Pivotal Role of Chirality in Photoelectrocatalytic (PEC) Water Splitting

Page: [115 - 121] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

For decades, the over-exploitation of fossil fuel has made it urgent to develop alternative energy. Photoelectrochemical (PEC) water splitting is a promising approach to generate hydrogen, which is referred to as the fuel of the future due to its high enthalpy of combustion and zero pollution. Though impressive progress has been made over the years, PEC water splitting efficiency is still far from volume production of hydrogen, and more efforts are required to reduce the overpotential, inhibit the yield of hydrogen peroxide by-product, improve the PEC current density, improve light-harvesting capability, and develop low-cost earth-abundant catalysts. Recently, chirality has shown to play a pivotal role in addressing the issues of PEC water splitting via the effect of chiralinduced spin controlling and chiral-enhanced light harvesting. It is high time to pay attention to the art of chirality in promoting water splitting efficiency. Herein, recent progress in this field is reviewed, the approaches to introducing chirality into photo/electronic catalysts for PEC water splitting are summarized, characterization techniques applied in this research field are summed up, the challenges of chirality-enhanced PEC water splitting are discussed, and based on the present achievements, its bright future is anticipated.

Keywords: Chirality, photoelectrochemical, water splitting, hydrogen, Spin, light-harvesting.

Graphical Abstract

[1]
Landman A, Dotan H, Shter GE, et al. Photoelectrochemical water splitting in separate oxygen and hydrogen cells. Nat Mater 2017; 16(6): 646-51.
[http://dx.doi.org/10.1038/nmat4876] [PMID: 28272504]
[2]
Garcés-Pineda FA, Blasco-Ahicart M, Nieto-Castro D, López N, Galán-Mascarós JR. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat Energy 2019; 4(June): 519-25.
[http://dx.doi.org/10.1038/s41560-019-0404-4]
[3]
Moniz SJA, Shevlin SA, Martin DJ, Guo Z-X, Tang J. Visible-light driven heterojunction photocatalysts for water splitting–a critical review. Energy Environ Sci 2015; 8(3): 731-59.
[http://dx.doi.org/10.1039/C4EE03271C]
[4]
Ding CM, Shi JY, Wang ZL, Li C. Photoelectrocatalytic water splitting: significance of cocatalysts, electrolyte, and interfaces. ACS Catal 2017; 7(1): 675-88.
[http://dx.doi.org/10.1021/acscatal.6b03107]
[5]
Wang M, Zhen W, Tian B, Ma JT, Lu GX. The inhibition of hydrogen and oxygen recombination reaction by halogen atoms on over-all water splitting over Pt-TiO2 photocatalyst. Appl Catal B 2018; 236: 240-52.
[http://dx.doi.org/10.1016/j.apcatb.2018.05.031]
[6]
Gal J. Pasteur and the art of chirality. Nat Chem 2017; 9(7): 604-5.
[http://dx.doi.org/10.1038/nchem.2790] [PMID: 28644483]
[7]
Lodahl P, Mahmoodian S, Stobbe S, et al. Chiral quantum optics. Nature 2017; 541(7638): 473-80.
[http://dx.doi.org/10.1038/nature21037] [PMID: 28128249]
[8]
Xue YP, Cao CH, Zheng YG. Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev 2018; 47(4): 1516-61.
[http://dx.doi.org/10.1039/C7CS00253J] [PMID: 29362736]
[9]
Sanganyado E, Lu Z, Fu Q, Schlenk D, Gan J. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes. Water Res 2017; 124: 527-42.
[http://dx.doi.org/10.1016/j.watres.2017.08.003] [PMID: 28806704]
[10]
Maczewsky LJ, Höckendorf B, Kremer M, et al. Fermionic time-reversal symmetry in a photonic topological insulator. Nat Mater 2020; 19(8): 855-60.
[http://dx.doi.org/10.1038/s41563-020-0641-8] [PMID: 32203461]
[11]
Ernst KH. Molecular chirality in surface science. Surf Sci 2013; 613: 1-5.
[http://dx.doi.org/10.1016/j.susc.2013.03.014]
[12]
Zheng Y, Lin L, Ye X, Guo F, Wang X. Helical graphitic carbon nitrides with photocatalytic and optical activities. Angew Chem Int Ed Engl 2014; 53(44): 11926-30.
[http://dx.doi.org/10.1002/anie.201407319] [PMID: 25220601]
[13]
Liu S, Han L, Duan Y, et al. Synthesis of chiral TiO2 nanofibre with electron transition-based optical activity. Nat Commun 2012; 3: 1215.
[http://dx.doi.org/10.1038/ncomms2215] [PMID: 23169056]
[14]
Wang DW, Li Y, Puma GL, et al. Photocatalyst, Ag/AgCl@helical chiral TiO2 nanofibers as a visible-light driven plasmon. Chem Commun (Camb) 2013; 49: 10367-9.
[http://dx.doi.org/10.1039/c3cc45193c] [PMID: 23999692]
[15]
Wang D, Li Y, Li Puma G, et al. Mechanism and experimental study on the photocatalytic performance of Ag/AgCl @ chiral TiO2 nanofibers photocatalyst: the impact of wastewater components. J Hazard Mater 2015; 285: 277-84.
[http://dx.doi.org/10.1016/j.jhazmat.2014.10.060] [PMID: 25524623]
[16]
Ernst KH. Molecular chirality at surfaces. Phys Status Solidi, B Basic Res 2012; 249: 2057-88.
[http://dx.doi.org/10.1002/pssb.201248188]
[17]
Mtangi W, Kiran V, Fontanesi C, Naaman R. Role of the electron spin polarization in water splitting. J Phys Chem Lett 2015; 6(24): 4916-22.
[http://dx.doi.org/10.1021/acs.jpclett.5b02419] [PMID: 26615833]
[18]
Mtangi W, Tassinari F, Vankayala K, et al. Control of electrons’ spin eliminates hydrogen peroxide formation during water splitting. J Am Chem Soc 2017; 139(7): 2794-8.
[http://dx.doi.org/10.1021/jacs.6b12971] [PMID: 28132505]
[19]
Zhang WY, Banerjee-ghosh K, Tassinari F, Naaman R. Enhanced electrochemical water splitting with chiral molecule-coated Fe3O4 nanoparticles. ACS Energy Lett 2018; 3: 2308-13.
[http://dx.doi.org/10.1021/acsenergylett.8b01454]
[20]
Ghosh KB, Zhang WY, Tassinari F, et al. Controlling chemical selectivity in electrocatalysis with chiral CuO-coated electrodes. J Phys Chem C 2019; 123: 3024-31.
[http://dx.doi.org/10.1021/acs.jpcc.8b12027]
[21]
Tassinari F, Banerjee-Ghosh K, Parenti F, Vankayala K, Mucci A, Naaman R. Enhanced hydrogen production with chiral conductive polymer-based electrodes. J Phys Chem A 2017; 121(29): 15777-83.
[PMID: 28650163]
[22]
Guo AM, Sun QF. Spin-dependent electron transport in protein-like single-helical molecules. Proc Natl Acad Sci USA 2014; 111(32): 11658-62.
[http://dx.doi.org/10.1073/pnas.1407716111] [PMID: 25071198]
[23]
Michaeli K, Kantor-Uriel N, Naaman R, Waldeck DH. The electron’s spin and molecular chirality - how are they related and how do they affect life processes? Chem Soc Rev 2016; 45(23): 6478-87.
[http://dx.doi.org/10.1039/C6CS00369A] [PMID: 27734046]
[24]
Chrétien S, Metiu H. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation. J Chem Phys 2008; 129(7)
[http://dx.doi.org/10.1063/1.2956506] [PMID: 19044790]
[25]
Torun E, Fang CM, Wijs GAD, Groot RAD. Role of magnetism in catalysis: RuO2 (110) surface. J Phys Chem C 2013; 117: 6353-7.
[http://dx.doi.org/10.1021/jp4020367]
[26]
Agarwal A. Photodissociation of Hydrogen Peroxide Solution: Singlet or Triplet Precursor? Simulation Studies of Recombination Kinetics and Spin Dynamics in Radiation Chemistry. Cham, Switzerland: Springer 2014; pp. 135-79.
[27]
Naaman R, Paltiel Y, Waldeck DH. Chiral molecules and the electron spin. Nat Rev Chem 2019; 3: 250-60.
[http://dx.doi.org/10.1038/s41570-019-0087-1]
[28]
Gutierrez R, Díaz E, Naaman R, Cuniberti G. Spin-selective transport through helical molecular systems. Phys Rev B Condens Matter Mater Phys 2012; 85081404(R)
[http://dx.doi.org/10.1103/PhysRevB.85.081404]
[29]
Mishra D, Markus TZ, Naaman R, et al. Spin-dependent electron transmission through bacteriorhodopsin embedded in purple membrane. Proc Natl Acad Sci USA 2013; 110(37): 14872-6.
[http://dx.doi.org/10.1073/pnas.1311493110] [PMID: 23980184]
[30]
Naaman R, Waldeck DH. Spintronics and chirality: spin selectivity in electron transport through chiral molecules. Annu Rev Phys Chem 2015; 66: 263-81.
[http://dx.doi.org/10.1146/annurev-physchem-040214-121554] [PMID: 25622190]
[31]
Kettner M, Maslyuk VV, Nürenberg D, et al. Chirality-Dependent electron spin filtering by molecular monolayers of helicenes. J Phys Chem Lett 2018; 9(8): 2025-30.
[http://dx.doi.org/10.1021/acs.jpclett.8b00208] [PMID: 29618210]
[32]
Gesesse DG, Li C, Paineau E, et al. Enhanced photogenerated charge carriers and photocatalytic activity of biotemplated mesoporous TiO2 films with a chiral nematic structure. Chem Mater 2019; 31: 4851-63.
[http://dx.doi.org/10.1021/acs.chemmater.9b01465]
[33]
Cleary O, Purcell-Milton F, Vandekerckhove A, Gun’ko YK. Chiral and Luminescent TiO2 Nanoparticles. Adv Opt Mater 2017.
[http://dx.doi.org/10.1002/adom.201601000]
[34]
Long GK, Sabatini R, Saidaminov MI, et al. Chiral-perovskite optoelectronics. Nat Rev Mater 2020; 5: 423-39.
[http://dx.doi.org/10.1038/s41578-020-0181-5]
[35]
Bohannan EW, Kothari HM, Nicic IM, Switzer JA. Enantiospecific electrodeposition of chiral CuO films on single-crystal Cu(111). J Am Chem Soc 2004; 126(2): 488-9.
[http://dx.doi.org/10.1021/ja039422+] [PMID: 14719945]
[36]
Liu R, Kulp EA, Oba F, Bohannan EW, Ernst F, Switzer JA. epitaxial electrodeposition of high-aspect-ratio Cu2O(110) nanostructures on InP(111). Chem Mater 2005; 17(4): 725-9.
[http://dx.doi.org/10.1021/cm048296l]
[37]
Qian Y, Duan Y, Che S. Chiral nanostructured CuO films with multiple optical activities. Adv Opt Mater 2017; 5: 1-6.
[http://dx.doi.org/10.1002/adom.201601013]
[38]
Lin W, Hong W, Sun L, Yu D, Yu D, Chen X. Bioinspired mesoporous chiral nematic graphitic carbon nitride photocatalysts modulated by polarized light. ChemSusChem 2018; 11(1): 114-9.
[http://dx.doi.org/10.1002/cssc.201701984] [PMID: 29160942]
[39]
Mondal PC, Mtangi W, Fontanesi C. Chiro-spintronics: spin-dependent electrochemistry and water splitting using chiral molecular films. Small Methods 2018.
[http://dx.doi.org/10.1002/smtd.201700313]
[40]
Giese M, Blusch LK, Khan MK, MacLachlan MJ. Functional materials from cellulose-derived liquid-crystal templates. Angew Chem Int Ed Engl 2015; 54(10): 2888-910.
[http://dx.doi.org/10.1002/anie.201407141] [PMID: 25521805]
[41]
Fan J, Kotov NA. Chiral nanoceramics. Adv Mater 2020; 201906738: 1-28.
[http://dx.doi.org/10.1002/adma.201906738]