CNS & Neurological Disorders - Drug Targets

Author(s): Himanshi Sharma, Pooja A. Chawla* and Rohit Bhatia

DOI: 10.2174/1871527319999200818182249

1,3,5-Pyrazoline Derivatives in CNS Disorders: Synthesis, Biological Evaluation and Structural Insights through Molecular Docking

Page: [448 - 465] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Background: Anxiety and oxidative stress are the common disorders prevailing in the modern age. Many new pyrazoline derivatives have been synthesized and patented, but there is still continuous research in progress to explore antidepressant and antioxidant potential of pyrazoline scaffold.

Objectives: The present work was carried out to synthesize, characterize and evaluate the pharmacological potential of 1,3,5-Pyrazoline derivatives.

Methods: Ten new 1,3,5-Pyrazoline derivatives were synthesized and characterized by IR, 1HNMR and mass spectral techniques. The synthesized pyrazoline derivatives were investigated for their in vivo antidepressant activity by Tail Suspension Test (TST) and in vitro antioxidant activity by FRAP and DPPH assay methods. The docking studies and in silico ADME and toxicity characteristics were also evaluated.

Results: Among the synthesized analogues, IVh showed the highest antidepressant activity with a significant reduction in the duration of immobility. The compound IVh emerged as the most potent antioxidant compound due to the presence of an electron releasing hydroxyl group. Docking studies of most potent compounds revealed good interaction points with the MAO-A enzyme. The compounds were found to obey Lipinski’s Rule of Five and displayed the least in silico toxicity profile.

Conclusion: The synthesized compounds were found to possess great potential in decreasing the duration of immobility in Swiss albino mice and scavenging free radicals. These compounds may serve as new leads for further drug exploration.

Keywords: Pyrazoline, antidepressant activity, Tail Suspension Test (TST), antioxidant activity, molecular docking, toxicity prediction.

Graphical Abstract

[1]
Gross C, Hen R. The developmental origins of anxiety. Nat Rev Neurosci 2004; 5(7): 545-52.
[http://dx.doi.org/10.1038/nrn1429] [PMID: 15208696]
[2]
Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39(1): 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[3]
Delattre J, Beaudeux JL, Bonnefont-Rousselot D. Free radicals and oxidative stress Biological and pathological aspects. International Medical Editions 2005; pp. 1-492.
[4]
Ng F, Berk M, Dean O, Bush AI. Oxidative stress in psychiatric disorders: Evidence base and therapeutic implications. Int J Neuropsychopharmacol 2008; 11(6): 851-76.
[http://dx.doi.org/10.1017/S1461145707008401] [PMID: 18205981]
[5]
Halliwell B. Oxidative stress and neurodegeneration: Where are we now? J Neurochem 2006; 97(6): 1634-58.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03907.x] [PMID: 16805774]
[6]
Pejin B, Glumac M. A brief review of potent anti-CNS tumourics from marine sponges: Covering the period from 1994 to 2014. Nat Prod Res 2018; 32(4): 375-84.
[http://dx.doi.org/10.1080/14786419.2017.1309400] [PMID: 28385035]
[7]
Cardozo-Pelaez F, Song S, Parthasarathy A, Hazzi C, Naidu K, Sanchez-Ramos J. Oxidative DNA damage in the aging mouse brain. Mov Disord 1999; 14(6): 972-80.
[http://dx.doi.org/10.1002/1531-8257(199911)14:6<972:AID-MDS1010>3.0.CO;2-0] [PMID: 10584672]
[8]
Bilici M, Efe H, Köroğlu MA, Uydu HA, Bekaroğlu M, Değer O. Antioxidative enzyme activities and lipid peroxidation in major depression: Alterations by antidepressant treatments. J Affect Disord 2001; 64(1): 43-51.
[http://dx.doi.org/10.1016/S0165-0327(00)00199-3] [PMID: 11292519]
[9]
Yao JK, Reddy RD, van Kammen DP. Oxidative damage and schizophrenia: An overview of the evidence and its therapeutic implications. CNS Drugs 2001; 15(4): 287-310.
[http://dx.doi.org/10.2165/00023210-200115040-00004] [PMID: 11463134]
[10]
Bouayed J, Rammal H, Soulimani R. Oxidative stress and anxiety: Relationship and cellular pathways. Oxid Med Cell Longev 2009; 2(2): 63-7.
[http://dx.doi.org/10.4161/oxim.2.2.7944] [PMID: 20357926]
[11]
Kaplancikli ZA, Ozdemir A, Turan-Zitouni G, Altintop MD, Can OD. New pyrazoline derivatives and their antidepressant activity. Eur J Med Chem 2010; 45(9): 4383-7.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.011] [PMID: 20587366]
[12]
Sano T, Fujii T, Nishio Y, Hamada Y, Shibata K, Kuroki K. Pyrazoline dimers for hole transport materials in organic electroluminiscent devices. Jpn J Appl Phys 1995; 34: 3124-7.
[http://dx.doi.org/10.1143/JJAP.34.3124]
[13]
Umesha KB, Rai KML, Harish Nayaka MA. Antioxidant and antimicrobial activity of 5-methyl-2-(5-methyl-1,3-diphenyl-1H-pyrazole-4-carbonyl)-2,4-dihydro-pyrazol-3-one. Int J Biomed Sci 2009; 5(4): 359-68.
[PMID: 23675159]
[14]
Mamta RM, Yusuf M, Khan SA, Sahota PP, Pandove G. Synthesis, studies and in-vitro antibacterial activity of N-substituted 5-(furan-2-yl)-phenyl pyrazolines. Arab J Chem 2011; 43: 300-24.
[15]
Selvam C, Jachak SM, Thilagavathi R, Chakraborti AK. Design, synthesis, biological evaluation and molecular docking of curcumin analogues as antioxidant, cyclooxygenase inhibitory and anti-inflammatory agents. Bioorg Med Chem Lett 2005; 15(7): 1793-7.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.039] [PMID: 15780608]
[16]
Lertvorachon J, Kim JP, Soldatov DV, et al. 1,12-substituted tetracyclines as antioxidant agents. Bioorg Med Chem 2005; 13(15): 4627-37.
[http://dx.doi.org/10.1016/j.bmc.2005.04.032] [PMID: 15951186]
[17]
Banerjee M, Jana S, Kanthal LK, Mahanti B, Mondal P. Synthesis and evaluation of some novel pyrazoline derivatives of Indole-2,3-dione as a potential antioxidant and antibacterial agents. Int J Pharm Pharm Sci 2009; 3: 8-11.
[18]
Amr AG, Abdel-Latif NA, Abdalla MM. Synthesis and antiandrogenic activity of some new 3-substituted androstano [17,16-c]-5′-aryl-pyrazoline and their derivatives. Bioorg Med Chem 2006; 14(2): 373-84.
[http://dx.doi.org/10.1016/j.bmc.2005.08.024] [PMID: 16182532]
[19]
Banday AH, Mir BP, Lone IH, Suri KA, Kumar HMS. Studies on novel D-ring substituted steroidal pyrazolines as potential anticancer agents. Steroids 2010; 75(12): 805-9.
[http://dx.doi.org/10.1016/j.steroids.2010.02.014] [PMID: 20206644]
[20]
Gökhan-Kelekçi N, Yabanoğlu S, Küpeli E, et al. A new therapeutic approach in Alzheimer disease: Some novel pyrazole derivatives as dual MAO-B inhibitors and antiinflammatory analgesics. Bioorg Med Chem 2007; 15(17): 5775-86.
[http://dx.doi.org/10.1016/j.bmc.2007.06.004] [PMID: 17611112]
[21]
Gökhan-Kelekçi N, Koyunoğlu S, Yabanoğlu S, et al. New pyrazoline bearing 4(3H)-quinazolinone inhibitors of monoamine oxidase: synthesis, biological evaluation, and structural determinants of MAO-A and MAO-B selectivity. Bioorg Med Chem 2009; 17(2): 675-89.
[http://dx.doi.org/10.1016/j.bmc.2008.11.068] [PMID: 19091581]
[22]
Singh R, Thota S, Bansal R. Studies on 16,17-Pyrazoline substituted heterosteroids as anti-Alzheimer and anti-Parkinsonian agents using LPS induced neuroinflammation models of mice and rats. ACS Chem Neurosci 2018; 9(2): 272-83.
[http://dx.doi.org/10.1021/acschemneuro.7b00303] [PMID: 29019394]
[23]
Michon MG, Zampieri D, Falagian V. Synthesis and antifungal activity of synthesized several unsymmetrical N-exocyclic and N-endocyclic derivatives from benzoylation of 3 and 5 amino pyrazole. Farmaco 2003; 58: 315-22.
[24]
Devender P, Mithlesh Y, Shilpa A. Synthesis and characterization of some substituted pyrazoles as analgesics and antiinflammatory agents. Pharma Chem 2011; 3: 215-22.
[25]
Ozdemir A, Turan-zitouni G, Kaplancikli ZA. Novel analogues of 2-Pyrazoline: synthesis, characterization, and antimycobacterial evaluation. Turk J Chem 2008; 32: 529-38.
[26]
el-Sabbagh OI, Baraka MM, Ibrahim SM, et al. Synthesis and antiviral activity of new pyrazole and thiazole derivatives. Eur J Med Chem 2009; 44(9): 3746-53.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.038] [PMID: 19419804]
[27]
Palaska E, Aytemir M, Uzbay IT, Erol D. Synthesis and antidepressant activities of some 3,5-diphenyl-2-pyrazolines. Eur J Med Chem 2001; 36(6): 539-43.
[http://dx.doi.org/10.1016/S0223-5234(01)01243-0] [PMID: 11525844]
[28]
Riyadh SM, Farghaly TA, Abdallah MA, Abdalla MM, Abd El-Aziz MR. New pyrazoles incorporating pyrazolylpyrazole moiety: Synthesis, anti-HCV and antitumor activity. Eur J Med Chem 2010; 45(3): 1042-50.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.050] [PMID: 20022411]
[29]
Amin KM, Eissa AA, Abou-Seri SM, Awadallah FM, Hassan GS. Synthesis and biological evaluation of novel coumarin-pyrazoline hybrids endowed with phenylsulfonyl moiety as antitumor agents. Eur J Med Chem 2013; 60: 187-98.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.004] [PMID: 23291120]
[30]
Abdel-Aziz M, Abuo-Rahma GD, Hassan AA. Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities. Eur J Med Chem 2009; 44(9): 3480-7.
[http://dx.doi.org/10.1016/j.ejmech.2009.01.032] [PMID: 19268406]
[31]
Sandhu HS, Sapra S, Gupta M, et al. Synthesis and biological evaluation of arylidene analogues of Meldrum’s acid as a new class of antimalarial and antioxidant agents. Bioorg Med Chem 2010; 18(15): 5626-33.
[http://dx.doi.org/10.1016/j.bmc.2010.06.033] [PMID: 20621497]
[32]
Mandawad GG, Dawane BS, Beedkar SD, Khobragade CN, Yemul OS. Trisubstituted thiophene analogues of 1-thiazolyl-2-pyrazoline, super oxidase inhibitors and free radical scavengers. Bioorg Med Chem 2013; 21(1): 365-72.
[http://dx.doi.org/10.1016/j.bmc.2012.09.060] [PMID: 23177727]
[33]
Li J, Li D, Han Y, Shuang S, Dong C. Synthesis of 1-phenyl-3-biphenyl-5-(N-ethylcarbazole-3-yl)-2-pyrazoline and its use as DNA probe. Spectrochim Acta A Mol Biomol Spectrosc 2009; 73(2): 221-5.
[http://dx.doi.org/10.1016/j.saa.2009.01.019] [PMID: 19303807]
[34]
Yang YS, Zhang F, Gao C, et al. Discovery and modification of sulfur-containing heterocyclic pyrazoline derivatives as potential novel class of β-ketoacyl-acyl carrier protein synthase III (FabH) inhibitors. Bioorg Med Chem Lett 2012; 22(14): 4619-24.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.091] [PMID: 22721711]
[35]
Hayat F, Salahuddin A, Umar S, Azam A. Synthesis, characterization, antiamoebic activity and cytotoxicity of novel series of pyrazoline derivatives bearing quinoline tail. Eur J Med Chem 2010; 45(10): 4669-75.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.028] [PMID: 20696501]
[36]
Jun MA, Park WS, Kang SK, et al. Synthesis and biological evaluation of pyrazoline analogues with beta-amino acyl group as dipeptidyl peptidase IV inhibitors. Eur J Med Chem 2008; 43(9): 1889-902.
[http://dx.doi.org/10.1016/j.ejmech.2007.11.029] [PMID: 18243422]
[37]
Shoman ME, Abdel-Aziz M, Aly OM, Farag HH, Morsy MA. Synthesis and investigation of anti-inflammatory activity and gastric ulcerogenicity of novel nitric oxide-donating pyrazoline derivatives. Eur J Med Chem 2009; 44(7): 3068-76.
[http://dx.doi.org/10.1016/j.ejmech.2008.07.008] [PMID: 18722034]
[38]
Milano J, Oliveira SM, Rossato MF, et al. Antinociceptive effect of novel trihalomethyl-substituted pyrazoline methyl esters in formalin and hot-plate tests in mice. Eur J Pharmacol 2008; 581(1-2): 86-96.
[http://dx.doi.org/10.1016/j.ejphar.2007.11.042] [PMID: 18190906]
[39]
Turan-Zitouni G, Chevallet P, Kiliç FS, Erol K. Synthesis of some thiazolyl-pyrazoline derivatives and preliminary investigation of their hypotensive activity. Eur J Med Chem 2000; 35(6): 635-41.
[http://dx.doi.org/10.1016/S0223-5234(00)00152-5] [PMID: 10906414]
[40]
Ahn JH, Kim HM, Jung SH, et al. Synthesis and DP-IV inhibition of cyano-pyrazoline derivatives as potent anti-diabetic agents. Bioorg Med Chem Lett 2004; 14(17): 4461-5.
[http://dx.doi.org/10.1016/j.bmcl.2004.06.046] [PMID: 15357972]
[41]
Evranos-Aksoz B, Ucar G, Yelekci K. Design, synthesis and hMAO inhibitory screening of novel 2-Pyrazoline analogues. Comb Chem High Throughput Screen 2017; 20(6): 510-21.
[http://dx.doi.org/10.2174/1386207320666170504114208] [PMID: 28474546]
[42]
Tripathi AC, Upadhyay S, Paliwal S, Saraf SK. N1-benzenesulfonyl-2-pyrazoline hybrids in neurological disorders: Syntheses, biological screening and computational studies. EXCLI J 2018; 17: 126-48.
[PMID: 29743852]
[43]
Upadhyay S, Tripathi AC, Paliwal S, Saraf SK. 2-Pyrazoline derivatives in neuropharmacology: Synthesis, ADME prediction, molecular docking and in vivo biological evaluation. Excli J 2017; 16: 628-49.
[PMID: 28694764]
[44]
Sunita SS, Jadhav W, Pawarb R, Bhusare S. Synthesis and antibacterial and antidepressant activity of some 3,5-Diphenyl and 1,3,5-Triphenyl-2-pyrazolines. J Chin Chem Soc 2004; 51: 775-8.
[http://dx.doi.org/10.1002/jccs.200400117]
[45]
Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 2005; 29(4-5): 571-625.
[http://dx.doi.org/10.1016/j.neubiorev.2005.03.009] [PMID: 15890404]
[46]
Shirayama Y, Chen ACH, Duman RS. Antidepressant-like effects of BDNF and NT-3 in beharioral models of depression. Abstr Soc Neurosci 2000; 26: 102-6.
[47]
Prasad YR, Rao LA, Prasoona L. Synthesis and antidepressant activity of some 1,3,5-triphenyl-2-pyrazoine and 3-(2”-hydroxyl naphthalene-1”-yl)-1,5-diphenyl-2-pyrazoline. Bioorg Med Chem 2005; 15: 5030-4.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.040]
[48]
Mishra G, Sachan N, Chawla P. Synthesis and evaluation of Thiazolidinedione-Coumarin adducts as antidiabetic, anti-inflammatory and antioxidant agents. Lett Org Chem 2015; 12: 429-45.
[http://dx.doi.org/10.2174/1570178612666150424235603]
[49]
Castagné V, Moser P, Roux S, Porsolt RD. Rodent models of depression: Forced swim and tail suspension behavioral despair tests in rats and mice. Curr Protoc Neurosci 2011; 8: 10A.
[http://dx.doi.org/10.1002/0471142301.ns0810as55] [PMID: 21462162]