Pieces of the Complex Puzzle of Cancer Cell Energy Metabolism: An Overview of Energy Metabolism and Alternatives for Targeted Cancer Therapy

Page: [3514 - 3534] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Over the past decades, several advances in cancer cell biology have led to relevant details about a phenomenon called the ‘Warburg effect’. Currently, it has been accepted that the Warburg effect is not compatible with all cancer cells, and thus the process of aerobic glycolysis is now challenged by the knowledge of a large number of cells presenting mitochondrial function. The energy metabolism of cancer cells is focused on the bioenergetic and biosynthetic pathways in order to meet the requirements of rapid proliferation. Changes in the metabolism of carbohydrates, amino acids and lipids have already been reported for cancer cells and this might play an important role in cancer progression. To the best of our knowledge, these changes are mainly attributed to genetic reprogramming which leads to the transformation of a healthy into a cancerous cell. Indeed, several enzymes that are highly relevant for cellular energy are targets of oncogenes (e.g. PI3K, HIF1, and Myc) and tumor suppressor proteins (e.g. p53). As a consequence of extensive studies on cancer cell metabolism, some new therapeutic strategies have appeared that aim to interrupt the aberrant metabolism, in addition to influencing genetic reprogramming in cancer cells. In this review, we present an overview of cancer cell metabolism (carbohydrate, amino acid, and lipid), and also describe oncogenes and tumor suppressors that directly affect the metabolism. We also discuss some of the potential therapeutic candidates which have been designed to target and disrupt the main driving forces associated with cancer cell metabolism and proliferation.

Keywords: Carbohydrate metabolism, lipid metabolism, amino acid metabolism, oncogenes and tumor suppressors, targeted therapy, alternative therapy.

[1]
Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the warburg effect: the metabolic requirements of cell proliferation. Science, 2009, 324(5930), 1029-1033.
[http://dx.doi.org/10.1126/science.1160809] [PMID: 19460998]
[2]
Warburg, O.; Wind, F.; Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol., 1927, 8(6), 519-530.
[http://dx.doi.org/10.1085/jgp.8.6.519] [PMID: 19872213]
[3]
Cagan, R.; Meyer, P. Rethinking cancer: current challenges and opportunities in cancer research. Dis. Model. Mech., 2017, 10(4), 349-352.
[http://dx.doi.org/10.1242/dmm.030007] [PMID: 28381596]
[4]
Crabtree, H.G. Observations on the carbohydrate metabolism of tumours. Biochem. J., 1929, 23(3), 536-545.
[http://dx.doi.org/10.1042/bj0230536] [PMID: 16744238]
[5]
Wojtczak, L. The crabtree effect: a new look at the old problem. Acta Biochim. Pol., 1996, 43(2), 361-368.
[http://dx.doi.org/10.18388/abp.1996_4505] [PMID: 8862181]
[6]
Gatenby, R.A.; Gillies, R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer, 2004, 4(11), 891-899.
[http://dx.doi.org/10.1038/nrc1478] [PMID: 15516961]
[7]
Cairns, R.A.; Harris, I.; McCracken, S.; Mak, T.W. Cancer cell metabolism. Cold Spring Harb. Symp. Quant. Biol., 2011, 76, 299-311.
[http://dx.doi.org/10.1101/sqb.2011.76.012856] [PMID: 22156302]
[8]
Sussman, I.; Erecińska, M.; Wilson, D.F. Regulation of cellular energy metabolism: the crabtree effect. Biochim. Biophys. Acta, 1980, 591(2), 209-223.
[http://dx.doi.org/10.1016/0005-2728(80)90153-X] [PMID: 7397121]
[9]
Rodríguez-Enríquez, S.; Juárez, O.; Rodríguez-Zavala, J.S.; Moreno-Sánchez, R. Multisite control of the Crabtree effect in ascites hepatoma cells. Eur. J. Biochem., 2001, 268(8), 2512-2519.
[http://dx.doi.org/10.1046/j.1432-1327.2001.02140.x] [PMID: 11298771]
[10]
Diaz-Ruiz, R.; Rigoulet, M.; Devin, A. The warburg and crabtree effects: on the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim. Biophys. Acta, 2011, 1807(6), 568-576.
[http://dx.doi.org/10.1016/j.bbabio.2010.08.010] [PMID: 20804724]
[11]
Evtodienko, YuV.; Teplova, V. V.; Duszyński, J.; Bogucka, K.; Wojtczak, L. The role of cytoplasmic [Ca2+] in glucose-induced inhibition of respiration and oxidative phosphorylation in Ehrlich ascites tumour cells: a novel mechanism of the crabtree effect. Cell Calcium, 1994, 15(6), 439-446.
[http://dx.doi.org/10.1016/0143-4160(94)90108-2] [PMID: 8082127]
[12]
Wojtczak, L.; Teplova, V.V.; Bogucka, K.; Czyz, A.; Makowska, A.; Wieckowski, M.R.; Duszyński, J.; Evtodienko, Y.V. Effect of glucose and deoxyglucose on the redistribution of calcium in ehrlich ascites tumour and Zajdela hepatoma cells and its consequences for mitochondrial energetics. Further arguments for the role of Ca(2+) in the mechanism of the crabtree effect. Eur. J. Biochem., 1999, 263(2), 495-501.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00522.x] [PMID: 10406959]
[13]
Maughan, R. Carbohydrate metabolism. Hepatopancreatobiliary I, 2009, 27(1), 6-10.
[http://dx.doi.org/10.1016/j.mpsur.2008.12.002]
[14]
Boroughs, L.K.; DeBerardinis, R.J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol., 2015, 17(4), 351-359.
[http://dx.doi.org/10.1038/ncb3124] [PMID: 25774832]
[15]
Moreno-Sánchez, R.; Rodríguez-Enríquez, S.; Marín-Hernández, A.; Saavedra, E. Energy metabolism in tumor cells. FEBS J., 2007, 274(6), 1393-1418.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05686.x] [PMID: 17302740]
[16]
Augustin, R. The protein family of glucose transport facilitators: it’s not only about glucose after all. IUBMB Life, 2010, 62(5), 315-333.
[http://dx.doi.org/10.1002/iub.315] [PMID: 20209635]
[17]
Frolova, A.I.; Moley, K.H. Glucose transporters in the uterus: an analysis of tissue distribution and proposed physiological roles. Reproduction, 2011, 142(2), 211-220.
[http://dx.doi.org/10.1530/REP-11-0114] [PMID: 21642384]
[18]
Grabellus, F.; Nagarajah, J.; Bockisch, A.; Schmid, K.W.; Sheu, S-Y. Glucose transporter 1 expression, tumor proliferation, and iodine/glucose uptake in thyroid cancer with emphasis on poorly differentiated thyroid carcinoma. Clin. Nucl. Med., 2012, 37(2), 121-127.
[http://dx.doi.org/10.1097/RLU.0b013e3182393599] [PMID: 22228332]
[19]
Zambrano, A.; Molt, M.; Uribe, E.; Salas, M. Glut 1 in cancer cells and the inhibitory action of resveratrol as a potential therapeutic strategy. Int. J. Mol. Sci., 2019, 20(13), 3374.
[http://dx.doi.org/10.3390/ijms20133374] [PMID: 31324056]
[20]
Krzeslak, A.; Wojcik-Krowiranda, K.; Forma, E.; Jozwiak, P.; Romanowicz, H.; Bienkiewicz, A.; Brys, M. Expression of GLUT1 and GLUT3 glucose transporters in endometrial and breast cancers. Pathol. Oncol. Res., 2012, 18(3), 721-728.
[http://dx.doi.org/10.1007/s12253-012-9500-5] [PMID: 22270867]
[21]
Smith, T.A.D. Mammalian hexokinases and their abnormal expression in cancer. Br. J. Biomed. Sci., 2000, 57(2), 170-178.
[PMID: 10912295]
[22]
Wilson, J.E. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J. Exp. Biol., 2003, 206(Pt 12), 2049-2057.
[http://dx.doi.org/10.1242/jeb.00241] [PMID: 12756287]
[23]
Anderson, M.; Marayati, R.; Moffitt, R.; Yeh, J.J. Hexokinase 2 promotes tumor growth and metastasis by regulating lactate production in pancreatic cancer. Oncotarget, 2016, 8(34), 56081-56094.
[http://dx.doi.org/10.18632/oncotarget.9760] [PMID: 28915575]
[24]
Yoo, H-J.; Yun, B-R.; Kwon, J-H.; Ahn, H-S.; Seol, M-A.; Lee, M-J.; Yu, G-R.; Yu, H-C.; Hong, B.; Choi, K.; Kim, D-G. Genetic and expression alterations in association with the sarcomatous change of cholangiocarcinoma cells. Exp. Mol. Med., 2009, 41(2), 102-115.
[http://dx.doi.org/10.3858/emm.2009.41.2.013] [PMID: 19287191]
[25]
Hennipman, A.; Smits, J.; Van Oirschot, B.; Van Houwelingen, J.C.; Rijksen, G.; Neyt, J.P.; Van Unnik, J.A.M.; Staal, G.E.J. Glycolytic enzymes in breast cancer, benign breast disease and normal breast tissue. Tumour Biol., 1987, 8(5), 251-263.
[http://dx.doi.org/10.1159/000217529] [PMID: 3448771]
[26]
Hennipman, A.; Van Oirschot, B.A.; Smits, J.; Rijksen, G.; Staal, G.E.J. Glycolytic enzyme activities in breast cancer metastases. Tumour Biol., 1988, 9(5), 241-248.
[http://dx.doi.org/10.1159/000217568] [PMID: 2973647]
[27]
Bosca, L.; Mojena, M.; Ghysdael, J.; Rousseau, G.G.; Hue, L. Expression of the v-src or v-fps oncogene increases fructose 2,6-bisphosphate in chick-embryo fibroblasts. Novel mechanism for the stimulation of glycolysis by retroviruses. Biochem. J., 1986, 236(2), 595-599.
[http://dx.doi.org/10.1042/bj2360595] [PMID: 2944513]
[28]
Sakakibara, R.; Kato, M.; Okamura, N.; Nakagawa, T.; Komada, Y.; Tominaga, N.; Shimojo, M.; Fukasawa, M. Characterization of a human placental fructose-6-phosphate, 2-kinase/fructose-2,6-bisphosphatase. J. Biochem., 1997, 122(1), 122-128.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a021719] [PMID: 9276680]
[29]
Ros, S.; Schulze, A. Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab., 2013, 1(1), 8.
[http://dx.doi.org/10.1186/2049-3002-1-8] [PMID: 24280138]
[30]
Gustafsson, N.M.S.; Färnegårdh, K.; Bonagas, N.; Ninou, A.H.; Groth, P.; Wiita, E.; Jönsson, M.; Hallberg, K.; Lehto, J.; Pennisi, R.; Martinsson, J.; Norström, C.; Hollers, J.; Schultz, J.; Andersson, M.; Markova, N.; Marttila, P.; Kim, B.; Norin, M.; Olin, T.; Helleday, T. Targeting PFKFB3 radiosensitizes cancer cells and suppresses homologous recombination. Nat. Commun., 2018, 9(1), 3872.
[http://dx.doi.org/10.1038/s41467-018-06287-x] [PMID: 30250201]
[31]
Rider, M.H.; Bertrand, L.; Vertommen, D.; Michels, P.A.; Rousseau, G.G.; Hue, L. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem. J., 2004, 381(Pt 3), 561-579.
[http://dx.doi.org/10.1042/BJ20040752] [PMID: 15170386]
[32]
Chesney, J.; Mitchell, R.; Benigni, F.; Bacher, M.; Spiegel, L.; Al-Abed, Y.; Han, J.H.; Metz, C.; Bucala, R. An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the warburg effect. Proc. Natl. Acad. Sci. USA, 1999, 96(6), 3047-3052.
[http://dx.doi.org/10.1073/pnas.96.6.3047] [PMID: 10077634]
[33]
Atsumi, T.; Chesney, J.; Metz, C.; Leng, L.; Donnelly, S.; Makita, Z.; Mitchell, R.; Bucala, R. High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (iPFK-2; PFKFB3) in human cancers. Cancer Res., 2002, 62(20), 5881-5887.
[PMID: 12384552]
[34]
O’Neal, J.; Clem, A.; Reynolds, L.; Dougherty, S.; Imbert-Fernandez, Y.; Telang, S.; Chesney, J.; Clem, B.F. Inhibition of 6-phosphofructo-2-kinase (PFKFB3) suppresses glucose metabolism and the growth of HER2+ breast cancer. Breast Cancer Res. Treat., 2016, 160(1), 29-40.
[http://dx.doi.org/10.1007/s10549-016-3968-8] [PMID: 27613609]
[35]
Wu, J.; Hu, L.; Chen, M.; Cao, W.; Chen, H.; He, T. Pyruvate kinase M2 overexpression and poor prognosis in solid tumors of digestive system: evidence from 16 cohort studies. OncoTargets Ther., 2016, 9, 4277-4288.
[http://dx.doi.org/10.2147/OTT.S106508] [PMID: 27478385]
[36]
Paradies, G.; Capuano, F.; Palombini, G.; Galeotti, T.; Papa, S. Transport of pyruvate in mitochondria from different tumor cells. Cancer Res., 1983, 43(11), 5068-5071.
[PMID: 6616443]
[37]
Palmieri, F.; Monné, M. Discoveries, metabolic roles and diseases of mitochondrial carriers: a review. Biochim. Biophys. Acta, 2016, 1863(10), 2362-2378.
[http://dx.doi.org/10.1016/j.bbamcr.2016.03.007] [PMID: 26968366]
[38]
Bender, T.; Martinou, J-C. The mitochondrial pyruvate carrier in health and disease: to carry or not to carry? Biochim. Biophys. Acta, 2016, 1863(10), 2436-2442.
[http://dx.doi.org/10.1016/j.bbamcr.2016.01.017] [PMID: 26826034]
[39]
Ma, X.; Cui, Y.; Zhou, H.; Li, Q. Function of mitochondrial pyruvate carriers in hepatocellular carcinoma patients. Oncol. Lett., 2018, 15(6), 9110-9116.
[http://dx.doi.org/10.3892/ol.2018.8466] [PMID: 29805642]
[40]
Lu, C-W.; Lin, S-C.; Chien, C-W.; Lin, S-C.; Lee, C-T.; Lin, B-W.; Lee, J-C.; Tsai, S-J. Overexpression of pyruvate dehydrogenase kinase 3 increases drug resistance and early recurrence in colon cancer. Am. J. Pathol., 2011, 179(3), 1405-1414.
[http://dx.doi.org/10.1016/j.ajpath.2011.05.050] [PMID: 21763680]
[41]
Lu, C-W.; Lin, S-C.; Chen, K-F.; Lai, Y-Y.; Tsai, S-J. Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J. Biol. Chem., 2008, 283(42), 28106-28114.
[http://dx.doi.org/10.1074/jbc.M803508200] [PMID: 18718909]
[42]
Li, S.S.; Fitch, W.M.; Pan, Y.C.; Sharief, F.S. Evolutionary relationships of vertebrate lactate dehydrogenase isozymes A4 (muscle), B4 (heart), and C4 (testis). J. Biol. Chem., 1983, 258(11), 7029-7032.
[PMID: 6853510]
[43]
Baumgart, E.; Fahimi, H.D.; Stich, A.; Völkl, A. L-lactate dehydrogenase A- and AB isoforms are bona fide peroxisomal enzymes in rat liver. J. Biol. Chem., 1996, 271(7), 3846-3855.
[http://dx.doi.org/10.1074/jbc.271.7.3846] [PMID: 8632003]
[44]
Sheng, S.L.; Liu, J.J.; Dai, Y.H.; Sun, X.G.; Xiong, X.P.; Huang, G. Knockdown of lactate dehydrogenase A suppresses tumor growth and metastasis of human hepatocellular carcinoma. FEBS J., 2012, 279(20), 3898-3910.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08748.x] [PMID: 22897481]
[45]
Yao, F.; Zhao, T.; Zhong, C.; Zhu, J.; Zhao, H. LDHA is necessary for the tumorigenicity of esophageal squamous cell carcinoma. Tumour Biol., 2013, 34(1), 25-31.
[http://dx.doi.org/10.1007/s13277-012-0506-0] [PMID: 22961700]
[46]
Koukourakis, M.I.; Giatromanolaki, A.; Sivridis, E.; Gatter, K.C.; Harris, A.L. Tumour Angiogenesis Research Group. Lactate dehydrogenase 5 expression in operable colorectal cancer: strong association with survival and activated vascular endothelial growth factor pathway--a report of the tumour angiogenesis research group. J. Clin. Oncol., 2006, 24(26), 4301-4308.
[http://dx.doi.org/10.1200/JCO.2006.05.9501] [PMID: 16896001]
[47]
Zu, X.L.; Guppy, M. Cancer metabolism: facts, fantasy, and fiction. Biochem. Biophys. Res. Commun., 2004, 313(3), 459-465.
[http://dx.doi.org/10.1016/j.bbrc.2003.11.136] [PMID: 14697210]
[48]
Jose, C.; Bellance, N.; Rossignol, R. Choosing between glycolysis and oxidative phosphorylation: a tumor’s dilemma? Biochim. Biophys. Acta, 2011, 1807(6), 552-561.
[http://dx.doi.org/10.1016/j.bbabio.2010.10.012] [PMID: 20955683]
[49]
Ananieva, E. Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World J. Biol. Chem., 2015, 6(4), 281-289.
[http://dx.doi.org/10.4331/wjbc.v6.i4.281] [PMID: 26629311]
[50]
Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[51]
Vazquez, A.; Kamphorst, J.J.; Markert, E.K.; Schug, Z.T.; Tardito, S.; Gottlieb, E. Cancer metabolism at a glance. J. Cell Sci., 2016, 129(18), 3367-3373.
[http://dx.doi.org/10.1242/jcs.181016] [PMID: 27635066]
[52]
Bobak, Y.P.; Vynnytska, B.O.; Kurlishchuk, Y.V.; Sibirny, A.A.; Stasyk, O.V. Cancer cell sensitivity to arginine deprivation in vitro is not determined by endogenous levels of arginine metabolic enzymes. Cell Biol. Int., 2010, 34(11), 1085-1089.
[http://dx.doi.org/10.1042/CBI20100451] [PMID: 20653567]
[53]
Dillon, B.J.; Prieto, V.G.; Curley, S.A.; Ensor, C.M.; Holtsberg, F.W.; Bomalaski, J.S.; Clark, M.A. Incidence and distribution of argininosuccinate synthetase deficiency in human cancers: a method for identifying cancers sensitive to arginine deprivation. Cancer, 2004, 100(4), 826-833.
[http://dx.doi.org/10.1002/cncr.20057] [PMID: 14770441]
[54]
Patil, M.D.; Bhaumik, J.; Babykutty, S.; Banerjee, U.C.; Fukumura, D. Arginine dependence of tumor cells: targeting a chink in cancer’s armor. Oncogene, 2016, 35(38), 4957-4972.
[http://dx.doi.org/10.1038/onc.2016.37] [PMID: 27109103]
[55]
Allen, M.D.; Luong, P.; Hudson, C.; Leyton, J.; Delage, B.; Ghazaly, E.; Cutts, R.; Yuan, M.; Syed, N.; Lo Nigro, C.; Lattanzio, L.; Chmielewska-Kassassir, M.; Tomlinson, I.; Roylance, R.; Whitaker, H.C.; Warren, A.Y.; Neal, D.; Frezza, C.; Beltran, L.; Jones, L.J.; Chelala, C.; Wu, B-W.; Bomalaski, J.S.; Jackson, R.C.; Lu, Y-J.; Crook, T.; Lemoine, N.R.; Mather, S.; Foster, J.; Sosabowski, J.; Avril, N.; Li, C-F.; Szlosarek, P.W. Prognostic and therapeutic impact of argininosuccinate synthetase 1 control in bladder cancer as monitored longitudinally by PET imaging. Cancer Res., 2014, 74(3), 896-907.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1702] [PMID: 24285724]
[56]
Fultang, L.; Vardon, A.; De Santo, C.; Mussai, F. Molecular basis and current strategies of therapeutic arginine depletion for cancer. Int. J. Cancer, 2016, 139(3), 501-509.
[http://dx.doi.org/10.1002/ijc.30051] [PMID: 26913960]
[57]
Gerner, E.W.; Meyskens, F.L. Jr. Polyamines and cancer: old molecules, new understanding. Nat. Rev. Cancer, 2004, 4(10), 781-792.
[http://dx.doi.org/10.1038/nrc1454] [PMID: 15510159]
[58]
Singh, R.; Pervin, S.; Karimi, A.; Cederbaum, S.; Chaudhuri, G. Arginase activity in human breast cancer cell lines: N(omega)-hydroxy-L-arginine selectively inhibits cell proliferation and induces apoptosis in MDA-MB-468 cells. Cancer Res., 2000, 60(12), 3305-3312.
[PMID: 10866325]
[59]
Buga, G.M.; Wei, L.H.; Bauer, P.M.; Fukuto, J.M.; Ignarro, L.J. NG-hydroxy-L-arginine and nitric oxide inhibit Caco-2 tumor cell proliferation by distinct mechanisms. Am. J. Physiol., 1998, 275(4), R1256-R1264.
[http://dx.doi.org/10.1152/ajpregu.1998.275.4.R1256] [PMID: 9756558]
[60]
Mellor, A.L.; Munn, D.H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol., 2004, 4(10), 762-774.
[http://dx.doi.org/10.1038/nri1457] [PMID: 15459668]
[61]
Huang, L.; Mellor, A.L. Metabolic control of tumour progression and antitumour immunity. Curr. Opin. Oncol., 2014, 26(1), 92-99.
[http://dx.doi.org/10.1097/CCO.0000000000000035] [PMID: 24305570]
[62]
Godin-Ethier, J.; Hanafi, L-A.; Piccirillo, C.A.; Lapointe, R. Indoleamine 2,3-dioxygenase expression in human cancers: clinical and immunologic perspectives. Clin. Cancer Res., 2011, 17(22), 6985-6991.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1331] [PMID: 22068654]
[63]
Uyttenhove, C.; Pilotte, L.; Théate, I.; Stroobant, V.; Colau, D.; Parmentier, N.; Boon, T.; Van den Eynde, B.J. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med., 2003, 9(10), 1269-1274.
[http://dx.doi.org/10.1038/nm934] [PMID: 14502282]
[64]
Pilotte, L.; Larrieu, P.; Stroobant, V.; Colau, D.; Dolusic, E.; Frédérick, R.; De Plaen, E.; Uyttenhove, C.; Wouters, J.; Masereel, B.; Van den Eynde, B.J. Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc. Natl. Acad. Sci. USA, 2012, 109(7), 2497-2502.
[http://dx.doi.org/10.1073/pnas.1113873109] [PMID: 22308364]
[65]
Snell, K. Liver enzymes of serine metabolism during neonatal development of the rat. Biochem. J., 1980, 190(2), 451-455.
[http://dx.doi.org/10.1042/bj1900451] [PMID: 6781481]
[66]
Kikuchi, G. The glycine cleavage system: composition, reaction mechanism, and physiological significance. Mol. Cell. Biochem., 1973, 1(2), 169-187.
[http://dx.doi.org/10.1007/BF01659328] [PMID: 4585091]
[67]
DeBerardinis, R.J. Serine metabolism: some tumors take the road less traveled. Cell Metab., 2011, 14(3), 285-286.
[http://dx.doi.org/10.1016/j.cmet.2011.08.004] [PMID: 21907134]
[68]
Ma, X.; Li, B.; Liu, J.; Fu, Y.; Luo, Y. Phosphoglycerate dehydrogenase promotes pancreatic cancer development by interacting with eIF4A1 and eIF4E. J. Exp. Clin. Cancer Res., 2019, 38(1), 66.
[http://dx.doi.org/10.1186/s13046-019-1053-y] [PMID: 30744688]
[69]
Nikiforov, M.A.; Chandriani, S.; O’Connell, B.; Petrenko, O.; Kotenko, I.; Beavis, A.; Sedivy, J.M.; Cole, M.D. A functional screen for myc-responsive genes reveals serine hydroxymethyltransferase, a major source of the one-carbon unit for cell metabolism. Mol. Cell. Biol., 2002, 22(16), 5793-5800.
[http://dx.doi.org/10.1128/MCB.22.16.5793-5800.2002] [PMID: 12138190]
[70]
Lacey, J.M.; Wilmore, D.W. Is glutamine a conditionally essential amino acid? Nutr. Rev., 1990, 48(8), 297-309.
[http://dx.doi.org/10.1111/j.1753-4887.1990.tb02967.x] [PMID: 2080048]
[71]
Wise, D.R.; Thompson, C.B. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem. Sci., 2010, 35(8), 427-433.
[http://dx.doi.org/10.1016/j.tibs.2010.05.003] [PMID: 20570523]
[72]
Gao, P.; Tchernyshyov, I.; Chang, T-C.; Lee, Y-S.; Kita, K.; Ochi, T.; Zeller, K.I.; De Marzo, A.M.; Van Eyk, J.E.; Mendell, J.T.; Dang, C.V. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 2009, 458(7239), 762-765.
[http://dx.doi.org/10.1038/nature07823] [PMID: 19219026]
[73]
Wang, J-B.; Erickson, J.W.; Fuji, R.; Ramachandran, S.; Gao, P.; Dinavahi, R.; Wilson, K.F.; Ambrosio, A.L.B.; Dias, S.M.G.; Dang, C.V.; Cerione, R.A. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell, 2010, 18(3), 207-219.
[http://dx.doi.org/10.1016/j.ccr.2010.08.009] [PMID: 20832749]
[74]
Xiang, Y.; Stine, Z.E.; Xia, J.; Lu, Y.; O’Connor, R.S.; Altman, B.J.; Hsieh, A.L.; Gouw, A.M.; Thomas, A.G.; Gao, P.; Sun, L.; Song, L.; Yan, B.; Slusher, B.S.; Zhuo, J.; Ooi, L.L.; Lee, C.G.L.; Mancuso, A.; McCallion, A.S.; Le, A.; Milone, M.C.; Rayport, S.; Felsher, D.W.; Dang, C.V. Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J. Clin. Invest., 2015, 125(6), 2293-2306.
[http://dx.doi.org/10.1172/JCI75836] [PMID: 25915584]
[75]
Xiang, L.; Mou, J.; Shao, B.; Wei, Y.; Liang, H.; Takano, N.; Semenza, G.L.; Xie, G. Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization. Cell Death Dis., 2019, 10(2), 40.
[http://dx.doi.org/10.1038/s41419-018-1291-5] [PMID: 30674873]
[76]
Hu, W.; Zhang, C.; Wu, R.; Sun, Y.; Levine, A.; Feng, Z. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc. Natl. Acad. Sci. USA, 2010, 107(16), 7455-7460.
[http://dx.doi.org/10.1073/pnas.1001006107] [PMID: 20378837]
[77]
Liu, J.; Zhang, C.; Lin, M.; Zhu, W.; Liang, Y.; Hong, X.; Zhao, Y.; Young, K.H.; Hu, W.; Feng, Z. Glutaminase 2 negatively regulates the PI3K/AKT signaling and shows tumor suppression activity in human hepatocellular carcinoma. Oncotarget, 2014, 5(9), 2635-2647.
[http://dx.doi.org/10.18632/oncotarget.1862] [PMID: 24797434]
[78]
Suzuki, S.; Tanaka, T.; Poyurovsky, M.V.; Nagano, H.; Mayama, T.; Ohkubo, S.; Lokshin, M.; Hosokawa, H.; Nakayama, T.; Suzuki, Y.; Sugano, S.; Sato, E.; Nagao, T.; Yokote, K.; Tatsuno, I.; Prives, C. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc. Natl. Acad. Sci. USA, 2010, 107(16), 7461-7466.
[http://dx.doi.org/10.1073/pnas.1002459107] [PMID: 20351271]
[79]
Zhang, C.; Liu, J.; Zhao, Y.; Yue, X.; Zhu, Y.; Wang, X.; Wu, H.; Blanco, F.; Li, S.; Bhanot, G.; Haffty, B.G.; Hu, W.; Feng, Z. Glutaminase 2 is a novel negative regulator of small GTPase Rac1 and mediates p53 function in suppressing metastasis. eLife, 2016, 5, e10727.
[http://dx.doi.org/10.7554/eLife.10727] [PMID: 26751560]
[80]
Nicklin, P.; Bergman, P.; Zhang, B.; Triantafellow, E.; Wang, H.; Nyfeler, B.; Yang, H.; Hild, M.; Kung, C.; Wilson, C.; Myer, V.E.; MacKeigan, J.P.; Porter, J.A.; Wang, Y.K.; Cantley, L.C.; Finan, P.M.; Murphy, L.O. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell, 2009, 136(3), 521-534.
[http://dx.doi.org/10.1016/j.cell.2008.11.044] [PMID: 19203585]
[81]
Avruch, J.; Long, X.; Ortiz-Vega, S.; Rapley, J.; Papageorgiou, A.; Dai, N. Amino acid regulation of TOR complex 1. Am. J. Physiol. Endocrinol. Metab., 2009, 296(4), E592-E602.
[http://dx.doi.org/10.1152/ajpendo.90645.2008] [PMID: 18765678]
[82]
Dey, P.; Baddour, J.; Muller, F.; Wu, C.C.; Wang, H.; Liao, W-T.; Lan, Z.; Chen, A.; Gutschner, T.; Kang, Y.; Fleming, J.; Satani, N.; Zhao, D.; Achreja, A.; Yang, L.; Lee, J.; Chang, E.; Genovese, G.; Viale, A.; Ying, H.; Draetta, G.; Maitra, A.; Wang, Y.A.; Nagrath, D.; DePinho, R.A. Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature, 2017, 542(7639), 119-123.
[http://dx.doi.org/10.1038/nature21052] [PMID: 28099419]
[83]
Zhang, L.; Han, J. Branched-chain amino acid transaminase 1 (BCAT1) promotes the growth of breast cancer cells through improving mTOR-mediated mitochondrial biogenesis and function. Biochem. Biophys. Res. Commun., 2017, 486(2), 224-231.
[http://dx.doi.org/10.1016/j.bbrc.2017.02.101] [PMID: 28235484]
[84]
Hattori, A.; Tsunoda, M.; Konuma, T.; Kobayashi, M.; Nagy, T.; Glushka, J.; Tayyari, F.; McSkimming, D.; Kannan, N.; Tojo, A.; Edison, A.S.; Ito, T. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature, 2017, 545(7655), 500-504.
[http://dx.doi.org/10.1038/nature22314] [PMID: 28514443]
[85]
Chen, Y.; Li, P. Fatty acid metabolism and cancer development. Sci. Bull. (Beijing), 2016, 61(19), 1473-1479.
[http://dx.doi.org/10.1007/s11434-016-1129-4]
[86]
Wang, Q.; Liu, S.; Zhai, A.; Zhang, B.; Tian, G. AMPK-mediated regulation of lipid metabolism by phosphorylation. Biol. Pharm. Bull., 2018, 41(7), 985-993.
[http://dx.doi.org/10.1248/bpb.b17-00724] [PMID: 29709897]
[87]
Martinez-Outschoorn, U.E.; Peiris-Pagés, M.; Pestell, R.G.; Sotgia, F.; Lisanti, M.P. Cancer metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol., 2017, 14(1), 11-31.
[http://dx.doi.org/10.1038/nrclinonc.2016.60] [PMID: 27141887]
[88]
Harjes, U.; Kalucka, J.; Carmeliet, P. Targeting fatty acid metabolism in cancer and endothelial cells. Crit. Rev. Oncol. Hematol., 2016, 97, 15-21.
[http://dx.doi.org/10.1016/j.critrevonc.2015.10.011] [PMID: 26558689]
[89]
Swierczynski, J.; Hebanowska, A.; Sledzinski, T. Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World J. Gastroenterol., 2014, 20(9), 2279-2303.
[http://dx.doi.org/10.3748/wjg.v20.i9.2279] [PMID: 24605027]
[90]
Papandreou, I.; Cairns, R.A.; Fontana, L.; Lim, A.L.; Denko, N.C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab., 2006, 3(3), 187-197.
[http://dx.doi.org/10.1016/j.cmet.2006.01.012] [PMID: 16517406]
[91]
Kim, J.W.; Tchernyshyov, I.; Semenza, G.L.; Dang, C.V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab., 2006, 3(3), 177-185.
[http://dx.doi.org/10.1016/j.cmet.2006.02.002] [PMID: 16517405]
[92]
Zu, X-Y.; Zhang, Q-H.; Liu, J-H.; Cao, R-X.; Zhong, J.; Yi, G-H.; Quan, Z-H.; Pizzorno, G. ATP citrate lyase inhibitors as novel cancer therapeutic agents. Recent Patents Anticancer Drug Discov., 2012, 7(2), 154-167.
[http://dx.doi.org/10.2174/157489212799972954] [PMID: 22339355]
[93]
Hatzivassiliou, G.; Zhao, F.; Bauer, D.E.; Andreadis, C.; Shaw, A.N.; Dhanak, D.; Hingorani, S.R.; Tuveson, D.A.; Thompson, C.B. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell, 2005, 8(4), 311-321.
[http://dx.doi.org/10.1016/j.ccr.2005.09.008] [PMID: 16226706]
[94]
Schug, Z.T.; Peck, B.; Jones, D.T.; Zhang, Q.; Grosskurth, S.; Alam, I.S.; Goodwin, L.M.; Smethurst, E.; Mason, S.; Blyth, K.; McGarry, L.; James, D.; Shanks, E.; Kalna, G.; Saunders, R.E.; Jiang, M.; Howell, M.; Lassailly, F.; Thin, M.Z.; Spencer-Dene, B.; Stamp, G.; van den Broek, N.J.F.; Mackay, G.; Bulusu, V.; Kamphorst, J.J.; Tardito, S.; Strachan, D.; Harris, A.L.; Aboagye, E.O.; Critchlow, S.E.; Wakelam, M.J.O.; Schulze, A.; Gottlieb, E. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell, 2015, 27(1), 57-71.
[http://dx.doi.org/10.1016/j.ccell.2014.12.002] [PMID: 25584894]
[95]
Kuo, C-Y.; Ann, D.K. When fats commit crimes: fatty acid metabolism, cancer stemness and therapeutic resistance. Cancer Commun (Lond), 2018, 38(1), 47.
[http://dx.doi.org/10.1186/s40880-018-0317-9] [PMID: 29996946]
[96]
Rossi Sebastiano, M.; Konstantinidou, G. Targeting long chain Acyl-CoA synthetases for cancer therapy. Int. J. Mol. Sci., 2019, 20(15), 3624.
[http://dx.doi.org/10.3390/ijms20153624] [PMID: 31344914]
[97]
Sánchez-Martínez, R.; Cruz-Gil, S.; García-Álvarez, M.S.; Reglero, G.; Ramírez de Molina, A. Complementary ACSL isoforms contribute to a non-Warburg advantageous energetic status characterizing invasive colon cancer cells. Sci. Rep., 2017, 7(1), 11143.
[http://dx.doi.org/10.1038/s41598-017-11612-3] [PMID: 28894242]
[98]
Chen, W-C.; Wang, C-Y.; Hung, Y-H.; Weng, T-Y.; Yen, M-C.; Lai, M-D. Systematic analysis of gene expression alterations and clinical outcomes for long-chain acyl-coenzyme a synthetase family in Cancer. PLoS One, 2016, 11(5), e0155660.
[http://dx.doi.org/10.1371/journal.pone.0155660] [PMID: 27171439]
[99]
Padanad, M.S.; Konstantinidou, G.; Venkateswaran, N.; Melegari, M.; Rindhe, S.; Mitsche, M.; Yang, C.; Batten, K.; Huffman, K.E.; Liu, J.; Tang, X.; Rodriguez-Canales, J.; Kalhor, N.; Shay, J.W.; Minna, J.D.; McDonald, J.; Wistuba, I.I.; DeBerardinis, R.J.; Scaglioni, P.P. Fatty acid oxidation mediated by Acyl-CoA synthetase long chain 3 is required for mutant KRAS lung tumorigenesis. Cell Rep., 2016, 16(6), 1614-1628.
[http://dx.doi.org/10.1016/j.celrep.2016.07.009] [PMID: 27477280]
[100]
Yen, M-C.; Kan, J-Y.; Hsieh, C-J.; Kuo, P-L.; Hou, M-F.; Hsu, Y-L. Association of long-chain acyl-coenzyme a synthetase 5 expression in human breast cancer by estrogen receptor status and its clinical significance. Oncol. Rep., 2017, 37(6), 3253-3260.
[http://dx.doi.org/10.3892/or.2017.5610] [PMID: 28498416]
[101]
Wang, Y.; Cai, X.; Zhang, S.; Cui, M.; Liu, F.; Sun, B.; Zhang, W.; Zhang, X.; Ye, L. HBXIP up-regulates ACSL1 through activating transcriptional factor Sp1 in breast cancer. Biochem. Biophys. Res. Commun., 2017, 484(3), 565-571.
[http://dx.doi.org/10.1016/j.bbrc.2017.01.126] [PMID: 28132807]
[102]
Wang, J.; Scholtens, D.; Holko, M.; Ivancic, D.; Lee, O.; Hu, H.; Chatterton, R.T., Jr; Sullivan, M.E.; Hansen, N.; Bethke, K.; Zalles, C.M.; Khan, S.A. Lipid metabolism genes in contralateral unaffected breast and estrogen receptor status of breast cancer. Cancer Prev. Res. (Phila.), 2013, 6(4), 321-330.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0304] [PMID: 23512947]
[103]
Migita, T.; Takayama, K.I.; Urano, T.; Obinata, D.; Ikeda, K.; Soga, T.; Takahashi, S.; Inoue, S. ACSL3 promotes intratumoral steroidogenesis in prostate cancer cells. Cancer Sci., 2017, 108(10), 2011-2021.
[http://dx.doi.org/10.1111/cas.13339] [PMID: 28771887]
[104]
Nwosu, Z.C.; Megger, D.A.; Hammad, S.; Sitek, B.; Roessler, S.; Ebert, M.P.; Meyer, C.; Dooley, S. Identification of the consistently altered metabolic targets in human hepatocellular carcinoma. Cell. Mol. Gastroenterol. Hepatol., 2017, 4(2), 303-323.e1.
[http://dx.doi.org/10.1016/j.jcmgh.2017.05.004] [PMID: 28840186]
[105]
Wu, X.; Li, Y.; Wang, J.; Wen, X.; Marcus, M.T.; Daniels, G.; Zhang, D.Y.; Ye, F.; Wang, L.H.; Du, X.; Adams, S.; Singh, B.; Zavadil, J.; Lee, P.; Monaco, M.E. Long chain fatty Acyl-CoA synthetase 4 is a biomarker for and mediator of hormone resistance in human breast cancer. PLoS One, 2013, 8(10), e77060.
[http://dx.doi.org/10.1371/journal.pone.0077060] [PMID: 24155918]
[106]
Sánchez-Martínez, R.; Cruz-Gil, S.; Gómez de Cedrón, M.; Álvarez-Fernández, M.; Vargas, T.; Molina, S.; García, B.; Herranz, J.; Moreno-Rubio, J.; Reglero, G.; Pérez-Moreno, M.; Feliu, J.; Malumbres, M.; Ramírez de Molina, A. A link between lipid metabolism and epithelial-mesenchymal transition provides a target for colon cancer therapy. Oncotarget, 2015, 6(36), 38719-38736.
[http://dx.doi.org/10.18632/oncotarget.5340] [PMID: 26451612]
[107]
DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv., 2016, 2(5), e1600200.
[http://dx.doi.org/10.1126/sciadv.1600200] [PMID: 27386546]
[108]
Engelman, J.A.; Luo, J.; Cantley, L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet., 2006, 7(8), 606-619.
[http://dx.doi.org/10.1038/nrg1879] [PMID: 16847462]
[109]
Kohn, A.D.; Summers, S.A.; Birnbaum, M.J.; Roth, R.A. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J. Biol. Chem., 1996, 271(49), 31372-31378.
[http://dx.doi.org/10.1074/jbc.271.49.31372] [PMID: 8940145]
[110]
Yecies, J.L.; Manning, B.D. Transcriptional control of cellular metabolism by mTOR signaling. Cancer Res., 2011, 71(8), 2815-2820.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4158] [PMID: 21487041]
[111]
Deprez, J.; Vertommen, D.; Alessi, D.R.; Hue, L.; Rider, M.H. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J. Biol. Chem., 1997, 272(28), 17269-17275.
[http://dx.doi.org/10.1074/jbc.272.28.17269] [PMID: 9211863]
[112]
Berwick, D.C.; Hers, I.; Heesom, K.J.; Moule, S.K.; Tavaré, J.M. The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes. J. Biol. Chem., 2002, 277(37), 33895-33900.
[http://dx.doi.org/10.1074/jbc.M204681200] [PMID: 12107176]
[113]
Patra, K.C.; Hay, N. The pentose phosphate pathway and cancer. Trends Biochem. Sci., 2014, 39(8), 347-354.
[http://dx.doi.org/10.1016/j.tibs.2014.06.005] [PMID: 25037503]
[114]
Saal, L.H.; Holm, K.; Maurer, M.; Memeo, L.; Su, T.; Wang, X.; Yu, J.S.; Malmström, P-O.; Mansukhani, M.; Enoksson, J.; Hibshoosh, H.; Borg, A.; Parsons, R. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res., 2005, 65(7), 2554-2559.
[http://dx.doi.org/10.1158/0008-5472-CAN-04-3913] [PMID: 15805248]
[115]
Jiang, W.; He, T.; Liu, S.; Zheng, Y.; Xiang, L.; Pei, X.; Wang, Z.; Yang, H. The PIK3CA E542K and E545K mutations promote glycolysis and proliferation via induction of the β-catenin/SIRT3 signaling pathway in cervical cancer. J. Hematol. Oncol., 2018, 11(1), 139.
[http://dx.doi.org/10.1186/s13045-018-0674-5] [PMID: 30547809]
[116]
Sobhani, N.; Roviello, G.; Corona, S.P.; Scaltriti, M.; Ianza, A.; Bortul, M.; Zanconati, F.; Generali, D. The prognostic value of PI3K mutational status in breast cancer: a meta-analysis. J. Cell. Biochem., 2018, 119(6), 4287-4292.
[http://dx.doi.org/10.1002/jcb.26687] [PMID: 29345357]
[117]
Lisy, K.; Peet, D.J. Turn me on: regulating HIF transcriptional activity. Cell Death Differ., 2008, 15(4), 642-649.
[http://dx.doi.org/10.1038/sj.cdd.4402315] [PMID: 18202699]
[118]
Hu, C-J.; Sataur, A.; Wang, L.; Chen, H.; Simon, M.C. The n-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1α and HIF-2α. Mol. Biol. Cell, 2007, 18(11), 4528-4542.
[http://dx.doi.org/10.1091/mbc.e06-05-0419] [PMID: 17804822]
[119]
Zhao, M.; Zhang, Y.; Zhang, H.; Wang, S.; Zhang, M.; Chen, X.; Wang, H.; Zeng, G.; Chen, X.; Liu, G.; Zhou, C. Hypoxia-induced cell stemness leads to drug resistance and poor prognosis in lung adenocarcinoma. Lung Cancer, 2015, 87(2), 98-106.
[http://dx.doi.org/10.1016/j.lungcan.2014.11.017] [PMID: 25512094]
[120]
Semenza, G.L.; Roth, P.H.; Fang, H.M.; Wang, G.L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem., 1994, 269(38), 23757-23763.
[PMID: 8089148]
[121]
Semenza, G.L.; Jiang, B-H.; Leung, S.W.; Passantino, R.; Concordet, J-P.; Maire, P.; Giallongo, A. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem., 1996, 271(51), 32529-32537.
[http://dx.doi.org/10.1074/jbc.271.51.32529] [PMID: 8955077]
[122]
Graven, K.K.; Yu, Q.; Pan, D.; Roncarati, J.S.; Farber, H.W. Identification of an oxygen responsive enhancer element in the glyceraldehyde-3-phosphate dehydrogenase gene. Biochim. Biophys. Acta, 1999, 1447(2-3), 208-218.
[http://dx.doi.org/10.1016/S0167-4781(99)00118-9] [PMID: 10542317]
[123]
Firth, J.D.; Ebert, B.L.; Pugh, C.W.; Ratcliffe, P.J. Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the erythropoietin 3′ enhancer. Proc. Natl. Acad. Sci. USA, 1994, 91(14), 6496-6500.
[http://dx.doi.org/10.1073/pnas.91.14.6496] [PMID: 8022811]
[124]
Firth, J.D.; Ebert, B.L.; Ratcliffe, P.J. Hypoxic regulation of lactate dehydrogenase A. Interaction between hypoxia-inducible factor 1 and cAMP response elements. J. Biol. Chem., 1995, 270(36), 21021-21027.
[http://dx.doi.org/10.1074/jbc.270.36.21021] [PMID: 7673128]
[125]
Ebert, B.L.; Firth, J.D.; Ratcliffe, P.J. Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct Cis-acting sequences. J. Biol. Chem., 1995, 270(49), 29083-29089.
[http://dx.doi.org/10.1074/jbc.270.49.29083] [PMID: 7493931]
[126]
Marín-Hernández, A.; Gallardo-Pérez, J.C.; Ralph, S.J.; Rodríguez-Enríquez, S.; Moreno-Sánchez, R. HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev. Med. Chem., 2009, 9(9), 1084-1101.
[http://dx.doi.org/10.2174/138955709788922610] [PMID: 19689405]
[127]
Meyer, N.; Penn, L.Z. Reflecting on 25 years with MYC. Nat. Rev. Cancer, 2008, 8(12), 976-990.
[http://dx.doi.org/10.1038/nrc2231] [PMID: 19029958]
[128]
Camarda, R.; Williams, J.; Goga, A. In vivo reprogramming of cancer metabolism by MYC. Front. Cell Dev. Biol., 2017, 5, 35.
[http://dx.doi.org/10.3389/fcell.2017.00035] [PMID: 28443280]
[129]
Kim, J.; Lee, J.H.; Iyer, V.R. Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS One, 2008, 3(3), e1798.
[http://dx.doi.org/10.1371/journal.pone.0001798] [PMID: 18335064]
[130]
Osthus, R.C.; Shim, H.; Kim, S.; Li, Q.; Reddy, R.; Mukherjee, M.; Xu, Y.; Wonsey, D.; Lee, L.A.; Dang, C.V. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem., 2000, 275(29), 21797-21800.
[http://dx.doi.org/10.1074/jbc.C000023200] [PMID: 10823814]
[131]
O’Connell, B.C.; Cheung, A.F.; Simkevich, C.P.; Tam, W.; Ren, X.; Mateyak, M.K.; Sedivy, J.M. A large scale genetic analysis of c-Myc-regulated gene expression patterns. J. Biol. Chem., 2003, 278(14), 12563-12573.
[http://dx.doi.org/10.1074/jbc.M210462200] [PMID: 12529326]
[132]
Menssen, A.; Hermeking, H. Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc. Natl. Acad. Sci. USA, 2002, 99(9), 6274-6279.
[http://dx.doi.org/10.1073/pnas.082005599] [PMID: 11983916]
[133]
Kim, J.W.; Zeller, K.I.; Wang, Y.; Jegga, A.G.; Aronow, B.J.; O’Donnell, K.A.; Dang, C.V. Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol. Cell. Biol., 2004, 24(13), 5923-5936.
[http://dx.doi.org/10.1128/MCB.24.13.5923-5936.2004] [PMID: 15199147]
[134]
Yuneva, M.O.; Fan, T.W.M.; Allen, T.D.; Higashi, R.M.; Ferraris, D.V.; Tsukamoto, T.; Matés, J.M.; Alonso, F.J.; Wang, C.; Seo, Y.; Chen, X.; Bishop, J.M. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab., 2012, 15(2), 157-170.
[http://dx.doi.org/10.1016/j.cmet.2011.12.015] [PMID: 22326218]
[135]
Ciribilli, Y.; Singh, P.; Inga, A.; Borlak, J. c-Myc targeted regulators of cell metabolism in a transgenic mouse model of papillary lung adenocarcinoma. Oncotarget, 2016, 7(40), 65514-65539.
[http://dx.doi.org/10.18632/oncotarget.11804] [PMID: 27602772]
[136]
Gouw, A.M.; Margulis, K.; Liu, N.S.; Raman, S.J.; Mancuso, A.; Toal, G.G.; Tong, L.; Mosley, A.; Hsieh, A.L.; Sullivan, D.K.; Stine, Z.E.; Altman, B.J.; Schulze, A.; Dang, C.V.; Zare, R.N.; Felsher, D.W. The MYC oncogene cooperates with sterol-regulated element-binding protein to regulate lipogenesis essential for neoplastic growth. Cell Metab., 2019, 30(3), 556-572.e5.
[http://dx.doi.org/10.1016/j.cmet.2019.07.012] [PMID: 31447321]
[137]
Schwartzenberg-Bar-Yoseph, F.; Armoni, M.; Karnieli, E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res., 2004, 64(7), 2627-2633.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-0846] [PMID: 15059920]
[138]
Bensaad, K.; Tsuruta, A.; Selak, M.A.; Vidal, M.N.C.; Nakano, K.; Bartrons, R.; Gottlieb, E.; Vousden, K.H. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 2006, 126(1), 107-120.
[http://dx.doi.org/10.1016/j.cell.2006.05.036] [PMID: 16839880]
[139]
Kondoh, H.; Lleonart, M.E.; Gil, J.; Wang, J.; Degan, P.; Peters, G.; Martinez, D.; Carnero, A.; Beach, D. Glycolytic enzymes can modulate cellular life span. Cancer Res., 2005, 65(1), 177-185.
[PMID: 15665293]
[140]
Jiang, P.; Du, W.; Mancuso, A.; Wellen, K.E.; Yang, X. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature, 2013, 493(7434), 689-693.
[http://dx.doi.org/10.1038/nature11776] [PMID: 23334421]
[141]
Matoba, S.; Kang, J.G.; Patino, W.D.; Wragg, A.; Boehm, M.; Gavrilova, O.; Hurley, P.J.; Bunz, F.; Hwang, P.M. P53 regulates mitochondrial respiration. Science, 2006, 312(5780), 1650-1653.
[http://dx.doi.org/10.1126/science.1126863] [PMID: 16728594]
[142]
Mathupala, S.P.; Heese, C.; Pedersen, P.L. Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J. Biol. Chem., 1997, 272(36), 22776-22780.
[http://dx.doi.org/10.1074/jbc.272.36.22776] [PMID: 9278438]
[143]
Yahagi, N.; Shimano, H.; Matsuzaka, T.; Najima, Y.; Sekiya, M.; Nakagawa, Y.; Ide, T.; Tomita, S.; Okazaki, H.; Tamura, Y.; Iizuka, Y.; Ohashi, K.; Gotoda, T.; Nagai, R.; Kimura, S.; Ishibashi, S.; Osuga, J.; Yamada, N. P53 activation in adipocytes of obese mice. J. Biol. Chem., 2003, 278(28), 25395-25400.
[http://dx.doi.org/10.1074/jbc.M302364200] [PMID: 12734185]
[144]
Jiang, P.; Du, W.; Wang, X.; Mancuso, A.; Gao, X.; Wu, M.; Yang, X. P53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat. Cell Biol., 2011, 13(3), 310-316.
[http://dx.doi.org/10.1038/ncb2172] [PMID: 21336310]
[145]
Ide, T.; Brown-Endres, L.; Chu, K.; Ongusaha, P.P.; Ohtsuka, T.; El-Deiry, W.S.; Aaronson, S.A.; Lee, S.W. GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress. Mol. Cell, 2009, 36(3), 379-392.
[http://dx.doi.org/10.1016/j.molcel.2009.09.031] [PMID: 19917247]
[146]
Assaily, W.; Rubinger, D.A.; Wheaton, K.; Lin, Y.; Ma, W.; Xuan, W.; Brown-Endres, L.; Tsuchihara, K.; Mak, T.W.; Benchimol, S. ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol. Cell, 2011, 44(3), 491-501.
[http://dx.doi.org/10.1016/j.molcel.2011.08.038] [PMID: 22055193]
[147]
Salas, M.; Obando, P.; Ojeda, L.; Ojeda, P.; Pérez, A.; Vargas-Uribe, M.; Rivas, C.I.; Vera, J.C.; Reyes, A.M. Resolution of the direct interaction with and inhibition of the human GLUT1 hexose transporter by resveratrol from its effect on glucose accumulation. Am. J. Physiol. Cell Physiol., 2013, 305(1), C90-C99.
[http://dx.doi.org/10.1152/ajpcell.00387.2012] [PMID: 23615963]
[148]
Wang, L.; Wang, J.; Xiong, H.; Wu, F.; Lan, T.; Zhang, Y.; Guo, X.; Wang, H.; Saleem, M.; Jiang, C.; Lu, J.; Deng, Y. Co-targeting hexokinase 2-mediated Warburg effect and ULK1-dependent autophagy suppresses tumor growth of PTEN- and TP53-deficiency-driven castration-resistant prostate cancer. EBioMedicine, 2016, 7, 50-61.
[http://dx.doi.org/10.1016/j.ebiom.2016.03.022] [PMID: 27322458]
[149]
Glenister, A.; Simone, M.I.; Hambley, T.W. A Warburg effect targeting vector designed to increase the uptake of compounds by cancer cells demonstrates glucose and hypoxia dependent uptake. PLoS One, 2019, 14(7), e0217712.
[http://dx.doi.org/10.1371/journal.pone.0217712] [PMID: 31306426]
[150]
Shankar Babu, M.; Mahanta, S.; Lakhter, A.J.; Hato, T.; Paul, S.; Naidu, S.R. Lapachol inhibits glycolysis in cancer cells by targeting pyruvate kinase M2. PLoS One, 2018, 13(2), e0191419.
[http://dx.doi.org/10.1371/journal.pone.0191419] [PMID: 29394289]
[151]
Miao, G.; Han, J.; Zhang, J.; Wu, Y.; Tong, G. Targeting pyruvate kinase M2 and hexokinase II, pachymic acid impairs glucose metabolism and induces mitochondrial apoptosis. Biol. Pharm. Bull., 2019, 42(1), 123-129.
[http://dx.doi.org/10.1248/bpb.b18-00730] [PMID: 30381614]
[152]
Ma, J.; Liu, J.; Lu, C.; Cai, D. Pachymic acid induces apoptosis via activating ROS-dependent JNK and ER stress pathways in lung cancer cells. Cancer Cell Int., 2015, 15(1), 78.
[http://dx.doi.org/10.1186/s12935-015-0230-0] [PMID: 26244039]
[153]
Xu, S.; Catapang, A.; Braas, D.; Stiles, L.; Doh, H.M.; Lee, J.T.; Graeber, T.G.; Damoiseaux, R.; Shirihai, O.; Herschman, H.R. A precision therapeutic strategy for hexokinase 1-null, hexokinase 2-positive cancers. Cancer Metab., 2018, 6(1), 7.
[http://dx.doi.org/10.1186/s40170-018-0181-8] [PMID: 29988332]
[154]
Grinde, M.T.; Hilmarsdottir, B.; Tunset, H.M.; Henriksen, I.M.; Kim, J.; Haugen, M.H.; Rye, M.B.; Mælandsmo, G.M.; Moestue, S.A. Glutamine to proline conversion is associated with response to glutaminase inhibition in breast cancer. Breast Cancer Res., 2019, 21(1), 61.
[http://dx.doi.org/10.1186/s13058-019-1141-0] [PMID: 31088535]
[155]
Freitag, H.; Christen, F.; Lewens, F.; Grass, I.; Briest, F.; Iwaszkiewicz, S.; Siegmund, B.; Grabowski, P. Inhibition of mTOR’s catalytic site by PKI-587 is a promising therapeutic option for gastroenteropancreatic neuroendocrine tumor disease. Neuroendocrinology, 2017, 105(1), 90-104.
[http://dx.doi.org/10.1159/000448843] [PMID: 27513674]
[156]
Liu, N.; Rowley, B.R.; Bull, C.O.; Schneider, C.; Haegebarth, A.; Schatz, C.A.; Fracasso, P.R.; Wilkie, D.P.; Hentemann, M.; Wilhelm, S.M.; Scott, W.J.; Mumberg, D.; Ziegelbauer, K. BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110α and p110δ activities in tumor cell lines and xenograft models. Mol. Cancer Ther., 2013, 12(11), 2319-2330.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0993-T] [PMID: 24170767]
[157]
Kim, R.D.; Alberts, S.R.; Peña, C.; Genvresse, I.; Ajavon-Hartmann, A.; Xia, C.; Kelly, A.; Grilley-Olson, J.E.; Phase, I. Phase I dose-escalation study of copanlisib in combination with gemcitabine or cisplatin plus gemcitabine in patients with advanced cancer. Br. J. Cancer, 2018, 118(4), 462-470.
[http://dx.doi.org/10.1038/bjc.2017.428] [PMID: 29348486]
[158]
Dreyling, M.; Morschhauser, F.; Bouabdallah, K.; Bron, D.; Cunningham, D.; Assouline, S.E.; Verhoef, G.; Linton, K.; Thieblemont, C.; Vitolo, U.; Hiemeyer, F.; Giurescu, M.; Garcia-Vargas, J.; Gorbatchevsky, I.; Liu, L.; Koechert, K.; Peña, C.; Neves, M.; Childs, B.H.; Zinzani, P.L. Phase II study of copanlisib, a PI3K inhibitor, in relapsed or refractory, indolent or aggressive lymphoma. Ann. Oncol., 2017, 28(9), 2169-2178.
[http://dx.doi.org/10.1093/annonc/mdx289] [PMID: 28633365]
[159]
Ma, C.X.; Luo, J.; Naughton, M.; Ademuyiwa, F.; Suresh, R.; Griffith, M.; Griffith, O.L.; Skidmore, Z.L.; Spies, N.C.; Ramu, A.; Trani, L.; Pluard, T.; Nagaraj, G.; Thomas, S.; Guo, Z.; Hoog, J.; Han, J.; Mardis, E.; Lockhart, C.; Ellis, M.J. A phase I trial of BKM120 (buparlisib) in combination with fulvestrant in postmenopausal women with estrogen receptor-positive metastatic breast cancer. Clin. Cancer Res., 2016, 22(7), 1583-1591.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1745] [PMID: 26563128]
[160]
Dong, S.; Guinn, D.; Dubovsky, J.A.; Zhong, Y.; Lehman, A.; Kutok, J.; Woyach, J.A.; Byrd, J.C.; Johnson, A.J. IPI-145 antagonizes intrinsic and extrinsic survival signals in chronic lymphocytic leukemia cells. Blood, 2014, 124(24), 3583-3586.
[http://dx.doi.org/10.1182/blood-2014-07-587279] [PMID: 25258342]
[161]
Flinn, I.W.; Hillmen, P.; Montillo, M.; Nagy, Z.; Illés, Á.; Etienne, G.; Delgado, J.; Kuss, B.J.; Tam, C.S.; Gasztonyi, Z.; Offner, F.; Lunin, S.; Bosch, F.; Davids, M.S.; Lamanna, N.; Jaeger, U.; Ghia, P.; Cymbalista, F.; Portell, C.A.; Skarbnik, A.P.; Cashen, A.F.; Weaver, D.T.; Kelly, V.M.; Turnbull, B.; Stilgenbauer, S. The phase 3 DUO trial: duvelisib vs ofatumumab in relapsed and refractory CLL/SLL. Blood, 2018, 132(23), 2446-2455.
[http://dx.doi.org/10.1182/blood-2018-05-850461] [PMID: 30287523]
[162]
Brown, J.R.; Byrd, J.C.; Coutre, S.E.; Benson, D.M.; Flinn, I.W.; Wagner-Johnston, N.D.; Spurgeon, S.E.; Kahl, B.S.; Bello, C.; Webb, H.K.; Johnson, D.M.; Peterman, S.; Li, D.; Jahn, T.M.; Lannutti, B.J.; Ulrich, R.G.; Yu, A.S.; Miller, L.L.; Furman, R.R. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110δ, for relapsed/refractory chronic lymphocytic leukemia. Blood, 2014, 123(22), 3390-3397.
[http://dx.doi.org/10.1182/blood-2013-11-535047] [PMID: 24615777]
[163]
Wigerup, C.; Påhlman, S.; Bexell, D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol. Ther., 2016, 164, 152-169.
[http://dx.doi.org/10.1016/j.pharmthera.2016.04.009] [PMID: 27139518]
[164]
Isaacs, J.S.; Jung, Y-J.; Mimnaugh, E.G.; Martinez, A.; Cuttitta, F.; Neckers, L.M. Hsp90 regulates a von hippel lindau-independent hypoxia-inducible factor-1 α-degradative pathway. J. Biol. Chem., 2002, 277(33), 29936-29944.
[http://dx.doi.org/10.1074/jbc.M204733200] [PMID: 12052835]
[165]
Rapisarda, A.; Uranchimeg, B.; Scudiero, D.A.; Selby, M.; Sausville, E.A.; Shoemaker, R.H.; Melillo, G. Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res., 2002, 62(15), 4316-4324.
[PMID: 12154035]
[166]
Geoerger, B.; Kerr, K.; Tang, C.B.; Fung, K.M.; Powell, B.; Sutton, L.N.; Phillips, P.C.; Janss, A.J. Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy. Cancer Res., 2001, 61(4), 1527-1532.
[PMID: 11245461]
[167]
Klos, K.S.; Zhou, X.; Lee, S.; Zhang, L.; Yang, W.; Nagata, Y.; Yu, D. Combined trastuzumab and paclitaxel treatment better inhibits ErbB-2-mediated angiogenesis in breast carcinoma through a more effective inhibition of Akt than either treatment alone. Cancer, 2003, 98(7), 1377-1385.
[http://dx.doi.org/10.1002/cncr.11656] [PMID: 14508823]
[168]
Hambley, T.W. Chemistry. Metal-based therapeutics. Science, 2007, 318(5855), 1392-1393.
[http://dx.doi.org/10.1126/science.1150504] [PMID: 18048674]
[169]
Denny, W.A. The role of hypoxia-activated prodrugs in cancer therapy. Lancet Oncol., 2000, 1(1), 25-29.
[http://dx.doi.org/10.1016/S1470-2045(00)00006-1] [PMID: 11905684]
[170]
Chen, R.; Keating, M.J.; Gandhi, V.; Plunkett, W. Transcription inhibition by flavopiridol: mechanism of chronic lymphocytic leukemia cell death. Blood, 2005, 106(7), 2513-2519.
[http://dx.doi.org/10.1182/blood-2005-04-1678] [PMID: 15972445]
[171]
Awan, F.T.; Jones, J.A.; Maddocks, K.; Poi, M.; Grever, M.R.; Johnson, A.; Byrd, J.C.; Andritsos, L.A. A phase 1 clinical trial of flavopiridol consolidation in chronic lymphocytic leukemia patients following chemoimmunotherapy. Ann. Hematol., 2016, 95(7), 1137-1143.
[http://dx.doi.org/10.1007/s00277-016-2683-1] [PMID: 27118540]
[172]
Cicenas, J.; Kalyan, K.; Sorokinas, A.; Stankunas, E.; Levy, J.; Meskinyte, I.; Stankevicius, V.; Kaupinis, A.; Valius, M. Roscovitine in cancer and other diseases. Ann. Transl. Med., 2015, 3(10), 135.
[http://dx.doi.org/10.3978/j.issn.2305-5839.2015.03.61] [PMID: 26207228]
[173]
Vignot, S.; Faivre, S.; Aguirre, D.; Raymond, E. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann. Oncol., 2005, 16(4), 525-537.
[http://dx.doi.org/10.1093/annonc/mdi113] [PMID: 15728109]
[174]
Brockmann, M.; Poon, E.; Berry, T.; Carstensen, A.; Deubzer, H.E.; Rycak, L.; Jamin, Y.; Thway, K.; Robinson, S.P.; Roels, F.; Witt, O.; Fischer, M.; Chesler, L.; Eilers, M. Small molecule inhibitors of surora-A induce proteasomal degradation of N-Myc in childhood neuroblastoma. Cancer Cell, 2016, 30(2), 357-358.
[http://dx.doi.org/10.1016/j.ccell.2016.07.002] [PMID: 27505677]
[175]
Schöffski, P.; Awada, A.; Dumez, H.; Gil, T.; Bartholomeus, S.; Wolter, P.; Taton, M.; Fritsch, H.; Glomb, P.; Munzert, G. A phase I, dose-escalation study of the novel polo-like kinase inhibitor volasertib (BI 6727) in patients with advanced solid tumours. Eur. J. Cancer, 2012, 48(2), 179-186.
[http://dx.doi.org/10.1016/j.ejca.2011.11.001] [PMID: 22119200]
[176]
Wang, H.; Hammoudeh, D.I.; Follis, A.V.; Reese, B.E.; Lazo, J.S.; Metallo, S.J.; Prochownik, E.V. Improved low molecular weight Myc-Max inhibitors. Mol. Cancer Ther., 2007, 6(9), 2399-2408.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0005] [PMID: 17876039]
[177]
Parrales, A.; Iwakuma, T. Targeting oncogenic mutant p53 for cancer therapy. Front. Oncol., 2015, 5, 288.
[http://dx.doi.org/10.3389/fonc.2015.00288] [PMID: 26732534]
[178]
Zache, N.; Lambert, J.M.R.; Rökaeus, N.; Shen, J.; Hainaut, P.; Bergman, J.; Wiman, K.G.; Bykov, V.J.N. Mutant p53 targeting by the low molecular weight compound STIMA-1. Mol. Oncol., 2008, 2(1), 70-80.
[http://dx.doi.org/10.1016/j.molonc.2008.02.004] [PMID: 19383329]
[179]
Lambert, J.M.R.; Gorzov, P.; Veprintsev, D.B.; Söderqvist, M.; Segerbäck, D.; Bergman, J.; Fersht, A.R.; Hainaut, P.; Wiman, K.G.; Bykov, V.J.N. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell, 2009, 15(5), 376-388.
[http://dx.doi.org/10.1016/j.ccr.2009.03.003] [PMID: 19411067]
[180]
Bykov, V.J.N.; Issaeva, N.; Zache, N.; Shilov, A.; Hultcrantz, M.; Bergman, J.; Selivanova, G.; Wiman, K.G. Reactivation of mutant p53 and induction of apoptosis in human tumor cells by maleimide analogs. J. Biol. Chem., 2005, 280(34), 30384-30391.
[http://dx.doi.org/10.1074/jbc.M501664200] [PMID: 15998635]
[181]
Yan, W.; Jung, Y-S.; Zhang, Y.; Chen, X. Arsenic trioxide reactivates proteasome-dependent degradation of mutant p53 protein in cancer cells in part via enhanced expression of Pirh2 E3 ligase. PLoS One, 2014, 9(8), e103497.
[http://dx.doi.org/10.1371/journal.pone.0103497] [PMID: 25116336]
[182]
Paranjpe, A.; Srivenugopal, K.S. Degradation of NF-κB, p53 and other regulatory redox-sensitive proteins by thiol-conjugating and -nitrosylating drugs in human tumor cells. Carcinogenesis, 2013, 34(5), 990-1000.
[http://dx.doi.org/10.1093/carcin/bgt032] [PMID: 23354308]