Recent Patents on Drug Delivery & Formulation

Author(s): Emine Kahraman, Neriman Aydilek and Sevgi Güngör*

DOI: 10.2174/1872211314999200819152450

Recent Approaches on Novel Topical Delivery Systems for Atopic Dermatitis Treatment

Page: [191 - 200] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Atopic dermatitis is a chronic inflammatory disease of the skin, which is characterized by itching, erythema, and eczematous lacerations. It affects about 10 % of adults and approximately 15-20 % of children worldwide. As a result of genetic, immunologic, and environmental factors, the disease manifests itself with the impaired stratum corneum barrier and then immunological responses. Topical administration of corticosteroids and calcineurin inhibitors are currently used as the first strategy in the management of the disease. However, they have low skin bioavailability and some side effects. The nanocarriers as novel drug delivery systems could overcome limitations of conventional dosage forms, owing to increment of poorly soluble drug' solubility, then its thermodynamic activity and, consequently, its skin permeation. Also, side effects of the drug substances on the skin could be reduced by the nano-sized drug delivery systems due to encapsulation of the drug in the nanocarriers and targeted drug delivery of drug substances to the inflammated skin areas. Thereby, there have been available numerous research studies and patents regarding the use of nanocarriers in the management of atopic dermatitis. This review focuses on the mechanism of disease and development of nanocarrier based on novel drug release systems in the management of atopic dermatitis.

Keywords: Atopic dermatitis, calcineurin inhibitors, corticosteroids, skin permeation, tacrolimus, nanocarriers.

Graphical Abstract

[1]
Souto EB, Dias-Ferreira J, Oliveira J, et al. Trends in atopic dermatitis — from standard pharmacotherapy to novel drug delivery systems. Int J Mol Sci 2019; 20(22): 5659-76.
[http://dx.doi.org/10.3390/ijms20225659]
[2]
Pelc J, Czarnecka-Operacz M, Adamski Z. The structure and function of the epidermal barrier in patients with atopic dermatitis – treatment options: Part two. Postepy Dermatol Alergol 2018; 35(2): 123-7.
[http://dx.doi.org/10.5114/ada.2018.75234]
[3]
Weidinger S, Novak N. Atopic dermatitis. Lancet 2016; 387(10023): 1109-22.
[http://dx.doi.org/10.1016/S0140-6736(15)00149-X]
[4]
Bieber T. Atopic dermatitis. N Engl J Med 2008; 358(14): 1483-94.
[http://dx.doi.org/10.1056/NEJMra074081]
[5]
Kim BE, Leung DYM. Significance of skin barrier dysfunction in atopic dermatitis. Allergy Asthma Immunol Res 2018; 10(3): 207-15.
[6]
Coondoo A, Phiske M, Verma S, Lahiri K. Side-effects of topical steroids: A long overdue revisit. Indian Dermatol Online J 2014; 5(4): 416-25.
[http://dx.doi.org/10.4103/2229-5178.142483]
[7]
Billich A, Aschauer H, Aszódi A, Stuetz A. Percutaneous absorption of drugs used in atopic eczema: Pimecrolimus permeates less through skin than corticosteroids and tacrolimus. Int J Pharm 2004; 269(1): 29-35.
[http://dx.doi.org/10.1016/j.ijpharm.2003.07.013]
[8]
Siegfried EC, Jaworski JC, Hebert AA. Topical calcineurin inhibitors and lymphoma risk: Evidence update with implications for daily practice. Am J Clin Dermatol 2013; 14(3): 163-78.
[http://dx.doi.org/10.1007/s40257-013-0020-1]
[9]
Dhasmana A, Firdaus S, Singh KP, et al. Nanoparticles: Applications, toxicology and safety aspects. In: Kesari KK, Eds. In perspectives in environmental toxicology 1st ed Switzerland: Springer International Publishing . 2017; pp. 47-70.
[http://dx.doi.org/10.1007/978-3-319-46248-63]
[10]
Khajavi R, Abbasipour M, Bahador A. Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. J Appl Polym Sci 2016; 133(3): 42883-902.
[http://dx.doi.org/10.1002/app.42883]
[11]
Bahadar H, Maqbool F, Niaz K, Abdollahi M. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 2016; 20(1): 1-11.
[http://dx.doi.org/10.7508/ibj.2016.01.001]
[12]
Eroğlu İ, Azizoğlu E, Özyazıcı M, et al. Effective topical delivery systems for corticosteroids: Dermatological and histological evaluations. Drug Deliv 2016; 23(5): 1502-13.
[http://dx.doi.org/10.3109/10717544.2014.960981]
[13]
Yu K, Wang Y, Wan T, et al. Tacrolimus nanoparticles based on chitosan combined with nicotinamide: Enhancing percutaneous delivery and treatment efficacy for atopic dermatitis and reducing dose. Int J Nanomedicine 2018; 13: 129-42.
[http://dx.doi.org/10.2147/IJN.S150319]
[14]
Kahraman E, Neşetoğlu N, Güngör S, Ünal DŞ, Özsoy Y. The combination of nanomicelles with terpenes for enhancement of skin drug delivery. Int J Pharm 2018; 551(1-2): 133-40.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.053]
[15]
Nagaich U, Gulati N. Preclinical assessment of steroidal nanostructured lipid carriers based gels for atopic dermatitis: Optimization and product development. Curr Drug Deliv 2018; 15(5): 641-51.
[http://dx.doi.org/10.2174/1567201814666170918163615]
[16]
Chambers ES, Vukmanovic-stejic M. Skin barrier immunity and ageing. Immuno 2020; 160(2): 116-25.
[http://dx.doi.org/10.1111/imm.13152]
[17]
Güngör S, Erdal MS, Güngördük S. Colloidal carriers in the topical treatment of dermatological diseases. In; Naik J, Eds.Nano Based Drug Delivery 1st ed Zagreb IAPC publishing . . 2015; pp. 391-409.
[http://dx.doi.org/10.5599/obp.8.15]
[18]
Schäfer M, Werner S. The cornified envelope: A first line of defence against reactive oxygen species. J Invest Dermatol 2011; 131(7): 1409-11.
[http://dx.doi.org/10.1038/jid.2011.119]
[19]
Levin J, Friedlander SF, Del Rosso JQ. Atopic dermatitis and the stratum corneum. Part 1: The role of filaggrin in the stratum corneum barrier and atopic skin. Ski Struct Funct Transl Res to Pat Care 2013; 6(10): 16-22.
[20]
Van Bever HPS, Llanora G. Features of childhood atopic dermatitis. Asian Pac J Allergy Immunol 2011; 29(1): 15-24.
[21]
Oliveira C, Torres T. More than skin deep: The systemic nature of atopic dermatitis. Eur J Dermatol 2019; 29(3): 250-8.
[http://dx.doi.org/10.1684/ejd.2019.3557]
[22]
Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol 2010; 2(5)a000414
[http://dx.doi.org/10.1101/cshperspect.a000414]
[23]
Dammermann W, Wollenberg L, Bentzien F, Lohse A, Lüth S. Toll like receptor 2 agonists lipoteichoic acid and peptidoglycan are able to enhance antigen specific IFNγ release in whole blood during recall antigen responses. J Immunol Methods 2013; 396(1–2): 107-15.
[http://dx.doi.org/10.1016/j.jim.2013.08.004]
[24]
Pichlmair A, Sousa CR. Innate recognition of viruses. Immunity 2007; 27(3): 370-83.
[http://dx.doi.org/10.1016/j.immuni.2007.08.012]
[25]
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124(4): 783-801.
[http://dx.doi.org/10.1016/j.cell.2006.02.015]
[26]
Kopfnagel V, Harder J, Werfel T. Expression of antimicrobial peptides in atopic dermatitis and possible immunoregulatory functions. Curr Opin Allergy Clin Immunol 2013; 13(5): 531-6.
[http://dx.doi.org/10.1097/ACI.0b013e328364ddfd]
[27]
Rancé F, Boguniewicz M, Lau S. New visions for atopic eczema: An iPAC summary and future trends. Pediatr Allergy Immunol 2008; 19: 17-25.
[http://dx.doi.org/10.1111/j.1399-3038.2008.00764.x]
[28]
Vakharia PP, Silverberg JI. New therapies for atopic dermatitis: Additional treatment classes. J Am Acad Dermatol 2018; 78(3): 76-83.
[http://dx.doi.org/10.1016/j.jaad.2017.12.024]
[29]
Wallach D, Taïeb A. Atopic dermatitis/Atopic eczema. Chem Immunol Allergy 2014; 100(1): 81-96.
[http://dx.doi.org/10.1159/000358606]
[30]
Pelc J, Czarnecka-Operacz M, Adamski Z. The structure and function of the epidermal barrier in patients with atopic dermatitis - Treatment options. Part one. Adv Dermatol Allergol 2018; 35(1): 1-5.
[http://dx.doi.org/10.5114/ada.2018.73159]
[31]
Boguniewicz M, Leung DYM. Atopic dermatitis: A disease of altered skin barrier and immune dysregulation. Immunol Rev 2011; 242(1): 233-46.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01027.x]
[32]
Akdis CA, Akdis M, Bieber T, et al. Diagnosis and treatment of atopic dermatitis in children and adults: European academy of allergology and clinical immunology/american academy of allergy, asthma and immunology/practall consensus report. Allerg 2006; 61(8): 969-87.
[http://dx.doi.org/10.1111/j.1398-9995.2006.01153.x]
[33]
Oyoshi MK, He R, Kumar L, Yoon J, Geha RS. Cellular and molecular mechanisms in atopic dermatitis. Adv Immunol 2009; 102: 135-226.
[http://dx.doi.org/10.1016/S0065-2776(09)01203-6]
[34]
Tang TS, Bieber T, Williams HC. Does “Autoreactivity” play a role in atopic dermatitis? J Allergy Clin Immunol 2012; 129(5): 1209-15.
[http://dx.doi.org/10.1016/j.jaci.2012.02.002]
[35]
Hoffjan S, Epplen JT. The genetics of atopic dermatitis: Recent findings and future options. J Mol Med 2005; 83(9): 682-92.
[http://dx.doi.org/10.1007/s00109-005-0672-2]
[36]
Morar N, Willis-Owen SAG, Moffatt MF, Cookson WOCM. The genetics of atopic dermatitis. J Allergy Clin Immunol 2006; 118(1): 24-34.
[http://dx.doi.org/10.1016/j.jaci.2006.03.037]
[37]
Kasraie S, Niebuhr M, Werfel T. Interleukin (IL)‐31 induces pro‐inflammatory cytokines in human monocytes and macrophages following stimulation with staphylococcal exotoxins. Allergy 2010; 65(6): 712-21.
[http://dx.doi.org/10.1111/j.1398-9995.2009.02255.x]
[38]
Wollenberg A, Seba A, Antal AS. Immunological and molecular targets of atopic dermatitis treatment. Br J Dermatol 2014; 170(1): 7-11.
[http://dx.doi.org/10.1111/bjd.12975]
[39]
Damiani G, Eggenhö R, Daniele P, Pigatto M, Luigi N. Nanotechnology meets atopic dermatitis: Current solutions, challenges and future prospects. Insights and implications from a systematic review of the literature. Bioact Mater 2019; 2020(4): 380-6.
[http://dx.doi.org/10.1016/j.bioactmat.2019.11.003]
[40]
Pohar R, McCormack S. Emollient treatments for atopic dermatitis: A review of clinical effectiveness, cost-effectiveness, and guidelines CADTH Rapid Response Report: Summary with Critical Appraisal Ottawa. 2019.
[41]
Kircik LH, Del Rosso JQ, Aversa D. Evaluating clinical use of a ceramide-dominant, physiologic lipid-based topical emulsion for atopic dermatitis. J Clin Aesthet Dermatol 2011; 4(3): 34-40.
[42]
Akhtar N, Verma A, Pathak K. Exploring preclinical and clinical effectiveness of nanoformulations in the treatment of atopic dermatitis: Safety aspects and patent reviews. Bull Fac Pharm Cairo Univ 2017; 55(1): 1-10.
[http://dx.doi.org/10.1016/j.bfopcu.2016.12.003]
[43]
Jeziorkowska R, Sysa-jędrzejowska A, Samochocki Z. Topical steroid therapy in atopic dermatitis in theory and practice. Postepy Dermatol Alergol 2015; 32(3): 162-6.
[http://dx.doi.org/10.5114/pdia.2014.40962]
[44]
Carr WW. Topical calcineurin inhibitors for atopic dermatitis: Review and treatment recommendations. Paediatr Drugs 2013; 15(4): 303-10.
[http://dx.doi.org/10.1007/s40272-013-0013-9]
[45]
Protopic (Tacrolimus) ointment 0.03 % and ointment 0.1 % U. Deerfield (IL): Fujisawa Healthcare Inc; US prescribing information 2000.
[46]
Elidel (Pimecrolimus) Cream 1 %. East Hanover (NJ): Novartis Pharmaceuticals Corporation; US prescribing information 2001.
[48]
Ribero S, Giura MT, Viola R, et al. Effectiveness and safety of dupilumab for the treatment of atopic dermatitis in adult cohort: A real-life Italian tertiary centre experience. J Eur Acad Dermatol Venereol 2020; 34(8): 380-3.
[http://dx.doi.org/10.1111/jdv.16219]
[49]
Shao M, Hussain Z, Thu HE, et al. Drug nanocarrier, the future of atopic diseases: Advanced drug delivery systems and smart management of disease. Colloids Surf B Biointerfaces 2016; 147: 475-91.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.027]
[50]
Pacha O, Hebert AA. Treating atopic dermatitis: Safety, efficacy, and patient acceptability of a ceramide hyaluronic acid emollient foam. Clin Cosmet Investig Dermatol 2012; 5: 39-42.
[51]
Kahraman E, Kaykın M, Şahin Bektay H, Güngör S. Recent advances on topical application of ceramides to restore barrier function of skin. Cosmet 2019; 6(3): 52-63.
[http://dx.doi.org/10.3390/cosmetics6030052]
[52]
Neubert RHH, Sonnenberger S, Dobner B, et al. Controlled penetration of a novel dimeric ceramide into and across the stratum corneum using microemulsions and various types of semisolid formulations. Skin Pharmacol Physiol 2016; 29(3): 130-4.
[http://dx.doi.org/10.1159/000445776]
[53]
Tessema EN, Gebre-Mariam T, Paulos G, Wohlrab J, Neubert RHH. Delivery of oat-derived phytoceramides into the stratum corneum of the skin using nanocarriers: Formulation, characterization and in vitro and ex-vivo penetration studies. Eur J Pharm Biopharm 2018; 127: 260-9.
[http://dx.doi.org/10.1016/j.ejpb.2018.02.037]
[54]
Hussain Z, Katas H, Amin MCIM, Kumulosasi E, Sahudin S. Antidermatitic perspective of hydrocortisone as chitosan nanocarriers: An ex vivo and in vivo assessment using an NC/Nga mouse model. J Pharm Sci 2013; 102(3): 1063-75.
[http://dx.doi.org/10.1002/jps.23446]
[55]
Hussain Z, Katas H, Mohd Amin MCI, et al. Self-assembled polymeric nanoparticles for percutaneous co-delivery of hydrocortisone/hydroxytyrosol: An ex vivo and in vivo study using an NC/Nga mouse model. Int J Pharm 2013; 444(1–2): 109-19.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.024]
[56]
Hussain Z, Katas H, Mohd Amin MCI, Kumolosasi E. Efficient immuno-modulation of TH1/TH2 biomarkers in 2,4-dinitrofluorobenzene-induced atopic dermatitis: Nanocarrier-mediated transcutaneous co-delivery of anti-inflammatory and antioxidant drugs. PLoS One 2014; 9(11)e113143
[http://dx.doi.org/10.1371/journal.pone.0113143]
[57]
Hussain Z, Katas H, Mohd Amin MCI, Kumolosasi E, Sahudin S. Down-regulation of immunological mediators in 2,4-dinitrofluorobenzene-induced atopic dermatitis-like skin lesions by hydrocortisone-loaded chitosan nanoparticles. Int J Nanomedicine 2014; 9: 5143-56.
[http://dx.doi.org/10.2147/IJN.S71543]
[58]
Izumi R, Azuma K, Izawa H, et al. Chitin nanofibrils suppress skin inflammation in atopic dermatitis-like skin lesions in NC/Nga mice. Carbohydr Polym 2016; 146: 320-7.
[http://dx.doi.org/10.1016/j.carbpol.2016.03.068]
[59]
Siddique MI, Katas H, Amin MCIM, Ng S-F, Zulfakar MH, Jamil A. In-vivo dermal pharmacokinetics, efficacy, and safety of skin targeting nanoparticles for corticosteroid treatment of atopic dermatitis. Int J Pharm 2016; 507(1–2): 72-82.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.005]
[60]
Siddique MI, Katas H, Amin MCIM, et al. Minimization of local and systemic adverse effects of topical glucocorticoids by nanoencapsulation: In vivo safety of hydrocortisone-hydroxytyrosol loaded chitosan nanoparticles. J Pharm Sci 2015; 104(12): 4276-86.
[http://dx.doi.org/10.1002/jps.24666]
[61]
Siddique MI, Katas H, Jamil A, et al. Potential treatment of atopic dermatitis: Tolerability and safety of cream containing nanoparticles loaded with hydrocortisone and hydroxytyrosol in human subjects. Drug Deliv Transl Res 2019; 9(2): 469-81.
[http://dx.doi.org/10.1007/s13346-017-0439-7]
[62]
Pandey M, Choudhury H, Gunasegaran TAP, et al. Hyaluronic acid-modified betamethasone encapsulated polymeric nanoparticles: Fabrication, characterisation, in vitro release kinetics, and dermal targeting. Drug Deliv Transl Res 2019; 9(2): 520-33.
[http://dx.doi.org/10.1007/s13346-018-0480-1]
[63]
Md S, Kuldeep Singh JKA, Waqas M, et al. Nanoencapsulation of betamethasone valerate using high pressure homogenization-solvent evaporation technique: Optimization of formulation and process parameters for efficient dermal targeting. Drug Dev Ind Pharm 2019; 45(2): 323-32.
[http://dx.doi.org/10.1080/03639045.2018.1542704]
[64]
Lapteva M, Mondon K, Möller M, Gurny R, Kalia YN. Polymeric micelle nanocarriers for the cutaneous delivery of tacrolimus: A targeted approach for the treatment of psoriasis. Mol Pharm 2014; 11(9): 2989-3001.
[http://dx.doi.org/10.1021/mp400639e]
[65]
Kahraman E, Güngör S, Özsoy Y. Potential enhancement and targeting strategies of polymeric and lipid-based nanocarriers in dermal drug delivery. Ther Deliv 2017; 8(11): 967-85.
[http://dx.doi.org/10.4155/tde-2017-0075]
[66]
Pople PV, Singh KK. Targeting tacrolimus to deeper layers of skin with improved safety for treatment of atopic dermatitis - Part II: In vivo assessment of dermatopharmacokinetics, Biodistribution and Efficacy. Int J Pharm 2012; 434(1–2): 70-9.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.051]
[67]
Singh KK, Pople P. Safer than safe: Lipid nanoparticulate encapsulation of tacrolimus with enhanced targeting and improved safety for atopic dermatitis. J Biomed Nanotechnol 2011; 7(1): 40-1.
[http://dx.doi.org/10.1166/jbn.2011.1191]
[68]
Pople PV, Singh KK. Development and evaluation of colloidal modified nanolipid carrier: Application to topical delivery of tacrolimus. Eur J Pharm Biopharm 2011; 79(1): 82-94.
[http://dx.doi.org/10.1016/j.ejpb.2011.02.016]
[69]
Pople PV, Singh KK. Development and evaluation of colloidal modified nanolipid carrier: Application to topical delivery of tacrolimus, part II- In vivo assessment, drug targeting, efficacy, and safety in treatment for atopic dermatitis. Eur J Pharm Biopharm 2013; 84(1): 72-83.
[http://dx.doi.org/10.1016/j.ejpb.2012.11.026]
[70]
Savić V, Ilić T, Nikolić I, et al. Tacrolimus-loaded lecithin-based nanostructured lipid carrier and nanoemulsion with propylene glycol monocaprylate as a liquid lipid: Formulation characterization and assessment of dermal delivery compared to referent ointment. Int J Pharm 2019; 569: 118624-35.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118624]
[71]
Kang JH, Chon J, Kim YI, et al. Preparation and evaluation of tacrolimus-loaded thermosensitive solid lipid nanoparticles for improved dermal distribution. Int J Nanomedicine 2019; 14: 5381-96.
[http://dx.doi.org/10.2147/IJN.S215153]
[72]
Zhuo F, Abourehab MAS, Hussain Z. Hyaluronic acid decorated tacrolimus-loaded nanoparticles: Efficient approach to maximize dermal targeting and anti-dermatitis efficacy. Carbohydr Polym 2018; 197: 478-89.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.023]
[73]
Edelson J, Kotyla T, Theobald K. Nanoparticle compositions and components thereof. US20170087088A1, 2017.
[74]
Yamamoto K, Klossek A, Fuchs K, et al. Soft X-ray microscopy for probing of topical tacrolimus delivery via micelles. Eur J Pharm Biopharm 2019; 139: 68-75.
[http://dx.doi.org/10.1016/j.ejpb.2019.03.006]
[75]
Rancan F, Volkmann H, Giulbudagian M, et al. Dermal delivery of the high-molecular-weight drug tacrolimus by means of polyglycerol-based nanogels. Pharma 2019; 11(8): 394-408.
[http://dx.doi.org/10.3390/pharmaceutics11080394]
[76]
Lei W, Yu C, Lin H, Zhou X. Development of tacrolimus-loaded transfersomes for deeper skin penetration enhancement and therapeutic effect improvement in vivo. Asian J Pharm Sci 2013; 8(6): 336-45.
[http://dx.doi.org/10.1016/j.ajps.2013.09.005]
[77]
Li G, Fan Y, Fan C, et al. Tacrolimus-loaded ethosomes: Physicochemical characterization and in vivo evaluation. Eur J Pharm Biopharm 2012; 82(1): 49-57.
[http://dx.doi.org/10.1016/j.ejpb.2012.05.011]
[78]
Li G, Fan C, Li X, et al. Preparation and in vitro evaluation of tacrolimus-loaded ethosomes. Sci World J 2012; 1-6.
[http://dx.doi.org/10.1100/2012/874053]
[79]
Goindi S, Kumar G, Kumar N, Kaur A. Development of novel elastic vesicle-based topical formulation of cetirizine dihydrochloride for treatment of atopic dermatitis. AAPS PharmSciTech 2013; 14(4): 1284-93.
[http://dx.doi.org/10.1208/s12249-013-0017-3]
[80]
Goindi S, Kumar G, Kaur A. Novel flexible vesicles based topical formulation of levocetirizine: In vivo evaluation using oxazolone-induced atopic dermatitis in murine model. J Liposome Res 2014; 24(3): 249-57.
[http://dx.doi.org/10.3109/08982104.2014.899365]
[81]
Fengfeng G, Wei L, Qi X, Dafeng Y. High skin retention ceramide nano composition, and preparation method and applications thereof. CN106691889A 2017.
[82]
Meiting L, Simin Q, Xiaofeng Q, Cuilan Y. Ceramide nano inclusion and preparation method thereof. CN109223601A, 2019.
[83]
Dongming L, Jun Z. Nano ceramide emulsion, and preparation process and application thereof CN109330914A 2019.
[84]
Gun-Young A, Young-Hee H, Joo-Ho L, Chan-Jae S. Cosmetic composition comprising nanoemulsion in which 7-dehydrocholesterol, cholesterol, and stearic acid encapsulated in internal phase of hyaluronic acid-ceramide NP complex. WO2019245229A1, 2019.
[85]
Katas H, Mohd A, Iqbal Mohd C, Sahudin S. Chitosan-based skintargeted nanoparticle drug delivery system and method. WO2015072846A1, 2015.
[86]
Barman SP, Thekkedath RV, Barman K. Preparations of hydrophobic therapeutic agents, methods of manufacture and use thereof. US 2015/0337006 A1, 2015.
[87]
Sheikh Sun, Sen N, Patel JD. Topical compositions comprising corticosteroids. US 2018/0235882 A1, 2018.
[88]
Anderson SM. Compositions and methods for treating skin conditions. US 2018/0333356 A1, 2018.
[89]
Jensen LB, Peterson K. Composition containing lipid nanoparticles and corticosteroid or vitamin D derivative. RU2602171C2, 2016.
[90]
Avramoff A, Shifrin H, Oleinik I. Topical montelukast for treatment of atopic dermatitis. US 10 548 837 B1, 2020.
[91]
Benita S, Nassar T, Rebibo L, Badihi A. Drug delivery systems. WO2019162951A1, 2019.
[92]
Yuan L, Pan M, Lei M, et al. A novel composite of micelles and hydrogel for improving skin delivery of hydrocortisone and application in atopic dermatitis therapy. Appl Mater Today 2020; 19: 100593-606.
[http://dx.doi.org/10.1016/j.apmt.2020.100593]
[93]
Kovačević AB, Müller RH, Keck CM. Formulation development of lipid nanoparticles: Improved lipid screening and development of tacrolimus loaded Nanostructured Lipid Carriers (NLC). Int J Pharm 2020; 576: 118918-31.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118918]
[94]
Badihi A, Frušić-Zlotkin M, Soroka Y, et al. Topical nano-encapsulated cyclosporine formulation for atopic dermatitis treatment. Nanomed NBM 2020; 24: 102140-50.
[http://dx.doi.org/10.1016/j.nano.2019.102140]