Indazole as a Privileged Scaffold: The Derivatives and their Therapeutic Applications

Page: [839 - 860] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

Background: Heterocyclic compounds, also called heterocycles, are a major class of organic chemical compound that plays a vital role in the metabolism of all living cells. The heterocyclic compound, indazole, has attracted more attention in recent years and is widely present in numerous commercially available drugs. Indazole-containing derivatives, representing one of the most important heterocycles in drug molecules, are endowed with a broad range of biological properties.

Methods: A literature search was conducted in PubMed, Google Scholar and Web of Science regarding articles related to indazole and its therapeutic application.

Results: The mechanism and structure-activity relationship of indazole and its derivatives were described. Based on their versatile biological activities, the compounds were divided into six groups: anti-inflammatory, antibacterial, anti-HIV, antiarrhythmic, antifungal and antitumour. At least 43 indazole-based therapeutic agents were found to be used in clinical application or clinical trials.

Conclusion: This review is a guide for pharmacologists who are in search of valid preclinical/clinical drug compounds where the progress of approved marketed drugs containing indazole scaffold is examined from 1966 to the present day. Future direction involves more diverse bioactive moieties with indazole scaffold and greater insights into its mechanism.

Keywords: Heterocyclic compound, indazole, therapeutic application, structure-activity relationship, pharmacology, activity.

Graphical Abstract

[1]
Lin, J.; Nagase, H. The road not taken with pyrrole-imidazole polyamides: Off-target effects and genomic binding. Biomolecules, 2020, 10(4), E544.
[http://dx.doi.org/10.3390/biom10040544] [PMID: 32260120]
[2]
Xia, L.; Liu, W.; Song, Y.; Zhu, H.; Duan, Y. The present and future of novel protein degradation technology. Curr. Top. Med. Chem., 2019, 19(20), 1784-1788.
[http://dx.doi.org/10.2174/1568026619666191011162955] [PMID: 31644408]
[3]
Xia, L-W.; Ba, M-Y.; Liu, W.; Cheng, W.; Hu, C-P.; Zhao, Q.; Yao, Y-F.; Sun, M-R.; Duan, Y-T. Triazol: A privileged scaffold for proteolysis targeting chimeras. Future Med. Chem., 2019, 11(22), 2919-2973.
[http://dx.doi.org/10.4155/fmc-2019-0159] [PMID: 31702389]
[4]
Zhou, C.; Zhu, H.L.; Duan, Y. Targeting histone acetyltransferase MOZ/KAT6A as a new avenue for hematological tumor therapy. Curr. Top. Med. Chem., 2020, 20(5), 333-335.
[http://dx.doi.org/10.2174/156802662005200304123442] [PMID: 32242512]
[5]
Zhou, C.; Liu, W.; Duan, Y. MOZ/KAT6A: A promising target for acute myeloid leukemia therapy. Future Med. Chem., 2020, 12(9), 759-761.
[http://dx.doi.org/10.4155/fmc-2020-0047] [PMID: 32212924]
[6]
Duan, Y.; Liu, W.; Tian, L.; Mao, Y.; Song, C. Targeting tubulin-colchicine site for cancer therapy: Inhibitors, antibody-drug conjugates and degradation agents. Curr. Top. Med. Chem., 2019, 19(15), 1289-1304.
[http://dx.doi.org/10.2174/1568026619666190618130008] [PMID: 31210108]
[7]
Ba, M.; Duan, Y. Advance of 2-methoxyestradiol as a promising anticancer agent for cancer therapy. Future Med. Chem., 2020, 12(4), 273-275.
[http://dx.doi.org/10.4155/fmc-2019-0258] [PMID: 31983223]
[8]
Duan, Y-T.; Sangani, C.B.; Liu, W.; Soni, K.V.; Yao, Y. New promises to cure cancer and other genetic diseases/disorders: Epi-drugs through epigenetics. Curr. Top. Med. Chem., 2019, 19(12), 972-994.
[http://dx.doi.org/10.2174/1568026619666190603094439] [PMID: 31161992]
[9]
Liu, W.; Wang, X.; Zhu, H.; Duan, Y. Precision tumor medicine and drug targets. Curr. Top. Med. Chem., 2019, 19(17), 1488-1489.
[http://dx.doi.org/10.2174/156802661917190828111130] [PMID: 31592750]
[10]
Li, Z.; Wang, Z-C.; Li, X.; Abbas, M.; Wu, S-Y.; Ren, S-Z.; Liu, Q-X.; Liu, Y.; Chen, P-W.; Duan, Y-T.; Lv, P-C.; Zhu, H-L. Design, synthesis and evaluation of novel diaryl-1,5-diazoles derivatives bearing morpholine as potent dual COX-2/5-LOX inhibitors and antitumor agents. Eur. J. Med. Chem., 2019, 169, 168-184.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.008] [PMID: 30877972]
[11]
Li, X.; Ye, X.; Wei, C.; Shan, C.; Wojtas, L.; Wang, Q.; Shi, X. Diazo activation with diazonium salts: Synthesis of indazole and 1,2,4-triazole. Org. Lett., 2020, 22(11), 4151-4155.
[http://dx.doi.org/10.1021/acs.orglett.0c01232] [PMID: 32463244]
[12]
Ali, N.A.S.; Dar, B.A.; Pradhan, V.; Farooqui, M. Chemistry and biology of indoles and indazoles: A mini-review. Mini Rev. Med. Chem., 2013, 13(12), 1792-1800.
[http://dx.doi.org/10.2174/1389557511313120009] [PMID: 22625410]
[13]
Kuhn, P-S.; Büchel, G.E.; Jovanović, K.K.; Filipović, L.; Radulović, S.; Rapta, P.; Arion, V.B. Osmium(III) analogues of KP1019: electrochemical and chemical synthesis, spectroscopic characterization, X-ray crystallography, hydrolytic stability, and antiproliferative activity. Inorg. Chem., 2014, 53(20), 11130-11139.
[http://dx.doi.org/10.1021/ic501710k] [PMID: 25290960]
[14]
López-Vallejo, F.; Castillo, R.; Yépez-Mulia, L.; Medina-Franco, J.L. Benzotriazoles and indazoles are scaffolds with biological activity against Entamoeba histolytica. J. Biomol. Screen., 2011, 16(8), 862-868.
[http://dx.doi.org/10.1177/1087057111414902] [PMID: 21821786]
[15]
Cheekavolu, C.; Muniappan, M. In vivo and in vitro anti-inflammatory activity of indazole and its derivatives. J. Clin. Diagn. Res., 2016, 10(9), FF01-FF06.
[http://dx.doi.org/10.7860/JCDR/2016/19338.8465] [PMID: 27790461]
[16]
Tzvetkov, N.T.; Hinz, S.; Küppers, P.; Gastreich, M.; Müller, C.E. Indazole- and indole-5-carboxamides: Selective and reversible monoamine oxidase B inhibitors with subnanomolar potency. J. Med. Chem., 2014, 57(15), 6679-6703.
[http://dx.doi.org/10.1021/jm500729a] [PMID: 24955776]
[17]
Dong, J.; Zhang, Q.; Wang, Z.; Huang, G.; Li, S. Recent advances in the development of indazole-based anticancer agents. ChemMedChem, 2018, 13(15), 1490-1507.
[http://dx.doi.org/10.1002/cmdc.201800253] [PMID: 29863292]
[18]
Denya, I.; Malan, S.F.; Joubert, J. Indazole derivatives and their therapeutic applications: A patent review (2013-2017). Expert Opin. Ther. Pat., 2018, 28(6), 441-453.
[http://dx.doi.org/10.1080/13543776.2018.1472240] [PMID: 29718740]
[19]
Yoshida, K.; Takagi, T.; Kondo, T.; Kobayashi, H.; Iizuka, J.; Fukuda, H.; Ishihara, H.; Okumi, M.; Ishida, H.; Tanabe, K. Efficacy of axitinib in patients with metastatic renal cell carcinoma refractory to nivolumab therapy. Jpn. J. Clin. Oncol., 2019, 49(6), 576-580.
[http://dx.doi.org/10.1093/jjco/hyz040] [PMID: 30924496]
[20]
Bellesoeur, A.; Carton, E.; Alexandre, J.; Goldwasser, F.; Huillard, O. Axitinib in the treatment of renal cell carcinoma: Design, development, and place in therapy. Drug Des. Devel. Ther., 2017, 11, 2801-2811.
[http://dx.doi.org/10.2147/DDDT.S109640] [PMID: 29033542]
[21]
Kusakabe, N.; Osawa, T.; Miyata, H.; Kikuchi, H.; Matsumoto, R.; Maruyama, S.; Abe, T.; Shinohara, N. Treatment outcome of axitinib for metastatic renal-cell carcinoma patients. Hinyokika Kiyo, 2018, 64(9), 353-358.
[PMID: 30369225]
[22]
Keating, G.M. Axitinib: A review in advanced renal cell carcinoma. Drugs, 2015, 75(16), 1903-1913.
[http://dx.doi.org/10.1007/s40265-015-0483-x] [PMID: 26487541]
[23]
Kelly, R.J.; Rixe, O. Axitinib (AG-013736). Rec. Results Cancer Res., 2010, 184, 33-44.
[http://dx.doi.org/10.1007/978-3-642-01222-8_3] [PMID: 20072829]
[24]
Igarashi, R.; Inoue, T.; Fujiyama, N.; Tsuchiya, N.; Numakura, K.; Kagaya, H.; Saito, M.; Narita, S.; Satoh, S.; Niioka, T.; Miura, M.; Habuchi, T. Contribution of UGT1A1 genetic polymorphisms related to axitinib pharmacokinetics to safety and efficacy in patients with renal cell carcinoma. Med. Oncol., 2018, 35(4), 51.
[http://dx.doi.org/10.1007/s12032-018-1113-8] [PMID: 29524031]
[25]
Tortorici, M.A.; Toh, M.; Rahavendran, S.V.; Labadie, R.R.; Alvey, C.W.; Marbury, T.; Fuentes, E.; Green, M.; Ni, G.; Hee, B.; Pithavala, Y.K. Influence of mild and moderate hepatic impairment on axitinib pharmacokinetics. Invest. New Drugs, 2011, 29(6), 1370-1380.
[http://dx.doi.org/10.1007/s10637-010-9477-4] [PMID: 20596748]
[26]
Zhang, L.; Wang, H.; Li, W.; Zhong, J.; Yu, R.; Huang, X.; Wang, H.; Tan, Z.; Wang, J.; Zhang, Y. Pazopanib, a novel multi-kinase inhibitor, shows potent antitumor activity in colon cancer through PUMA-mediated apoptosis. Oncotarget, 2017, 8(2), 3289-3303.
[http://dx.doi.org/10.18632/oncotarget.13753] [PMID: 27924057]
[27]
LaPlant, K.D.; Louzon, P.D. Pazopanib: An oral multitargeted tyrosine kinase inhibitor for use in renal cell carcinoma. Ann. Pharmacother., 2010, 44(6), 1054-1060.
[http://dx.doi.org/10.1345/aph.1M251] [PMID: 20407031]
[28]
Koc, G.; Wang, X.; Luo, Y. Pazopanib: An orally administered multi-targeted tyrosine kinase inhibitor for locally advanced or metastatic renal cell carcinoma. Can. J. Urol., 2011, 18(6), 5991-5997.
[PMID: 22166325]
[29]
Deeks, E.D. Pazopanib: In advanced soft tissue sarcoma. Drugs, 2012, 72(16), 2129-2140.
[http://dx.doi.org/10.2165/11209950-000000000-00000] [PMID: 23072642]
[30]
Ranieri, G.; Mammì, M.; Donato Di Paola, E.; Russo, E.; Gallelli, L.; Citraro, R.; Gadaleta, C.D.; Marech, I.; Ammendola, M.; De Sarro, G. Pazopanib a tyrosine kinase inhibitor with strong anti-angiogenetic activity: A new treatment for metastatic soft tissue sarcoma. Crit. Rev. Oncol. Hematol., 2014, 89(2), 322-329.
[http://dx.doi.org/10.1016/j.critrevonc.2013.08.012] [PMID: 24041629]
[31]
Chamberlain, F.E.; Wilding, C.; Jones, R.L.; Huang, P. Pazopanib in patients with advanced intermediate-grade or high-grade liposarcoma. Expert Opin. Investig. Drugs, 2019, 28(6), 505-511.
[http://dx.doi.org/10.1080/13543784.2019.1607291] [PMID: 31010343]
[32]
Sanford, M.; Keating, G.M. Pazopanib: In advanced renal cell carcinoma. BioDrugs, 2010, 24(5), 279-286.
[http://dx.doi.org/10.2165/11205480-000000000-00000] [PMID: 20649181]
[33]
Keisner, S.V.; Shah, S.R. Pazopanib: The newest tyrosine kinase inhibitor for the treatment of advanced or metastatic renal cell carcinoma. Drugs, 2011, 71(4), 443-454.
[http://dx.doi.org/10.2165/11588960-000000000-00000] [PMID: 21395357]
[34]
Jia, Y.; Zhang, J.; Feng, J.; Xu, F.; Pan, H.; Xu, W. Design, synthesis and biological evaluation of pazopanib derivatives as antitumor agents. Chem. Biol. Drug Des., 2014, 83(3), 306-316.
[http://dx.doi.org/10.1111/cbdd.12243] [PMID: 24119291]
[35]
Zhou, J.; Goh, B-C.; Albert, D.H.; Chen, C-S. ABT-869, a promising multi-targeted tyrosine kinase inhibitor: From bench to bedside. J. Hematol. Oncol., 2009, 2, 33.
[http://dx.doi.org/10.1186/1756-8722-2-33] [PMID: 19642998]
[36]
Cainap, C.; Qin, S.; Huang, W-T.; Chung, I.J.; Pan, H.; Cheng, Y.; Kudo, M.; Kang, Y-K.; Chen, P-J.; Toh, H-C.; Gorbunova, V.; Eskens, F.A.L.M.; Qian, J.; McKee, M.D.; Ricker, J.L.; Carlson, D.M.; El-Nowiem, S. Linifanib versus Sorafenib in patients with advanced hepatocellular carcinoma: Results of a randomized phase III trial. J. Clin. Oncol., 2015, 33(2), 172-179.
[http://dx.doi.org/10.1200/JCO.2013.54.3298] [PMID: 25488963]
[37]
Hu, H.; Mu, Q.; Bao, Z.; Chen, Y.; Liu, Y.; Chen, J.; Wang, K.; Wang, Z.; Nam, Y.; Jiang, B.; Sa, J.K.; Cho, H-J.; Her, N-G.; Zhang, C.; Zhao, Z.; Zhang, Y.; Zeng, F.; Wu, F.; Kang, X.; Liu, Y.; Qian, Z.; Wang, Z.; Huang, R.; Wang, Q.; Zhang, W.; Qiu, X.; Li, W.; Nam, D-H.; Fan, X.; Wang, J.; Jiang, T. Mutational landscape of secondary glioblastoma guides MET-targeted trial in brain tumor. Cell, 2018, 175(6), 1665-1678.
[http://dx.doi.org/10.1016/j.cell.2018.09.038] [PMID: 30343896]
[38]
Robichaux, J.P.; Elamin, Y.Y.; Tan, Z.; Carter, B.W.; Zhang, S.; Liu, S.; Li, S.; Chen, T.; Poteete, A.; Estrada-Bernal, A.; Le, A.T.; Truini, A.; Nilsson, M.B.; Sun, H.; Roarty, E.; Goldberg, S.B.; Brahmer, J.R.; Altan, M.; Lu, C.; Papadimitrakopoulou, V.; Politi, K.; Doebele, R.C.; Wong, K-K.; Heymach, J.V. Mechanisms and clinical activity of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small cell lung cancer. Nat. Med., 2018, 24(5), 638-646.
[http://dx.doi.org/10.1038/s41591-018-0007-9] [PMID: 29686424]
[39]
Yan, S.B.; Peek, V.L.; Ajamie, R.; Buchanan, S.G.; Graff, J.R.; Heidler, S.A.; Hui, Y-H.; Huss, K.L.; Konicek, B.W.; Manro, J.R.; Shih, C.; Stewart, J.A.; Stewart, T.R.; Stout, S.L.; Uhlik, M.T.; Um, S.L.; Wang, Y.; Wu, W.; Yan, L.; Yang, W.J.; Zhong, B.; Walgren, R.A. LY2801653 is an orally bioavailable multi-kinase inhibitor with potent activity against MET, MST1R, and other oncoproteins, and displays anti-tumor activities in mouse xenograft models. Invest. New Drugs, 2013, 31(4), 833-844.
[http://dx.doi.org/10.1007/s10637-012-9912-9] [PMID: 23275061]
[40]
Lu, Y.; Cole, K.P.; Fennell, J.W.; Maloney, T.D.; Mitchell, D.; Subbiah, R.; Ramadas, B. An alternative indazole synthesis for merestinib. Org. Process Res. Dev., 2018, 22(3), 409-419.
[http://dx.doi.org/10.1021/acs.oprd.8b00016]
[41]
Wu, W.; Bi, C.; Credille, K.M.; Manro, J.R.; Peek, V.L.; Donoho, G.P.; Yan, L.; Wijsman, J.A.; Yan, S.B.; Walgren, R.A. Inhibition of tumor growth and metastasis in non-small cell lung cancer by LY2801653, an inhibitor of several oncokinases, including MET. Clin. Cancer Res., 2013, 19(20), 5699-5710.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1758] [PMID: 23989980]
[42]
Barat, S.; Bozko, P.; Chen, X.; Scholta, T.; Hanert, F.; Götze, J.; Malek, N.P.; Wilkens, L.; Plentz, R.R. Targeting c-MET by LY2801653 for treatment of cholangiocarcinoma. Mol. Carcinog., 2016, 55(12), 2037-2050.
[http://dx.doi.org/10.1002/mc.22449] [PMID: 26757360]
[43]
He, A.R.; Cohen, R.B.; Denlinger, C.S.; Sama, A.; Birnbaum, A.; Hwang, J.; Sato, T.; Lewis, N.; Mynderse, M.; Niland, M.; Giles, J.; Wallin, J.; Moser, B.; Zhang, W.; Walgren, R.; Plimack, E.R. First-in-human phase I study of merestinib, an oral multikinase inhibitor, in patients with advanced cancer. Oncologist, 2019, 24(9), e930-e942.
[http://dx.doi.org/10.1634/theoncologist.2018-0411] [PMID: 30833489]
[44]
Buchanan, D.; Muirhead, K. Intractable nausea and vomiting successfully related with granisetron 5-hydroxytryptamine type 3 receptor antagonists in Palliative Medicine. Palliat. Med., 2007, 21(8), 725-726.
[http://dx.doi.org/10.1177/0269216307083383] [PMID: 18073263]
[45]
Upward, J.W.; Arnold, B.D.C.; Link, C.; Pierce, D.M.; Allen, A.; Tasker, T.C.G. The clinical pharmacology of granisetron (BRL 43694), a novel specific 5-HT3 antagonist. Eur. J. Cancer, 1990, 26(Suppl. 1), S12-S15.
[PMID: 2169778]
[46]
Addelman, M.; Erlichman, C.; Fine, S.; Warr, D.; Murray, C. Phase I/II trial of granisetron: A novel 5-hydroxytryptamine antagonist for the prevention of chemotherapy-induced nausea and vomiting. J. Clin. Oncol., 1990, 8(2), 337-341.
[http://dx.doi.org/10.1200/JCO.1990.8.2.337] [PMID: 2153767]
[47]
Joss, R.A.; Dott, C.S. The Granisetron Study Group. Clinical studies with granisetron, a new 5-HT3 receptor antagonist for the treatment of cancer chemotherapy-induced emesis. Eur. J. Cancer, 1993, 29A(Suppl. 1), S22-S29.
[http://dx.doi.org/10.1016/S0959-8049(05)80256-4] [PMID: 8381293]
[48]
Yarker, Y.E.; McTavish, D. Granisetron. An update of its therapeutic use in nausea and vomiting induced by antineoplastic therapy. Drugs, 1994, 48(5), 761-793.
[http://dx.doi.org/10.2165/00003495-199448050-00008] [PMID: 7530631]
[49]
Allen, A.; Asgill, C.C.; Pierce, D.M.; Upward, J.; Zussman, B.D. Pharmacokinetics and tolerability of ascending intravenous doses of granisetron, a novel 5-HT3 antagonist, in healthy human subjects. Eur. J. Clin. Pharmacol., 1994, 46(2), 159-162.
[http://dx.doi.org/10.1007/BF00199881] [PMID: 8039536]
[50]
Duggan, S.T.; Curran, M.P. Transdermal granisetron. Drugs, 2009, 69(18), 2597-2605.
[http://dx.doi.org/10.2165/11202780-000000000-00000] [PMID: 19943709]
[51]
Schulmeister, L. Granisetron transdermal system: a new option to help prevent chemotherapy-induced nausea and vomiting. Clin. J. Oncol. Nurs., 2009, 13(6), 711-714.
[http://dx.doi.org/10.1188/09.CJON.711-714] [PMID: 19948469]
[52]
Tuca, A. Use of granisetron transdermal system in the prevention of chemotherapy-induced nausea and vomiting: A review. Cancer Manag. Res., 2009, 2, 1-12.
[http://dx.doi.org/10.2147/CMAR.S4953] [PMID: 21188092]
[53]
Boccia, R.V.; Gordan, L.N.; Clark, G.; Howell, J.D.; Grunberg, S.M. Sancuso Study Group. Efficacy and tolerability of transdermal granisetron for the control of chemotherapy-induced nausea and vomiting associated with moderately and highly emetogenic multi-day chemotherapy: A randomized, double-blind, phase III study. Support. Care Cancer, 2011, 19(10), 1609-1617.
[http://dx.doi.org/10.1007/s00520-010-0990-y] [PMID: 20835873]
[54]
Mule, F. Indisetron Kyorin. IDrugs: Investigat. Drugs J., 2002, 5(3), 278-280.
[55]
Ushijima, K.; Wake, N.; Kobayashi, H.; Hachisuga, T.; Toki, N.; Masuzaki, H.; Kotera, K.; Kawarabayashi, T.; Emoto, M.; Kamura, T. The efficacy and safety of indisetron hydrochloride for the management of nausea/vomiting caused by chemotherapy for gynecologic cancer. Gan To Kagaku Ryoho, 2008, 35(7), 1169-1173.
[PMID: 18633256]
[56]
Iritani, E.; Isono, K.; Izumo, T.; Takeda, N.; Kanemura, T.; Tamaoki, J.; Nagai, A. The efficacy of indisetron hydrochloride for the management of chemotherapy-induced nausea and vomiting for lung cancer. Gan To Kagaku Ryoho, 2009, 36(9), 1489-1492.
[PMID: 19755818]
[57]
Tsukagoshi, S. Tokyo Cooperative Oncology Group. Introduction of novel anti-emetic agent, indisetron hydrochloride, developed recently in Japan. Gan To Kagaku Ryoho, 2005, 32(4), 567-573.
[PMID: 15853230]
[58]
Rolfo, C.; Ruiz, R.; Giovannetti, E.; Gil-Bazo, I.; Russo, A.; Passiglia, F.; Giallombardo, M.; Peeters, M.; Raez, L. Entrectinib: A potent new TRK, ROS1, and ALK inhibitor. Expert Opin. Investig. Drugs, 2015, 24(11), 1493-1500.
[http://dx.doi.org/10.1517/13543784.2015.1096344] [PMID: 26457764]
[59]
Smith, K.M.; Fagan, P.C.; Pomari, E.; Germano, G.; Frasson, C.; Walsh, C.; Silverman, I.; Bonvini, P.; Li, G. Antitumor activity of entrectinib, a Pan-TRK, ROS1, and ALK inhibitor, in ETV6-NTRK3-positive acute myeloid leukemia. Mol. Cancer Ther., 2018, 17(2), 455-463.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0419] [PMID: 29237803]
[60]
Ardini, E.; Menichincheri, M.; Banfi, P.; Bosotti, R.; De Ponti, C.; Pulci, R.; Ballinari, D.; Ciomei, M.; Texido, G.; Degrassi, A.; Avanzi, N.; Amboldi, N.; Saccardo, M.B.; Casero, D.; Orsini, P.; Bandiera, T.; Mologni, L.; Anderson, D.; Wei, G.; Harris, J.; Vernier, J-M.; Li, G.; Felder, E.; Donati, D.; Isacchi, A.; Pesenti, E.; Magnaghi, P.; Galvani, A. Entrectinib, a Pan-TRK, ROS1, and ALK inhibitor with activity in multiple molecularly defined cancer indications. Mol. Cancer Ther., 2016, 15(4), 628-639.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0758] [PMID: 26939704]
[61]
Menichincheri, M.; Ardini, E.; Magnaghi, P.; Avanzi, N.; Banfi, P.; Bossi, R.; Buffa, L.; Canevari, G.; Ceriani, L.; Colombo, M.; Corti, L.; Donati, D.; Fasolini, M.; Felder, E.; Fiorelli, C.; Fiorentini, F.; Galvani, A.; Isacchi, A.; Borgia, A.L.; Marchionni, C.; Nesi, M.; Orrenius, C.; Panzeri, A.; Pesenti, E.; Rusconi, L.; Saccardo, M.B.; Vanotti, E.; Perrone, E.; Orsini, P. Discovery of entrectinib: A new 3-aminoindazole as a potent Anaplastic Lymphoma Kinase (ALK), c-ROS oncogene 1 kinase (ROS1), and Pan-Tropomyosin Receptor Kinases (Pan-TRKs) inhibitor. J. Med. Chem., 2016, 59(7), 3392-3408.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00064] [PMID: 27003761]
[62]
Liu, D.; Offin, M.; Harnicar, S.; Li, B.T.; Drilon, A. Entrectinib: An orally available, selective tyrosine kinase inhibitor for the treatment of NTRK, ROS1, and ALK fusion-positive solid tumors. Ther. Clin. Risk Manag., 2018, 14, 1247-1252.
[http://dx.doi.org/10.2147/TCRM.S147381] [PMID: 30050303]
[63]
Drilon, A.; Siena, S.; Ou, S.I.; Patel, M.; Ahn, M.J.; Lee, J.; Bauer, T.M.; Farago, A.F.; Wheler, J.J.; Liu, S.V.; Doebele, R.; Giannetta, L.; Cerea, G.; Marrapese, G.; Schirru, M.; Amatu, A.; Bencardino, K.; Palmeri, L.; Sartore-Bianchi, A.; Vanzulli, A.; Cresta, S.; Damian, S.; Duca, M.; Ardini, E.; Li, G.; Christiansen, J.; Kowalski, K.; Johnson, A.D.; Patel, R.; Luo, D.; Chow-Maneval, E.; Hornby, Z.; Multani, P.S.; Shaw, A.T.; De Braud, F.G. Safety and antitumor activity of the multitargeted Pan-TRK, ROS1, and ALK inhibitor entrectinib: Combined results from Two Phase I Trials (ALKA-372-001 and STARTRK-1). Cancer Discov., 2017, 7(4), 400-409.
[http://dx.doi.org/10.1158/2159-8290.CD-16-1237] [PMID: 28183697]
[64]
Sharman, J.; Di Paolo, J. Targeting B-cell receptor signaling kinases in chronic lymphocytic leukemia: The promise of entospletinib. Ther. Adv. Hematol., 2016, 7(3), 157-170.
[http://dx.doi.org/10.1177/2040620716636542] [PMID: 27247756]
[65]
Sharman, J.; Hawkins, M.; Kolibaba, K.; Boxer, M.; Klein, L.; Wu, M.; Hu, J.; Abella, S.; Yasenchak, C. An open-label phase 2 trial of entospletinib (GS-9973), a selective spleen tyrosine kinase inhibitor, in chronic lymphocytic leukemia. Blood, 2015, 125(15), 2336-2343.
[http://dx.doi.org/10.1182/blood-2014-08-595934] [PMID: 25696919]
[66]
Awan, F.T.; Thirman, M.J.; Patel-Donnelly, D.; Assouline, S.; Rao, A.V.; Ye, W.; Hill, B.; Sharman, J.P. Entospletinib monotherapy in patients with relapsed or refractory chronic lymphocytic leukemia previously treated with B-cell receptor inhibitors: Results of a phase 2 study. Leuk. Lymphoma, 2019, 60(8), 1972-1977.
[http://dx.doi.org/10.1080/10428194.2018.1562180] [PMID: 30633573]
[67]
Burke, R.T.; Meadows, S.; Loriaux, M.M.; Currie, K.S.; Mitchell, S.A.; Maciejewski, P.; Clarke, A.S.; Dipaolo, J.A.; Druker, B.J.; Lannutti, B.J.; Spurgeon, S.E. A potential therapeutic strategy for chronic lymphocytic leukemia by combining Idelalisib and GS-9973, a novel spleen tyrosine kinase (Syk) inhibitor. Oncotarget, 2014, 5(4), 908-915.
[http://dx.doi.org/10.18632/oncotarget.1484] [PMID: 24659719]
[68]
Burke, J.M.; Shustov, A.; Essell, J.; Patel-Donnelly, D.; Yang, J.; Chen, R.; Ye, W.; Shi, W.; Assouline, S.; Sharman, J. An open-label, phase II trial of entospletinib (GS-9973), a selective spleen tyrosine kinase inhibitor, in diffuse large B-cell lymphoma. Clin. Lymphoma Myeloma Leuk., 2018, 18(8), e327-e331.
[http://dx.doi.org/10.1016/j.clml.2018.05.022] [PMID: 29934062]
[69]
Liu, D.; Mamorska-Dyga, A. Syk inhibitors in clinical development for hematological malignancies. J. Hematol. Oncol., 2017, 10(1), 145.
[http://dx.doi.org/10.1186/s13045-017-0512-1] [PMID: 28754125]
[70]
Andorsky, D.J.; Kolibaba, K.S.; Assouline, S.; Forero-Torres, A.; Jones, V.; Klein, L.M.; Patel-Donnelly, D.; Smith, M.; Ye, W.; Shi, W.; Yasenchak, C.A.; Sharman, J.P. An open-label phase 2 trial of entospletinib in indolent non-Hodgkin lymphoma and mantle cell lymphoma. Br. J. Haematol., 2019, 184(2), 215-222.
[http://dx.doi.org/10.1111/bjh.15552] [PMID: 30183069]
[71]
Currie, K.S.; Kropf, J.E.; Lee, T.; Blomgren, P.; Xu, J.; Zhao, Z.; Gallion, S.; Whitney, J.A.; Maclin, D.; Lansdon, E.B.; Maciejewski, P.; Rossi, A.M.; Rong, H.; Macaluso, J.; Barbosa, J.; Di Paolo, J.A.; Mitchell, S.A. Discovery of GS-9973, a selective and orally efficacious inhibitor of spleen tyrosine kinase. J. Med. Chem., 2014, 57(9), 3856-3873.
[http://dx.doi.org/10.1021/jm500228a] [PMID: 24779514]
[72]
Ramanathan, S.; Di Paolo, J.A.; Jin, F.; Shao, L.; Sharma, S.; Robeson, M.; Kearney, B.P. Pharmacokinetics, pharmacodynamics, and safety of entospletinib, a novel pSYK inhibitor, following single and multiple oral dosing in healthy volunteers. Clin. Drug Investig., 2017, 37(2), 195-205.
[http://dx.doi.org/10.1007/s40261-016-0476-x] [PMID: 27785737]
[73]
Leteurtre, F.; Kohlhagen, G.; Paull, K.D.; Pommier, Y. Topoisomerase II inhibition and cytotoxicity of the anthrapyrazoles DuP 937 and DuP 941 (Losoxantrone) in the National Cancer Institute preclinical antitumor drug discovery screen. J. Natl. Cancer Inst., 1994, 86(16), 1239-1244.
[http://dx.doi.org/10.1093/jnci/86.16.1239] [PMID: 8040892]
[74]
Capranico, G.; Palumbo, M.; Tinelli, S.; Mabilia, M.; Pozzan, A.; Zunino, F. Conformational drug determinants of the sequence specificity of drug-stimulated topoisomerase II DNA cleavage. J. Mol. Biol., 1994, 235(4), 1218-1230.
[http://dx.doi.org/10.1006/jmbi.1994.1075] [PMID: 8308885]
[75]
Renner, U.D.; Piperopoulos, G.; Gebhardt, R.; Ehninger, G.; Zeller, K.P. The oxidative biotransformation of losoxantrone (CI-941). Drug Metab. Dispos., 2002, 30(4), 464-478.
[http://dx.doi.org/10.1124/dmd.30.4.464] [PMID: 11901102]
[76]
Talbot, D.C.; Smith, I.E.; Mansi, J.L.; Judson, I.; Calvert, A.H.; Ashley, S.E. Anthrapyrazole CI941: A highly active new agent in the treatment of advanced breast cancer. J. Clin. Oncol., 1991, 9(12), 2141-2147.
[http://dx.doi.org/10.1200/JCO.1991.9.12.2141] [PMID: 1960556]
[77]
Liang, H.; Wu, X.; Guziec, L.J.; Guziec, F.S., Jr; Larson, K.K.; Lang, J.; Yalowich, J.C.; Hasinoff, B.B. A structure-based 3D-QSAR study of anthrapyrazole analogues of the anticancer agents losoxantrone and piroxantrone. J. Chem. Inf. Model., 2006, 46(4), 1827-1835.
[http://dx.doi.org/10.1021/ci060056y] [PMID: 16859314]
[78]
Ingle, J.N.; Kuross, S.A.; Mailliard, J.A.; Loprinzi, C.L.; Jung, S.H.; Nelimark, R.A.; Krook, J.E.; Long, H.J. Evaluation of piroxantrone in women with metastatic breast cancer and failure on nonanthracycline chemotherapy. Cancer, 1994, 74(6), 1733-1738.
[http://dx.doi.org/10.1002/1097-0142(19940915)74:6<1733::AIDCNCR2820740615>3.0.CO;2-D] [PMID: 8082075]
[79]
Ravdin, P.M.; Green, S.; Doroshow, J.H.; Martino, S. Phase II trial of piroxantrone in metastatic breast cancer. A Southwest Oncology Group study. Invest. New Drugs, 1994, 12(4), 333-336.
[http://dx.doi.org/10.1007/BF00873050] [PMID: 7775136]
[80]
Sosman, J.A.; Flaherty, L.E.; Liu, P.Y.; Fletcher, W.; Thompson, J.A.; Hantel, A.; Sondak, V. A phase II trial of piroxantrone in disseminated malignant melanoma. A Southwest Oncology Group study. Invest. New Drugs, 1995, 13(1), 83-87.
[http://dx.doi.org/10.1007/BF02614226] [PMID: 7499114]
[81]
Malviya, V.K.; Liu, P.Y.; Goldberg, D.A.; Hantel, A.; O’Toole, R.V.; Roach, R.W.; Conrad, M.E.; Alberts, D.S. A phase II trial of piroxantrone in endometrial cancer: Southwest Oncology Group study 8918. Anticancer Drugs, 1996, 7(5), 527-530.
[http://dx.doi.org/10.1097/00001813-199607000-00006] [PMID: 8862719]
[82]
Hantel, A.; Tangen, C.; Gluck, W.L.; Macdonald, J.S. Phase II trial of piroxantrone in gastric carcinoma. A Southwest Oncology Group study. Invest. New Drugs, 1994, 12(2), 159-161.
[http://dx.doi.org/10.1007/BF00874449] [PMID: 7860236]
[83]
Pazdur, R.; Bready, B.; Scalzo, A.J.; Brandof, J.E.; Close, D.R.; Kolbye, S.; Winn, R.J. Phase II trial of piroxantrone in metastatic gastric adenocarcinoma. Invest. New Drugs, 1994, 12(3), 263-265.
[http://dx.doi.org/10.1007/BF00873970] [PMID: 7896547]
[84]
Gregg, R.W.C.; Kaizer, L.; Fine, S.; Gelmon, K.; Wielgosz, G.; Eisenhauer, E. A phase II trial of DuP 937 (Teloxantrone) in non-small cell lung cancer. A study of the NCIC Clinical Trials Group. Ann. Oncol., 1993, 4(8), 693-694.
[http://dx.doi.org/10.1093/oxfordjournals.annonc.a058627] [PMID: 8241002]
[85]
Maroun, J.A.; Skillings, J.; MacCormick, R.; Potvin, M.; Wielgosz, G.; Davidson, J.R.; Eisenhauer, E. phase-II study on dup-937 (TELOXANTRONE) in colorectal-carcinoma - a Canadian-National-Cancer-Institute Clinical-Trial Group-study. Invest. New Drugs, 1993, 11(2-3), 235-237.
[http://dx.doi.org/10.1007/BF00874163] [PMID: 8262739]
[86]
Shore, T.; Eisenhauer, E.; Quirt, I.; Belanger, K.; Lohmann, R.; Silver, H.; Wielgosz, G. A phase-II study of DUP-937 (TELOXANTRONE) in metastatic malignant-melanoma - a study of the National-Cancer-Institute-of-Canada Clinical-Trials Group (NCICCTG). Ann. Oncol., 1993, 4(8), 695-696.
[http://dx.doi.org/10.1093/oxfordjournals.annonc.a058628] [PMID: 8241003]
[87]
Mross, K.; Scheulen, M.E.; Licht, T.; Unger, C.; Richly, H.; Stern, A.C.; Kutz, K.; Camboni, M.G.; Barbieri, P.; Verdi, E.; Vincenzi, B.; Bernareggi, A. Phase I clinical and pharmacokinetic study of BBR 3576, a novel aza-anthrapyrazole, administered i.v. every 4 weeks in patients with advanced solid tumors: A phase I study group trial of the Central European Society of Anticancer-Drug Research (CESAR). Anticancer Drugs, 2004, 15(1), 15-22.
[http://dx.doi.org/10.1097/00001813-200401000-00003] [PMID: 15090738]
[88]
Hofheinz, R.D.; Porta, C.; Hartung, G.; Santoro, A.; Hanauske, A.R.; Kutz, K.; Stern, A.; Barbieri, P.; Verdi, E.; Hehlmann, R.; Hochhaus, A. BBR 3438, a novel 9-aza-anthrapyrazole, in patients with advanced gastric cancer: A phase II study group trial of the Central European Society of Anticancer-Drug Research (CESAR). Invest. New Drugs, 2005, 23(4), 363-368.
[http://dx.doi.org/10.1007/s10637-005-1445-z] [PMID: 16012796]
[89]
Supino, R.; Polizzi, D.; Pavesi, R.; Pratesi, G.; Guano, F.; Capranico, G.; Palumbo, M.; Sissi, C.; Richter, S.; Beggiolin, G.; Menta, E.; Pezzoni, G.; Spinelli, S.; Torriani, D.; Carenini, N.; Dal Bo, L.; Facchinetti, F.; Tortoreto, M.; Zunino, F. A novel 9-aza-anthrapyrazole effective against human prostatic carcinoma xenografts. Oncology, 2001, 61(3), 234-242.
[http://dx.doi.org/10.1159/000055380] [PMID: 11574780]
[90]
Krapcho, A.P.; Menta, E.; Oliva, A.; Di Domenico, R.; Fiocchi, L.; Maresch, M.E.; Gallagher, C.E.; Hacker, M.P.; Beggiolin, G.; Giuliani, F.C.; Pezzoni, G.; Spinelli, S. Synthesis and antitumor evaluation of 2,5-disubstituted-indazolo[4, 3-gh]isoquinolin-6(2H)-ones (9-aza-anthrapyrazoles). J. Med. Chem., 1998, 41(27), 5429-5444.
[http://dx.doi.org/10.1021/jm9804432] [PMID: 9876113]
[91]
Zalupski, M.M.; Philip, P.A.; LoRusso, P.; Shields, A.F. Phase II study of pyrazoloacridine in patients with advanced colorectal carcinoma. Cancer Chemother. Pharmacol., 1997, 40(3), 225-227.
[http://dx.doi.org/10.1007/s002800050650] [PMID: 9219505]
[92]
Plaxe, S.C.; Blessing, J.A.; Husseinzadeh, N.; Webster, K.D.; Rader, J.S.; Dunton, C.J. Phase II trial of pyrazoloacridine in patients with persistent or recurrent endometrial carcinoma: A Gynecologic Oncology Group Study. Gynecol. Oncol., 2002, 84(2), 241-244.
[http://dx.doi.org/10.1006/gyno.2001.6491] [PMID: 11812081]
[93]
Plaxe, S.C.; Blessing, J.A.; Olt, G.; Husseinzadah, N.; Lentz, S.S.; DeGeest, K.; Valea, F.A. A phase II trial of Pyrazoloacridine (PZA) in squamous cell carcinoma of the cervix: A Gynecologic Oncology Group study. Cancer Chemother. Pharmacol., 2002, 50(2), 151-154.
[http://dx.doi.org/10.1007/s00280-002-0470-2] [PMID: 12172981]
[94]
Bastasch, M.; Panella, T.J.; Kretzschmer, S.L.; Graham, D.; Mayo, M.; Williamson, S. Phase II trial of pyrazoloacridine in advanced non-small cell carcinoma of the lung--a Kansas Cancer Institute and Thompson Cancer Survival Center Study. Invest. New Drugs, 2002, 20(3), 339-342.
[http://dx.doi.org/10.1023/A:1016293527755] [PMID: 12201497]
[95]
De Souza, P.L.; North, S.; Bolger, G.B.; Spiridonidis, H.; Lim, R.; Khoo, K.S.; Phillips, J.; Fujimori, M. A phase II trial of weekly i.v. KW-2170 in advanced castrate-resistant prostate cancer. Asia Pac. J. Clin. Oncol., 2010, 6(4), 292-297.
[http://dx.doi.org/10.1111/j.1743-7563.2010.01328.x] [PMID: 21114779]
[96]
Shields, A.F.; Philip, P.A.; LoRusso, P.M.; Ferris, A.M.; Zalupski, M.M. Phase II study of CI-958 in colorectal cancer. Cancer Chemother. Pharmacol., 1999, 43(2), 162-164.
[http://dx.doi.org/10.1007/s002800050878] [PMID: 9923823]
[97]
Hoff, P.M.; Ellerton, J.A.; Dakhil, S.R.; Winn, R.J.; Abbruzzese, J.L.; Pazdur, R. Phase II study of intravenous CI-958 in metastatic colorectal adenocarcinoma. Am. J. Clin. Oncol., 2000, 23(6), 602-604.
[http://dx.doi.org/10.1097/00000421-200012000-00015] [PMID: 11202806]
[98]
Woolley, P.V.; Freiha, F.S.; Smith, D.C.; Carlson, L.; Hofacker, J.; Quinn, N.; Grove, W.; Trump, D.L. A phase II trial of CI-958 in patients with hormone-refractory prostate cancer. Cancer Chemother. Pharmacol., 1999, 44(6), 511-517.
[http://dx.doi.org/10.1007/s002800051126] [PMID: 10550573]
[99]
Philip Kuebler, J.; Moore, T.; Pritchard, J.; Kraut, E. Phase II study of CI-958 in patients with hormone refractory prostate carcinoma. Invest. New Drugs, 2004, 22(2), 181-184.
[http://dx.doi.org/10.1023/B:DRUG.0000011795.82694.80] [PMID: 14739667]
[100]
Walsh, C. Targeted therapy for ovarian cancer: The rapidly evolving landscape of PARP inhibitor use. Minerva Ginecol., 2018, 70(2), 150-170.
[PMID: 28994564]
[101]
Franzese, E.; Centonze, S.; Diana, A.; Carlino, F.; Guerrera, L.P.; Di Napoli, M.; De Vita, F.; Pignata, S.; Ciardiello, F.; Orditura, M. PARP inhibitors in ovarian cancer. Cancer Treat. Rev., 2019, 73, 1-9.
[http://dx.doi.org/10.1016/j.ctrv.2018.12.002] [PMID: 30543930]
[102]
Scott, L.J. Niraparib: First global approval. Drugs, 2017, 77(9), 1029-1034.
[http://dx.doi.org/10.1007/s40265-017-0752-y] [PMID: 28474297]
[103]
O’Malley, D.M. New Therapies for ovarian cancer. J. Natl. Compr. Canc. Netw., 2019, 17(5.5), 619-621.
[PMID: 31117037]
[104]
Essel, K.G.; Moore, K.N. Niraparib for the treatment of ovarian cancer. Expert Rev. Anticancer Ther., 2018, 18(8), 727-733.
[http://dx.doi.org/10.1080/14737140.2018.1490180] [PMID: 29911447]
[105]
Ethier, J-L.; Lheureux, S.; Oza, A.M. The role of niraparib for the treatment of ovarian cancer. Future Oncol., 2018, 14(25), 2565-2577.
[http://dx.doi.org/10.2217/fon-2018-0101] [PMID: 29856239]
[106]
Kanjanapan, Y.; Lheureux, S.; Oza, A.M. Niraparib for the treatment of ovarian cancer. Expert Opin. Pharmacother., 2017, 18(6), 631-640.
[http://dx.doi.org/10.1080/14656566.2017.1297423] [PMID: 28299955]
[107]
Mirza, M.R.; Monk, B.J.; Herrstedt, J.; Oza, A.M.; Mahner, S.; Redondo, A.; Fabbro, M.; Ledermann, J.A.; Lorusso, D.; Vergote, I.; Ben-Baruch, N.E.; Marth, C.; Mądry, R.; Christensen, R.D.; Berek, J.S.; Dørum, A.; Tinker, A.V.; du Bois, A.; González-Martín, A.; Follana, P.; Benigno, B.; Rosenberg, P.; Gilbert, L.; Rimel, B.J.; Buscema, J.; Balser, J.P.; Agarwal, S.; Matulonis, U.A. ENGOT-OV16/NOVA Investigators. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N. Engl. J. Med., 2016, 375(22), 2154-2164.
[http://dx.doi.org/10.1056/NEJMoa1611310] [PMID: 27717299]
[108]
Heo, Y-A.; Duggan, S.T. Niraparib: A review in ovarian cancer. Target. Oncol., 2018, 13(4), 533-539.
[http://dx.doi.org/10.1007/s11523-018-0582-1] [PMID: 30073633]
[109]
Oza, A.M.; Matulonis, U.A.; Malander, S.; Hudgens, S.; Sehouli, J.; Del Campo, J.M.; Berton-Rigaud, D.; Banerjee, S.; Scambia, G.; Berek, J.S.; Lund, B.; Tinker, A.V.; Hilpert, F.; Vázquez, I.P.; D’Hondt, V.; Benigno, B.; Provencher, D.; Buscema, J.; Agarwal, S.; Mirza, M.R. Quality of life in patients with recurrent ovarian cancer treated with niraparib versus placebo (ENGOTOV16/NOVA): Results from a double-blind, phase 3, randomised controlled trial. Lancet Oncol., 2018, 19(8), 1117-1125.
[http://dx.doi.org/10.1016/S1470-2045(18)30333-4] [PMID: 30026000]
[110]
Zhao, G.; Li, W.Y.; Chen, D.; Henry, J.R.; Li, H-Y.; Chen, Z.; Zia-Ebrahimi, M.; Bloem, L.; Zhai, Y.; Huss, K.; Peng, S.B.; McCann, D.J. A novel, selective inhibitor of fibroblast growth factor receptors that shows a potent broad spectrum of antitumor activity in several tumor xenograft models. Mol. Cancer Ther., 2011, 10(11), 2200-2210.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0306] [PMID: 21900693]
[111]
Porta, R.; Borea, R.; Coelho, A.; Khan, S.; Araújo, A.; Reclusa, P.; Franchina, T.; Van Der Steen, N.; Van Dam, P.; Ferri, J.; Sirera, R.; Naing, A.; Hong, D.; Rolfo, C. FGFR a promising druggable target in cancer: Molecular biology and new drugs. Crit. Rev. Oncol. Hematol., 2017, 113, 256-267.
[http://dx.doi.org/10.1016/j.critrevonc.2017.02.018] [PMID: 28427515]
[112]
Michael, M.; Bang, Y-J.; Park, Y.S.; Kang, Y-K.; Kim, T.M.; Hamid, O.; Thornton, D.; Tate, S.C.; Raddad, E.; Tie, J. A Phase 1 study of LY2874455, an oral selective pan-FGFR inhibitor, in patients with advanced cancer. Target. Oncol., 2017, 12(4), 463-474.
[http://dx.doi.org/10.1007/s11523-017-0502-9] [PMID: 28589492]
[113]
Wan, Y.; He, S.; Li, W.; Tang, Z. Indazole derivatives: Promising anti-tumor agents. Anticancer. Agents Med. Chem., 2018, 18(9), 1228-1234.
[http://dx.doi.org/10.2174/1871520618666180510113822] [PMID: 29745343]
[114]
Turner, L.D.; Summers, A.J.; Johnson, L.O.; Knowles, M.A.; Fishwick, C.W.G. Identification of an indazole-based pharmacophore for the inhibition of FGFR kinases using fragment-Led de Novo design. ACS Med. Chem. Lett., 2017, 8(12), 1264-1268.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00349] [PMID: 29259745]
[115]
Joseph, J.D.; Darimont, B.; Zhou, W.; Arrazate, A.; Young, A.; Ingalla, E.; Walter, K.; Blake, R.A.; Nonomiya, J.; Guan, Z.; Kategaya, L.; Govek, S.P.; Lai, A.G.; Kahraman, M.; Brigham, D.; Sensintaffar, J.; Lu, N.; Shao, G.; Qian, J.; Grillot, K.; Moon, M.; Prudente, R.; Bischoff, E.; Lee, K-J.; Bonnefous, C.; Douglas, K.L.; Julien, J.D.; Nagasawa, J.Y.; Aparicio, A.; Kaufman, J.; Haley, B.; Giltnane, J.M.; Wertz, I.E.; Lackner, M.R.; Nannini, M.A.; Sampath, D.; Schwarz, L.; Manning, H.C.; Tantawy, M.N.; Arteaga, C.L.; Heyman, R.A.; Rix, P.J.; Friedman, L.; Smith, N.D.; Metcalfe, C.; Hager, J.H. Correction: The selective estrogen receptor downregulator GDC-0810 is efficacious in diverse models of ER+ breast cancer. eLife, 2019, 8, 8.
[http://dx.doi.org/10.7554/eLife.44851] [PMID: 30614786]
[116]
Lai, A.; Kahraman, M.; Govek, S.; Nagasawa, J.; Bonnefous, C.; Julien, J.; Douglas, K.; Sensintaffar, J.; Lu, N.; Lee, K.J.; Aparicio, A.; Kaufman, J.; Qian, J.; Shao, G.; Prudente, R.; Moon, M.J.; Joseph, J.D.; Darimont, B.; Brigham, D.; Grillot, K.; Heyman, R.; Rix, P.J.; Hager, J.H.; Smith, N.D. Identification of GDC-0810 (ARN-810), an orally bioavailable Selective Estrogen Receptor Degrader (SERD) that demonstrates robust activity in tamoxifen-resistant breast cancer xenografts. J. Med. Chem., 2015, 58(12), 4888-4904.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00054] [PMID: 25879485]
[117]
Rioux, N.; Smith, S.; Korpal, M.; O’Shea, M.; Prajapati, S.; Zheng, G.Z.; Warmuth, M.; Smith, P.G. Nonclinical pharmacokinetics and in vitro metabolism of H3B-6545, a novel Selective ERα Covalent Antagonist (SERCA). Cancer Chemother. Pharmacol., 2019, 83(1), 151-160.
[http://dx.doi.org/10.1007/s00280-018-3716-3] [PMID: 30386887]
[118]
Ge, Y.; Zhang, Y.; Li, X.; Yu, Y.; Liu, Q. Pharmacokinetics and metabolism of H3B-6545, a selective estrogen receptor covalent antagonist, in dog plasma by liquid chromatography combined with electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal., 2019, 172, 189-199.
[http://dx.doi.org/10.1016/j.jpba.2019.04.045] [PMID: 31055184]
[119]
Folkes, A.J.; Ahmadi, K.; Alderton, W.K.; Alix, S.; Baker, S.J.; Box, G.; Chuckowree, I.S.; Clarke, P.A.; Depledge, P.; Eccles, S.A.; Friedman, L.S.; Hayes, A.; Hancox, T.C.; Kugendradas, A.; Lensun, L.; Moore, P.; Olivero, A.G.; Pang, J.; Patel, S.; Pergl-Wilson, G.H.; Raynaud, F.I.; Robson, A.; Saghir, N.; Salphati, L.; Sohal, S.; Ultsch, M.H.; Valenti, M.; Wallweber, H.J.A.; Wan, N.C.; Wiesmann, C.; Workman, P.; Zhyvoloup, A.; Zvelebil, M.J.; Shuttleworth, S.J. The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J. Med. Chem., 2008, 51(18), 5522-5532.
[http://dx.doi.org/10.1021/jm800295d] [PMID: 18754654]
[120]
O’Brien, C.; Wallin, J.J.; Sampath, D.; GuhaThakurta, D.; Savage, H.; Punnoose, E.A.; Guan, J.; Berry, L.; Prior, W.W.; Amler, L.C.; Belvin, M.; Friedman, L.S.; Lackner, M.R. Predictive biomarkers of sensitivity to the phosphatidylinositol 3′ kinase inhibitor GDC-0941 in breast cancer preclinical models. Clin. Cancer Res., 2010, 16(14), 3670-3683.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2828] [PMID: 20453058]
[121]
Sarker, D.; Ang, J.E.; Baird, R.; Kristeleit, R.; Shah, K.; Moreno, V.; Clarke, P.A.; Raynaud, F.I.; Levy, G.; Ware, J.A.; Mazina, K.; Lin, R.; Wu, J.; Fredrickson, J.; Spoerke, J.M.; Lackner, M.R.; Yan, Y.; Friedman, L.S.; Kaye, S.B.; Derynck, M.K.; Workman, P.; de Bono, J.S. First-in-human phase I study of pictilisib (GDC-0941), a potent pan-class I Phosphatidylinositol-3-Kinase (PI3K) inhibitor, in patients with advanced solid tumors. Clin. Cancer Res., 2015, 21(1), 77-86.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0947] [PMID: 25370471]
[122]
Schmid, P.; Pinder, S.E.; Wheatley, D.; Macaskill, J.; Zammit, C.; Hu, J.; Price, R.; Bundred, N.; Hadad, S.; Shia, A.; Sarker, S-J.; Lim, L.; Gazinska, P.; Woodman, N.; Korbie, D.; Trau, M.; Mainwaring, P.; Gendreau, S.; Lackner, M.R.; Derynck, M.; Wilson, T.R.; Butler, H.; Earl, G.; Parker, P.; Purushotham, A.; Thompson, A. Phase II randomized preoperative window-of-opportunity study of the PI3K inhibitor pictilisib plus anastrozole compared with anastrozole alone in patients with estrogen receptor-positive breast cancer. J. Clin. Oncol., 2016, 34(17), 1987-1994.
[http://dx.doi.org/10.1200/JCO.2015.63.9179] [PMID: 26976426]
[123]
Krop, I.E.; Mayer, I.A.; Ganju, V.; Dickler, M.; Johnston, S.; Morales, S.; Yardley, D.A.; Melichar, B.; Forero-Torres, A.; Lee, S.C.; de Boer, R.; Petrakova, K.; Vallentin, S.; Perez, E.A.; Piccart, M.; Ellis, M.; Winer, E.; Gendreau, S.; Derynck, M.; Lackner, M.; Levy, G.; Qiu, J.; He, J.; Schmid, P. Pictilisib for oestrogen receptor-positive, aromatase inhibitor-resistant, advanced or metastatic breast cancer (FERGI): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol., 2016, 17(6), 811-821.
[http://dx.doi.org/10.1016/S1470-2045(16)00106-6] [PMID: 27155741]
[124]
Shih, K-C.; Lin, C-Y.; Chi, H-C.; Hwang, C-S.; Chen, T-S.; Tang, C-Y.; Hsiao, N-W. Design of novel FLT-3 inhibitors based on dual-layer 3D-QSAR model and fragment-based compounds in silico. J. Chem. Inf. Model., 2012, 52(1), 146-155.
[http://dx.doi.org/10.1021/ci200434f] [PMID: 22142286]
[125]
Shiotsu, Y.; Kiyoi, H.; Ishikawa, Y.; Tanizaki, R.; Shimizu, M.; Umehara, H.; Ishii, K.; Mori, Y.; Ozeki, K.; Minami, Y.; Abe, A.; Maeda, H.; Akiyama, T.; Kanda, Y.; Sato, Y.; Akinaga, S.; Naoe, T. KW-2449, a novel multikinase inhibitor, suppresses the growth of leukemia cells with FLT3 mutations or T315I-mutated BCR/ABL translocation. Blood, 2009, 114(8), 1607-1617.
[http://dx.doi.org/10.1182/blood-2009-01-199307] [PMID: 19541823]
[126]
Pratz, K.W.; Cortes, J.; Roboz, G.J.; Rao, N.; Arowojolu, O.; Stine, A.; Shiotsu, Y.; Shudo, A.; Akinaga, S.; Small, D.; Karp, J.E.; Levis, M. A pharmacodynamic study of the FLT3 inhibitor KW-2449 yields insight into the basis for clinical response. Blood, 2009, 113(17), 3938-3946.
[http://dx.doi.org/10.1182/blood-2008-09-177030] [PMID: 19029442]
[127]
Ma, F.Y.; Flanc, R.S.; Tesch, G.H.; Han, Y.; Atkins, R.C.; Bennett, B.L.; Friedman, G.C.; Fan, J-H.; Nikolic-Paterson, D.J. A pathogenic role for c-Jun amino-terminal kinase signaling in renal fibrosis and tubular cell apoptosis. J. Am. Soc. Nephrol., 2007, 18(2), 472-484.
[http://dx.doi.org/10.1681/ASN.2006060604] [PMID: 17202416]
[128]
Flanc, R.S.; Ma, F.Y.; Tesch, G.H.; Han, Y.; Atkins, R.C.; Bennett, B.L.; Friedman, G.C.; Fan, J.H.; Nikolic-Paterson, D.J. A pathogenic role for JNK signaling in experimental anti-GBM glomerulonephritis. Kidney Int., 2007, 72(6), 698-708.
[http://dx.doi.org/10.1038/sj.ki.5002404] [PMID: 17597698]
[129]
Bachegowda, L.; Morrone, K.; Winski, S.L.; Mantzaris, I.; Bartenstein, M.; Ramachandra, N.; Giricz, O.; Sukrithan, V.; Nwankwo, G.; Shahnaz, S.; Bhagat, T.; Bhattacharyya, S.; Assal, A.; Shastri, A.; Gordon-Mitchell, S.; Pellagatti, A.; Boultwood, J.; Schinke, C.; Yu, Y.; Guha, C.; Rizzi, J.; Garrus, J.; Brown, S.; Wollenberg, L.; Hogeland, G.; Wright, D.; Munson, M.; Rodriguez, M.; Gross, S.; Chantry, D.; Zou, Y.; Platanias, L.; Burgess, L.E.; Pradhan, K.; Steidl, U.; Verma, A. Pexmetinib: A novel dual inhibitor of Tie2 and p38 MAPK with efficacy in preclinical models of myelodysplastic syndromes and acute myeloid leukemia. Cancer Res., 2016, 76(16), 4841-4849.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3062] [PMID: 27287719]
[130]
Garcia-Manero, G.; Khoury, H.J.; Jabbour, E.; Lancet, J.; Winski, S.L.; Cable, L.; Rush, S.; Maloney, L.; Hogeland, G.; Ptaszynski, M.; Calvo, M.C.; Bohannan, Z.; List, A.; Kantarjian, H.; Komrokji, R. A phase I study of oral ARRY-614, a p38 MAPK/Tie2 dual inhibitor, in patients with low or intermediate-1 risk myelodysplastic syndromes. Clin. Cancer Res., 2015, 21(5), 985-994.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1765] [PMID: 25480830]
[131]
Wong, T.W.; Lee, F.Y.; Yu, C.; Luo, F.R.; Oppenheimer, S.; Zhang, H.; Smykla, R.A.; Mastalerz, H.; Fink, B.E.; Hunt, J.T.; Gavai, A.V.; Vite, G.D. Preclinical antitumor activity of BMS-599626, a pan-HER kinase inhibitor that inhibits HER1/HER2 homodimer and heterodimer signaling. Clin. Cancer Res., 2006, 12(20 Pt 1), 6186-6193.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0642] [PMID: 17062696]
[132]
Soria, J.C.; Cortes, J.; Massard, C.; Armand, J.P.; De Andreis, D.; Ropert, S.; Lopez, E.; Catteau, A.; James, J.; Marier, J.F.; Beliveau, M.; Martell, R.E.; Baselga, J. Phase I safety, pharmacokinetic and pharmacodynamic trial of BMS-599626 (AC480), an oral pan-HER receptor tyrosine kinase inhibitor, in patients with advanced solid tumors. Ann. Oncol., 2012, 23(2), 463-471.
[http://dx.doi.org/10.1093/annonc/mdr137] [PMID: 21576284]
[133]
Laufer, R.; Forrest, B.; Li, S-W.; Liu, Y.; Sampson, P.; Edwards, L.; Lang, Y.; Awrey, D.E.; Mao, G.; Plotnikova, O.; Leung, G.; Hodgson, R.; Beletskaya, I.; Mason, J.M.; Luo, X.; Wei, X.; Yao, Y.; Feher, M.; Ban, F.; Kiarash, R.; Green, E.; Mak, T.W.; Pan, G.; Pauls, H.W. The discovery of PLK4 inhibitors: (E)-3-((1H-Indazol-6-yl)methylene)indolin-2-ones as novel antiproliferative agents. J. Med. Chem., 2013, 56(15), 6069-6087.
[http://dx.doi.org/10.1021/jm400380m] [PMID: 23829549]
[134]
Veitch, Z.W.; Cescon, D.W.; Denny, T.; Yonemoto, L-M.; Fletcher, G.; Brokx, R.; Sampson, P.; Li, S-W.; Pugh, T.J.; Bruce, J.; Bray, M.R.; Slamon, D.J.; Mak, T.W.; Wainberg, Z.A.; Bedard, P.L. Safety and tolerability of CFI-400945, a first-in-class, selective PLK4 inhibitor in advanced solid tumours: A phase 1 dose-escalation trial. Br. J. Cancer, 2019, 121(4), 318-324.
[http://dx.doi.org/10.1038/s41416-019-0517-3] [PMID: 31303643]
[135]
Lohse, I.; Mason, J.; Cao, P.M.; Pintilie, M.; Bray, M.; Hedley, D.W. Activity of the novel polo-like kinase 4 inhibitor CFI-400945 in pancreatic cancer patient-derived xenografts. Oncotarget, 2017, 8(2), 3064-3071.
[http://dx.doi.org/10.18632/oncotarget.13619] [PMID: 27902970]
[136]
Malumbres, M.; Barbacid, M. Cell cycle, CDKs and cancer: A changing paradigm. Nat. Rev. Cancer, 2009, 9(3), 153-166.
[http://dx.doi.org/10.1038/nrc2602] [PMID: 19238148]
[137]
Dickson, M.A.; Schwartz, G.K. Development of cell-cycle inhibitors for cancer therapy. Curr. Oncol., 2009, 16(2), 36-43.
[PMID: 19370178]
[138]
da Costa, A. PARP inhibitors in ovarian cancer. N. Engl. J. Med., 2020, 382(16), 1572-1573.
[http://dx.doi.org/10.1056/NEJMc2000644] [PMID: 32294361]
[139]
Trondl, R.; Heffeter, P.; Kowol, C.R.; Jakupec, M.A.; Berger, W.; Keppler, B.K. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem. Sci. (Camb.), 2014, 5(8), 2925-2932.
[http://dx.doi.org/10.1039/C3SC53243G]
[140]
Burris, H.A.; Bakewell, S.; Bendell, J.C.; Infante, J.; Jones, S.F.; Spigel, D.R.; Weiss, G.J.; Ramanathan, R.K.; Ogden, A.; Von Hoff, D. Safety and activity of IT-139, a ruthenium-based compound, in patients with advanced solid tumours: A first-in-human, open-label, dose-escalation phase I study with expansion cohort. ESMO Open, 2017, 1(6), e000154.
[http://dx.doi.org/10.1136/esmoopen-2016-000154] [PMID: 28848672]
[141]
Bijelic, A.; Theiner, S.; Keppler, B.K.; Rompel, A. X-ray structure analysis of indazolium trans-[tetrachlorobis(1H-indazole) ruthenate(III)] (KP1019) bound to human serum albumin reveals two ruthenium binding sites and provides insights into the drug binding mechanism. J. Med. Chem., 2016, 59(12), 5894-5903.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00600] [PMID: 27196130]
[142]
Heffeter, P.; Atil, B.; Kryeziu, K.; Groza, D.; Koellensperger, G.; Körner, W.; Jungwirth, U.; Mohr, T.; Keppler, B.K.; Berger, W. The ruthenium compound KP1339 potentiates the anticancer activity of sorafenib in vitro and in vivo. Eur. J. Cancer, 2013, 49(15), 3366-3375.
[http://dx.doi.org/10.1016/j.ejca.2013.05.018] [PMID: 23790465]
[143]
Boga, S.B.; Deng, Y.; Zhu, L.; Nan, Y.; Cooper, A.B.; Shipps, G.W., Jr; Doll, R.; Shih, N-Y.; Zhu, H.; Sun, R.; Wang, T.; Paliwal, S.; Tsui, H-C.; Gao, X.; Yao, X.; Desai, J.; Wang, J.; Alhassan, A.B.; Kelly, J.; Patel, M.; Muppalla, K.; Gudipati, S.; Zhang, L-K.; Buevich, A.; Hesk, D.; Carr, D.; Dayananth, P.; Black, S.; Mei, H.; Cox, K.; Sherborne, B.; Hruza, A.W.; Xiao, L.; Jin, W.; Long, B.; Liu, G.; Taylor, S.A.; Kirschmeier, P.; Windsor, W.T.; Bishop, R.; Samatar, A.A. MK-8353: Discovery of an orally bioavailable dual mechanism ERK inhibitor for oncology. ACS Med. Chem. Lett., 2018, 9(7), 761-767.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00220] [PMID: 30034615]
[144]
Moschos, S.J.; Sullivan, R.J.; Hwu, W-J.; Ramanathan, R.K.; Adjei, A.A.; Fong, P.C.; Shapira-Frommer, R.; Tawbi, H.A.; Rubino, J.; Rush, T.S., III; Zhang, D.; Miselis, N.R.; Samatar, A.A.; Chun, P.; Rubin, E.H.; Schiller, J.; Long, B.J.; Dayananth, P.; Carr, D.; Kirschmeier, P.; Bishop, W.R.; Deng, Y.; Cooper, A.; Shipps, G.W.; Moreno, B.H.; Robert, L.; Ribas, A.; Flaherty, K.T. Development of MK-8353, an orally administered ERK1/2 inhibitor, in patients with advanced solid tumors. JCI Insight, 2018, 3(4), 92352.
[http://dx.doi.org/10.1172/jci.insight.92352] [PMID: 29467321]
[145]
Roskoski, R., Jr. Targeting ERK1/2 protein-serine/threonine kinases in human cancers. Pharmacol. Res., 2019, 142, 151-168.
[http://dx.doi.org/10.1016/j.phrs.2019.01.039] [PMID: 30794926]
[146]
Huang, J.; Dey, R.; Wang, Y.; Jakoncic, J.; Kurinov, I.; Huang, XY. Structural insights into the induced-fit inhibition of Fascin by a small-molecule inhibitor. J. Mol. Biol., 2018, 430(9), 1324-1335.
[http://dx.doi.org/10.1016/j.jmb.2018.03.009] [PMID: 29573988]
[147]
Han, S.; Huang, J.; Liu, B.; Xing, B.; Bordeleau, F.; Reinhart-King, C.A.; Li, W.; Zhang, J.J.; Huang, X-Y. Improving fascin inhibitors to block tumor cell migration and metastasis. Mol. Oncol., 2016, 10(7), 966-980.
[http://dx.doi.org/10.1016/j.molonc.2016.03.006] [PMID: 27071719]
[148]
Cazzola, M.; Coppola, A.; Rogliani, P.; Matera, M.G. Novel glucocorticoid receptor agonists in the treatment of asthma. Expert Opin. Investig. Drugs, 2015, 24(11), 1473-1482.
[http://dx.doi.org/10.1517/13543784.2015.1078310] [PMID: 26293110]
[149]
Edman, K.; Ahlgren, R.; Bengtsson, M.; Bladh, H.; Bäckström, S.; Dahmén, J.; Henriksson, K.; Hillertz, P.; Hulikal, V.; Jerre, A.; Kinchin, L.; Kåse, C.; Lepistö, M.; Mile, I.; Nilsson, S.; Smailagic, A.; Taylor, J.; Tjörnebo, A.; Wissler, L.; Hansson, T. The discovery of potent and selective non-steroidal glucocorticoid receptor modulators, suitable for inhalation. Bioorg. Med. Chem. Lett., 2014, 24(11), 2571-2577.
[http://dx.doi.org/10.1016/j.bmcl.2014.03.070] [PMID: 24755427]
[150]
Mardh, C.K.; Gustavsson, M.; Smailagic, A. Pharmacological characterization of Azd5423, an inhaled non-steroidal agonist of the glucocortiocoid receptor. Am. J. Respir. Crit. Care Med., 2015, 191, A5656.
[151]
Hemmerling, M.; Nilsson, S.; Edman, K.; Eirefelt, S.; Russell, W.; Hendrickx, R.; Johnsson, E.; Kärrman Mårdh, C.; Berger, M.; Rehwinkel, H.; Abrahamsson, A.; Dahmén, J.; Eriksson, A.R.; Gabos, B.; Henriksson, K.; Hossain, N.; Ivanova, S.; Jansson, A-H.; Jensen, T.J.; Jerre, A.; Johansson, H.; Klingstedt, T.; Lepistö, M.; Lindsjö, M.; Mile, I.; Nikitidis, G.; Steele, J.; Tehler, U.; Wissler, L.; Hansson, T. Selective nonsteroidal glucocorticoid receptor modulators for the inhaled treatment of pulmonary diseases. J. Med. Chem., 2017, 60(20), 8591-8605.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01215] [PMID: 28937774]
[152]
Bonecchi, R.; Bianchi, G.; Bordignon, P.P.; D’Ambrosio, D.; Lang, R.; Borsatti, A.; Sozzani, S.; Allavena, P.; Gray, P.A.; Mantovani, A.; Sinigaglia, F. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med., 1998, 187(1), 129-134.
[http://dx.doi.org/10.1084/jem.187.1.129] [PMID: 9419219]
[153]
Purandare, A.V.; Somerville, J.E. Antagonists of CCR4 as immunomodulatory agents. Curr. Top. Med. Chem., 2006, 6(13), 1335-1344.
[http://dx.doi.org/10.2174/15680266106061335] [PMID: 16918452]
[154]
Procopiou, P.A.; Ford, A.J.; Graves, R.H.; Hall, D.A.; Hodgson, S.T.; Lacroix, Y.M.L.; Needham, D.; Slack, R.J. Lead optimisation of the N1 substituent of a novel series of indazole arylsulfonamides as CCR4 antagonists and identification of a candidate for clinical investigation. Bioorg. Med. Chem. Lett., 2012, 22(8), 2730-2733.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.104] [PMID: 22437117]
[155]
Cantley, L.C. The phosphoinositide 3-kinase pathway. Science, 2002, 296(5573), 1655-1657.
[http://dx.doi.org/10.1126/science.296.5573.1655] [PMID: 12040186]
[156]
Vanhaesebroeck, B.; Guillermet-Guibert, J.; Graupera, M.; Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol., 2010, 11(5), 329-341.
[http://dx.doi.org/10.1038/nrm2882] [PMID: 20379207]
[157]
Rowan, W.C.; Smith, J.L.; Affleck, K.; Amour, A. Targeting phosphoinositide 3-kinase δ for allergic asthma. Biochem. Soc. Trans., 2012, 40(1), 240-245.
[http://dx.doi.org/10.1042/BST20110665] [PMID: 22260698]
[158]
Sriskantharajah, S.; Hamblin, N.; Worsley, S.; Calver, A.R.; Hessel, E.M.; Amour, A. Targeting phosphoinositide 3-kinase delta for the treatment of respiratory diseases. Ann. NY Acad. Sci., 2013, 1280, 35-39.
[159]
Down, K.; Amour, A.; Baldwin, I.R.; Cooper, A.W.J.; Deakin, A.M.; Felton, L.M.; Guntrip, S.B.; Hardy, C.; Harrison, Z.A.; Jones, K.L.; Jones, P.; Keeling, S.E.; Le, J.; Livia, S.; Lucas, F.; Lunniss, C.J.; Parr, N.J.; Robinson, E.; Rowland, P.; Smith, S.; Thomas, D.A.; Vitulli, G.; Washio, Y.; Hamblin, J.N. Optimization of novel indazoles as highly potent and selective inhibitors of phosphoinositide 3-kinase δ for the treatment of respiratory disease. J. Med. Chem., 2015, 58(18), 7381-7399.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00767] [PMID: 26301626]
[160]
Edney, D.; Hulcoop, D.G.; Leahy, J.H.; Vernon, L.E.; Wipperman, M.D.; Bream, R.N.; Webb, M.R. Development of flexible and scalable routes to two phosphatidinylinositol-3-kinase delta inhibitors via a common intermediate approach. Org. Process Res. Dev., 2018, 22(3), 368-376.
[http://dx.doi.org/10.1021/acs.oprd.8b00006]
[161]
Lee, J.H.; Zheng, Y.; von Bornstadt, D.; Wei, Y.; Balcioglu, A.; Daneshmand, A.; Yalcin, N.; Yu, E.; Herisson, F.; Atalay, Y.B.; Kim, M.H.; Ahn, Y-J.; Balkaya, M.; Sweetnam, P.; Schueller, O.; Poyurovsky, M.V.; Kim, H-H.; Lo, E.H.; Furie, K.L.; Ayata, C. Selective ROCK2 inhibition in focal cerebral ischemia. Ann. Clin. Transl. Neurol., 2014, 1(1), 2-14.
[http://dx.doi.org/10.1002/acn3.19] [PMID: 24466563]
[162]
Zanin-Zhorov, A.; Weiss, J.M.; Nyuydzefe, M.S.; Chen, W.; Scher, J.U.; Mo, R.; Depoil, D.; Rao, N.; Liu, B.; Wei, J.; Lucas, S.; Koslow, M.; Roche, M.; Schueller, O.; Weiss, S.; Poyurovsky, M.V.; Tonra, J.; Hippen, K.L.; Dustin, M.L.; Blazar, B.R.; Liu, C.J.; Waksal, S.D. Selective oral ROCK2 inhibitor down-regulates IL-21 and IL-17 secretion in human T cells via STAT3-dependent mechanism. Proc. Natl. Acad. Sci. USA, 2014, 111(47), 16814-16819.
[http://dx.doi.org/10.1073/pnas.1414189111] [PMID: 25385601]
[163]
Diep, D.T.V.; Duong, K.H.M.; Choi, H.; Jun, H-S.; Chun, K-H. KD025 (SLx-2119) suppresses adipogenesis at intermediate stage in human adipose-derived stem cells. Adipocyte, 2019, 8(1), 114-124.
[http://dx.doi.org/10.1080/21623945.2019.1590929] [PMID: 30860936]
[164]
Fanaki, N.H.; el-Nakeeb, M.A. Antimicrobial activity of benzydamine, a non-steroid anti-inflammatory agent. J. Chemother., 1992, 4(6), 347-352.
[http://dx.doi.org/10.1080/1120009X.1992.11739190] [PMID: 1287137]
[165]
Turnbull, R.S. Benzydamine hydrochloride (Tantum) in the management of oral inflammatory conditions. J. Can. Dent. Assoc., 1995, 61(2), 127-134.
[PMID: 7600413]
[166]
Gómez-López, L.; Hernández-Rodríguez, J.; Pou, J.; Nogué, S. Acute overdose due to benzydamine. Hum. Exp. Toxicol., 1999, 18(7), 471-473.
[http://dx.doi.org/10.1191/096032799678840264] [PMID: 10454080]
[167]
Acar, Y.A.; Kalkan, M.; Cetin, R.; Cevik, E.; Cınar, O. Acute psychotic symptoms due to benzydamine hydrochloride abuse with alcohol. Case Rep. Psychiatry, 2014, 2014, 290365-290365.
[http://dx.doi.org/10.1155/2014/290365] [PMID: 25343054]
[168]
DeLucca, G.V. EricksonViitanen, S.; Lam, P.Y.S. Cyclic HIV protease inhibitors capable of displacing the active site structural water molecule. Drug Discov. Today, 1997, 2(1), 6-18.
[http://dx.doi.org/10.1016/S1359-6446(96)10048-9]
[169]
Chrusciel, R.A.; Romines, K.R. Recent developments in HIV protease inhibitor research. Expert Opin. Ther. Pat., 1997, 7(2), 111-121.
[http://dx.doi.org/10.1517/13543776.7.2.111]
[170]
Rodgers, J.D.; Lam, P.Y.S.; Johnson, B.L.; Wang, H.; Li, R.; Ru, Y.; Ko, S.S.; Seitz, S.P.; Trainor, G.L.; Anderson, P.S.; Klabe, R.M.; Bacheler, L.T.; Cordova, B.; Garber, S.; Reid, C.; Wright, M.R.; Chang, C.H.; Erickson-Viitanen, S. Design and selection of DMP 850 and DMP 851: The next generation of cyclic urea HIV protease inhibitors. Chem. Biol., 1998, 5(10), 597-608.
[http://dx.doi.org/10.1016/S1074-5521(98)90117-X] [PMID: 9818151]
[171]
Gomez, R.; Jolly, S.J.; Williams, T.; Vacca, J.P.; Torrent, M.; McGaughey, G.; Lai, M-T.; Felock, P.; Munshi, V.; Distefano, D.; Flynn, J.; Miller, M.; Yan, Y.; Reid, J.; Sanchez, R.; Liang, Y.; Paton, B.; Wan, B-L.; Anthony, N. Design and synthesis of conformationally constrained inhibitors of non-nucleoside reverse transcriptase. J. Med. Chem., 2011, 54(22), 7920-7933.
[http://dx.doi.org/10.1021/jm2010173] [PMID: 21985673]
[172]
Lu, M.; Felock, P.J.; Munshi, V.; Hrin, R.C.; Wang, Y-J.; Yan, Y.; Munshi, S.; McGaughey, G.B.; Gomez, R.; Anthony, N.J.; Williams, T.M.; Grobler, J.A.; Hazuda, D.J.; McKenna, P.M.; Miller, M.D.; Lai, M-T. Antiviral activity and in vitro mutation development pathways of MK-6186, a novel nonnucleoside reverse transcriptase inhibitor. Antimicrob. Agents Chemother., 2012, 56(6), 3324-3335.
[http://dx.doi.org/10.1128/AAC.00102-12] [PMID: 22391531]
[173]
Nilius, B.; Owsianik, G.; Voets, T.; Peters, J.A. Transient receptor potential cation channels in disease. Physiol. Rev., 2007, 87(1), 165-217.
[http://dx.doi.org/10.1152/physrev.00021.2006] [PMID: 17237345]
[174]
Szallasi, A.; Cortright, D.N.; Blum, C.A.; Eid, S.R. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat. Rev. Drug Discov., 2007, 6(5), 357-372.
[http://dx.doi.org/10.1038/nrd2280] [PMID: 17464295]
[175]
Gomtsyan, A.; Bayburt, E.K.; Schmidt, R.G.; Zheng, G.Z.; Perner, R.J.; Didomenico, S.; Koenig, J.R.; Turner, S.; Jinkerson, T.; Drizin, I.; Hannick, S.M.; Macri, B.S.; McDonald, H.A.; Honore, P.; Wismer, C.T.; Marsh, K.C.; Wetter, J.; Stewart, K.D.; Oie, T.; Jarvis, M.F.; Surowy, C.S.; Faltynek, C.R.; Lee, C.H. Novel transient receptor potential vanilloid 1 receptor antagonists for the treatment of pain: structure-activity relationships for ureas with quinoline, isoquinoline, quinazoline, phthalazine, quinoxaline, and cinnoline moieties. J. Med. Chem., 2005, 48(3), 744-752.
[http://dx.doi.org/10.1021/jm0492958] [PMID: 15689158]
[176]
Gomtsyan, A.; Bayburt, E.K.; Schmidt, R.G.; Surowy, C.S.; Honore, P.; Marsh, K.C.; Hannick, S.M.; McDonald, H.A.; Wetter, J.M.; Sullivan, J.P.; Jarvis, M.F.; Faltynek, C.R.; Lee, C-H. Identification of (R)-1-(5-tert-butyl-2,3-dihydro-1H-inden-1-yl)-3-(1Hindazol-4-yl)urea (ABT-102) as a potent TRPV1 antagonist for pain management. J. Med. Chem., 2008, 51(3), 392-395.
[http://dx.doi.org/10.1021/jm701007g] [PMID: 18183945]
[177]
Sugimura, M.; Sato, T.; Nakayama, W.; Morishima, Y.; Fukunaga, K.; Omitsu, M.; Miyamoto, E.; Shirasaki, Y. DY-9760e, a novel calmodulin antagonist with cytoprotective action. Eur. J. Pharmacol., 1997, 336(1), 99-106.
[http://dx.doi.org/10.1016/S0014-2999(97)01251-X] [PMID: 9384259]
[178]
Sato, T.; Morishima, Y.; Sugimura, M.; Uchida, T.; Shirasaki, Y. DY-9760e, a novel calmodulin antagonist, reduces brain damage induced by transient focal cerebral ischemia. Eur. J. Pharmacol., 1999, 370(2), 117-123.
[http://dx.doi.org/10.1016/S0014-2999(99)00133-8] [PMID: 10323259]
[179]
Cox, J.J.; Reimann, F.; Nicholas, A.K.; Thornton, G.; Roberts, E.; Springell, K.; Karbani, G.; Jafri, H.; Mannan, J.; Raashid, Y.; Al-Gazali, L.; Hamamy, H.; Valente, E.M.; Gorman, S.; Williams, R.; McHale, D.P.; Wood, J.N.; Gribble, F.M.; Woods, C.G. An SCN9A channelopathy causes congenital inability to experience pain. Nature, 2006, 444(7121), 894-898.
[http://dx.doi.org/10.1038/nature05413] [PMID: 17167479]
[180]
Flinspach, M.; Xu, Q.; Piekarz, A.D.; Fellows, R.; Hagan, R.; Gibbs, A.; Liu, Y.; Neff, R.A.; Freedman, J.; Eckert, W.A.; Zhou, M.; Bonesteel, R.; Pennington, M.W.; Eddinger, K.A.; Yaksh, T.L.; Hunter, M.; Swanson, R.V.; Wickenden, A.D. Insensitivity to pain induced by a potent selective closed-state Nav1.7 inhibitor. Sci. Rep., 2017, 7, 39662.
[http://dx.doi.org/10.1038/srep39662] [PMID: 28045073]
[181]
Liu, K.G.; Robichaud, A.J.; Bernotas, R.C.; Yan, Y.; Lo, J.R.; Zhang, M-Y.; Hughes, Z.A.; Huselton, C.; Zhang, G.M.; Zhang, J.Y.; Kowal, D.M.; Smith, D.L.; Schechter, L.E.; Comery, T.A. 5-Piperazinyl-3-sulfonylindazoles as potent and selective 5-hydroxytryptamine-6 antagonists. J. Med. Chem., 2010, 53(21), 7639-7646.
[http://dx.doi.org/10.1021/jm1007825] [PMID: 20932009]
[182]
Wallace, T.L.; Porter, R.H.P. Targeting the nicotinic alpha7 acetylcholine receptor to enhance cognition in disease. Biochem. Pharmacol., 2011, 82(8), 891-903.
[http://dx.doi.org/10.1016/j.bcp.2011.06.034] [PMID: 21741954]
[183]
Wallace, T.L.; Callahan, P.M.; Tehim, A.; Bertrand, D.; Tombaugh, G.; Wang, S.; Xie, W.; Rowe, W.B.; Ong, V.; Graham, E.; Terry, A.V., Jr; Rodefer, J.S.; Herbert, B.; Murray, M.; Porter, R.; Santarelli, L.; Lowe, D.A. RG3487, a novel nicotinic α7 receptor partial agonist, improves cognition and sensorimotor gating in rodents. J. Pharmacol. Exp. Ther., 2011, 336(1), 242-253.
[http://dx.doi.org/10.1124/jpet.110.171892] [PMID: 20959364]
[184]
Rezvani, A.H.; Kholdebarin, E.; Brucato, F.H.; Callahan, P.M.; Lowe, D.A.; Levin, E.D. Effect of R3487/MEM3454, a novel nicotinic alpha7 receptor partial agonist and 5-HT3 antagonist on sustained attention in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2009, 33(2), 269-275.
[http://dx.doi.org/10.1016/j.pnpbp.2008.11.018] [PMID: 19110025]
[185]
Hurst, R.; Rollema, H.; Bertrand, D. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol. Ther., 2013, 137(1), 22-54.
[http://dx.doi.org/10.1016/j.pharmthera.2012.08.012] [PMID: 22925690]
[186]
Oddi, S.; Scipioni, L.; Totaro, A.; Angelucci, C.; Dufrusine, B.; Sabatucci, A.; Tortolani, D.; Coletta, I.; Alisi, M.A.; Polenzani, L.; Assfalg, M.; Caltagirone, C.; Dainese, E.; Maccarrone, M. The anti-inflammatory agent bindarit acts as a modulator of fatty acid-binding protein 4 in human monocytic cells. Sci. Rep., 2019, 9(1), 15155.
[http://dx.doi.org/10.1038/s41598-019-51691-y] [PMID: 31641194]
[187]
Guglielmotti, A.; D’Onofrio, E.; Coletta, I.; Aquilini, L.; Milanese, C.; Pinza, M. Amelioration of rat adjuvant arthritis by therapeutic treatment with bindarit, an inhibitor of MCP-1 and TNF-alpha production. Inflamm. Res., 2002, 51(5), 252-258.
[http://dx.doi.org/10.1007/PL00000301] [PMID: 12056513]
[188]
Katz, A.; Udata, C.; Ott, E.; Hickey, L.; Burczynski, M.E.; Burghart, P.; Vesterqvist, O.; Meng, X. Safety, pharmacokinetics, and pharmacodynamics of single doses of LXR-623, a novel liver X-receptor agonist, in healthy participants. J. Clin. Pharmacol., 2009, 49(6), 643-649.
[http://dx.doi.org/10.1177/0091270009335768] [PMID: 19398602]