong P. Melatonin protects against hydrogen peroxide-induced cell death signaling in SH-SY5Y cultured cells: involvement of nuclear factor kappa B, Bax and Bcl-2. J Pineal Res 2006; 41(2): 116-23.
[http://dx.doi.org/10.1111/j.1600-079X.2006.00335.x] [PMID: 16879316]
[38]
Jin H, Zhang Z, Wang C, et al. Melatonin protects endothelial progenitor cells against AGE-induced apoptosis via autophagy flux stimulation and promotes wound healing in diabetic mice. Exp Mol Med 2018; 50(11): 1-15.
[http://dx.doi.org/10.1038/s12276-018-0177-z] [PMID: 30459300]
[39]
Florey O, Overholtzer M. Autophagy proteins in macroendocytic engulfment. Trends Cell Biol 2012; 22(7): 374-80.
[http://dx.doi.org/10.1016/j.tcb.2012.04.005] [PMID: 22608991]
[40]
Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 2004; 117(Pt 13): 2805-12.
[http://dx.doi.org/10.1242/jcs.01131] [PMID: 15169837]
[41]
Hensley K, Harris-White ME. Redox regulation of autophagy in healthy brain and neurodegeneration. Neurobiol Dis 2015; 84: 50-9.
[http://dx.doi.org/10.1016/j.nbd.2015.03.002] [PMID: 25771170]
[42]
Katsuragi Y, Ichimura Y, Komatsu M. p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J 2015; 282(24): 4672-8.
[http://dx.doi.org/10.1111/febs.13540] [PMID: 26432171]
[43]
Chang CC, Huang TY, Chen HY, et al. Protective effect of melatonin against oxidative stress-induced apoptosis and enhanced autophagy in human retinal pigment epithelium cells. Oxid Med Cell Longev 2018; 20189015765
[http://dx.doi.org/10.1155/2018/9015765] [PMID: 30174783]
[44]
Su LY, Li H, Lv L, et al. Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/α-synuclein aggregation. Autophagy 2015; 11(10): 1745-59.
[http://dx.doi.org/10.1080/15548627.2015.1082020] [PMID: 26292069]
[45]
Feng D, Wang B, Wang L, et al. Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings. J Pineal Res 2017; 62(3): 62.
[http://dx.doi.org/10.1111/jpi.12395] [PMID: 28178380]
[46]
Wei J, Ma LS, Liu DJ, Guo J, Jiang WK, Yu HJ. Melatonin regulates traumatic optic neuropathy via targeting autophagy. Eur Rev Med Pharmacol Sci 2017; 21(21): 4946-51.
[PMID: 29164563]
[47]
Guo Y, Wang J, Wang Z, Yang Y, Wang X, Duan Q. Melatonin protects N2a against ischemia/reperfusion injury through autophagy enhancement. J Huazhong Univ Sci Technolog Med Sci 2010; 30(1): 1-7.
[http://dx.doi.org/10.1007/s11596-010-0101-9] [PMID: 20155447]
[48]
Cao Y, Shen M, Jiang Y, Sun SC, Liu H. Melatonin reduces oxidative damage in mouse granulosa cells via restraining JNK-dependent autophagy. Reproduction 2018; 155(3): 307-19.
[http://dx.doi.org/10.1530/REP-18-0002] [PMID: 29363570]
[49]
Salminen A, Kaarniranta K, Kauppinen A, et al. Impaired autophagy and APP processing in Alzheimer’s disease: The potential role of Beclin 1 interactome. Prog Neurobiol 2013; 106-107: 33-54.
[http://dx.doi.org/10.1016/j.pneurobio.2013.06.002] [PMID: 23827971]
[50]
Li H, Zhang Y, Liu S, et al. Melatonin enhances proliferation and modulates differentiation of neural stem cells via autophagy in hyperglycemia. Stem Cells 2019; 37(4): 504-15.
[http://dx.doi.org/10.1002/stem.2968] [PMID: 30644149]
[51]
Sun B, Yang S, Li S, Hang C. Melatonin upregulates Nuclear factor erythroid-2 related factor 2 (Nrf2) and mediates mitophagy to protect against early brain injury after subarachnoid hemorrhage. Med Sci Monit 2018; 24: 6422-30.
[http://dx.doi.org/10.12659/MSM.909221] [PMID: 30210141]
[52]
Walczak M, Martens S. Dissecting the role of the Atg12-Atg5-Atg16 complex during autophagosome formation. Autophagy 2013; 9(3): 424-5.
[http://dx.doi.org/10.4161/auto.22931] [PMID: 23321721]
[53]
Jeong JK, Park SY. Melatonin regulates the autophagic flux via activation of alpha-7 nicotinic acetylcholine receptors. J Pineal Res 2015; 59(1): 24-37.
[http://dx.doi.org/10.1111/jpi.12235] [PMID: 25808024]
[54]
San-Miguel B, Crespo I, Sánchez DI, et al. Melatonin inhibits autophagy and endoplasmic reticulum stress in mice with carbon tetrachloride-induced fibrosis. J Pineal Res 2015; 59(2): 151-62.
[http://dx.doi.org/10.1111/jpi.12247] [PMID: 25958928]
[55]
San-Miguel B, Crespo I, Vallejo D, et al. Melatonin modulates the autophagic response in acute liver failure induced by the rabbit hemorrhagic disease virus. J Pineal Res 2014; 56(3): 313-21.
[http://dx.doi.org/10.1111/jpi.12124] [PMID: 24499270]
[56]
Wang M, Wang XF, Li YM, et al. Cross-talk between autophagy and apoptosis regulates testicular injury/recovery induced by cadmium via PI3K with mTOR-independent pathway. Cell Death Dis 2020; 11(1): 46.
[http://dx.doi.org/10.1038/s41419-020-2246-1] [PMID: 31969557]
[57]
Li Y, Guo Y, Fan Y, Tian H, Li K, Mei X. Melatonin enhances autophagy and reduces apoptosis to promote locomotor recovery in spinal cord injury via the PI3K/AKT/mTOR signaling pathway. Neurochem Res 2019; 44(8): 2007-19.
[http://dx.doi.org/10.1007/s11064-019-02838-w] [PMID: 31325156]
[58]
Beker MC, Caglayan B, Caglayan AB, et al. Interaction of melatonin and bmal1 in the regulation of PI3K/AKT pathway components and cellular survival. Sci Rep 2019; 9(1): 19082.
[http://dx.doi.org/10.1038/s41598-019-55663-0] [PMID: 31836786]
[59]
An R, Zhao L, Xi C, et al. Melatonin attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism. Basic Res Cardiol 2016; 111(1): 8.
[http://dx.doi.org/10.1007/s00395-015-0526-1] [PMID: 26671026]
[60]
Zhang Y, Li H, Pu Y, et al. Melatonin-mediated inhibition of Purkinje neuron P-type Ca2+ channels in vitro induces neuronal hyperexcitability through the phosphatidylinositol 3-kinase-dependent protein kinase C delta pathway. J Pineal Res 2015; 58(3): 321-34.
[http://dx.doi.org/10.1111/jpi.12218] [PMID: 25707622]