Cancer Microbiome; Opportunities and Challenges

Page: [215 - 229] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Microbe-host association has emerged as a modulator in modern medicine. Cancer and its associated host microbes are collectively referred to as the cancer microbiome. The cancer microbiome is complex, and many aspects remain unclear including metabolic plasticity, microenvironment remodeling, cellular communications, and unique signatures within the host, all of which have a vital role in homeostasis and pathogenesis of host physiology. However, the role of the microbiome in cancer initiation, progression, and therapy is still poorly understood and remains to be explored.

Objective: The objective of this review is to elucidate the role of the microbiome in cancer metabolism and the tumor microenvironment. It also focuses on the importance of therapeutic opportunities and challenges in the manipulation of the cancer microbiome.

Methods: A literature search was conducted on the role of the microbiome in cancer initiation, progression, and therapy.

Conclusion: The tumor microenvironment and cancer metabolism are significant in host-microbiome interactions. The microbiome can modulate standard cancer therapies like chemotherapy and immunotherapy. Microbiome transplantation has also been demonstrated as an effective therapy against cancer. Furthermore, the modulation of the microbiome also has potential clinical outcomes in modern medicine.

Keywords: Cancer, microbiome, tumor microenvironment, metabolic plasticity, probiotics, therapeutics.

Graphical Abstract

[1]
Shade, A.; Handelsman, J. Beyond the Venn diagram: the hunt for a core microbiome. Environ. Microbiol., 2012, 14(1), 4-12.
[http://dx.doi.org/10.1111/j.1462-2920.2011.02585.x] [PMID: 22004523]
[2]
Lloyd-Price, J.; Abu-Ali, G.; Huttenhower, C. The healthy human microbiome. Genome Med., 2016, 8(1), 51.
[http://dx.doi.org/10.1186/s13073-016-0307-y] [PMID: 27122046]
[3]
Microbiology by numbers. Nat. Rev. Microbiol., 2011, 9(9), 628-628.
[http://dx.doi.org/10.1038/nrmicro2644] [PMID: 21961177]
[4]
Sender, R.; Fuchs, S.; Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol., 2016, 14(8)e1002533
[http://dx.doi.org/10.1371/journal.pbio.1002533] [PMID: 27541692]
[5]
The Human Microbiome Project Consortium., Huttenhower, C.; Gevers, D. Structure, function and diversity of the healthy human microbiome. Nature, 2012, 486(7402), 207–214.
[http://dx.doi.org/10.1038/nature11234] [PMID: 22699609]
[6]
Grice, E.A.; Kong, H.H.; Conlan, S.; Deming, C.B.; Davis, J.; Young, A.C.; Bouffard, G.G.; Blakesley, R.W.; Murray, P.R.; Green, E.D.; Turner, M.L.; Segre, J.A. NISC Comparative sequencing program. Topographical and temporal diversity of the human skin microbiome. Science, 2009, 324(5931), 1190-1192.
[http://dx.doi.org/10.1126/science.1171700] [PMID: 19478181]
[7]
Cribby, S.; Taylor, M.; Reid, G. Vaginal microbiota and the use of probiotics. Interdiscip. Perspect. Infect. Dis., 2008, 2008256490
[http://dx.doi.org/10.1155/2008/256490] [PMID: 19343185]
[8]
Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.K.; McCulle, S.L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C.O. Vaginal Microbiome of Reproductive-Age Women. Proc. Natl. Acad. Sci. USA, 2011, pp. 4680-4687.
[9]
DiGiulio, D.B.; Callahan, B.J.; McMurdie, P.J.; Costello, E.K.; Lyell, D.J.; Robaczewska, A.; Sun, C.L.; Goltsman, D.S.A.; Wong, R.J.; Shaw, G.; Stevenson, D.K.; Holmes, S.P.; Relman, D.A. Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl. Acad. Sci. USA, 2015, 112(35), 11060-11065.
[http://dx.doi.org/10.1073/pnas.1502875112] [PMID: 26283357]
[10]
Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature, 2012, 489(7415), 220-230.
[http://dx.doi.org/10.1038/nature11550] [PMID: 22972295]
[11]
Karlsson, F.H.; Tremaroli, V.; Nookaew, I.; Bergström, G.; Behre, C.J.; Fagerberg, B.; Nielsen, J.; Bäckhed, F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 2013, 498(7452), 99-103.
[http://dx.doi.org/10.1038/nature12198] [PMID: 23719380]
[12]
Lepage, P.; Leclerc, M.C.; Joossens, M.; Mondot, S.; Blottière, H.M.; Raes, J.; Ehrlich, D.; Doré, J. A metagenomic insight into our gut’s microbiome. Gut, 2013, 62(1), 146-158.
[http://dx.doi.org/10.1136/gutjnl-2011-301805] [PMID: 22525886]
[13]
Ross, B.D.; Verster, A.J.; Radey, M.C.; Schmidtke, D.T.; Pope, C.E.; Hoffman, L.R.; Hajjar, A.M.; Peterson, S.B.; Borenstein, E.; Mougous, J.D. Human gut bacteria contain acquired interbacterial defence systems. Nature, 2019, 575(7781), 224-228.
[http://dx.doi.org/10.1038/s41586-019-1708-z] [PMID: 31666699]
[14]
Sommer, M.O. Advancing gut microbiome research using cultivation. Curr. Opin. Microbiol., 2015, 27, 127-132.
[http://dx.doi.org/10.1016/j.mib.2015.08.004] [PMID: 26401902]
[15]
NIH Human Microbiome Portfolio Analysis Team. A review of 10 years of human microbiome research activities at the US National Institutes of Health, Fiscal Years 2007-2016. Microbiome, 2019, 7(1), 31.
[http://dx.doi.org/10.1186/s40168-019-0620-y] [PMID: 30808411]
[16]
Hochberg, Z. An evolutionary perspective on the obesity epidemic. Trends Endocrinol. Metab., 2018, 29(12), 819-826.
[http://dx.doi.org/10.1016/j.tem.2018.09.002] [PMID: 30243773]
[17]
Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; Mende, D.R.; Li, J.; Xu, J.; Li, S.; Li, D.; Cao, J.; Wang, B.; Liang, H.; Zheng, H.; Xie, Y.; Tap, J.; Lepage, P.; Bertalan, M.; Batto, J.M.; Hansen, T.; Le Paslier, D.; Linneberg, A.; Nielsen, H.B.; Pelletier, E.; Renault, P.; Sicheritz-Ponten, T.; Turner, K.; Zhu, H.; Yu, C.; Li, S.; Jian, M.; Zhou, Y.; Li, Y.; Zhang, X.; Li, S.; Qin, N.; Yang, H.; Wang, J.; Brunak, S.; Doré, J.; Guarner, F.; Kristiansen, K.; Pedersen, O.; Parkhill, J.; Weissenbach, J.; Bork, P.; Ehrlich, S.D.; Wang, J. MetaHIT Consortium. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285), 59-65.
[http://dx.doi.org/10.1038/nature08821] [PMID: 20203603]
[18]
Huffnagle, G.B.; Noverr, M.C. The emerging world of the fungal microbiome. Trends Microbiol., 2013, 21(7), 334-341.
[http://dx.doi.org/10.1016/j.tim.2013.04.002] [PMID: 23685069]
[19]
Franks, A.H.; Harmsen, H.J.M.; Raangs, G.C.; Jansen, G.J.; Schut, F.; Welling, G.W. Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol., 1998, 64(9), 3336-3345.
[http://dx.doi.org/10.1128/AEM.64.9.3336-3345.1998] [PMID: 9726880]
[20]
Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.; Roe, B.A.; Affourtit, J.P.; Egholm, M.; Henrissat, B.; Heath, A.C.; Knight, R.; Gordon, J.I. A core gut microbiome in obese and lean twins. Nature, 2009, 457(7228), 480-484.
[http://dx.doi.org/10.1038/nature07540] [PMID: 19043404]
[21]
Reyes, A.; Haynes, M.; Hanson, N.; Angly, F.E.; Heath, A.C.; Rohwer, F.; Gordon, J.I. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature, 2010, 466(7304), 334-338.
[http://dx.doi.org/10.1038/nature09199] [PMID: 20631792]
[22]
Vernocchi, P.; Del Chierico, F.; Putignani, L. Gut microbiota profiling: Metabolomics based approach to unravel compounds affecting human health. Front. Microbiol., 2016, 7, 1144.
[http://dx.doi.org/10.3389/fmicb.2016.01144] [PMID: 27507964]
[23]
Holmes, E.; Li, J.V.; Athanasiou, T.; Ashrafian, H.; Nicholson, J.K. Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol., 2011, 19(7), 349-359.
[http://dx.doi.org/10.1016/j.tim.2011.05.006] [PMID: 21684749]
[24]
Paul, H.A.; Bomhof, M.R.; Vogel, H.J.; Reimer, R.A. Diet-induced changes in maternal gut microbiota and metabolomic profiles influence programming of offspring obesity risk in rats. Sci. Rep., 2016, 6, 20683.
[http://dx.doi.org/10.1038/srep20683] [PMID: 26868870]
[25]
Fessler, J.; Matson, V.; Gajewski, T.F. Exploring the emerging role of the microbiome in cancer immunotherapy. J. Immunother. Cancer, 2019, 7(1), 108.
[http://dx.doi.org/10.1186/s40425-019-0574-4] [PMID: 30995949]
[26]
Kurugöl, Z.; Koturoğlu, G. Effects of Saccharomyces boulardii in children with acute diarrhoea. Acta Paediatr., 2005, 94(1), 44-47.
[http://dx.doi.org/10.1080/08035250410022521] [PMID: 15858959]
[27]
Dollive, S.; Chen, Y-Y.; Grunberg, S.; Bittinger, K.; Hoffmann, C.; Vandivier, L.; Cuff, C.; Lewis, J.D.; Wu, G.D.; Bushman, F.D. Fungi of the murine gut: episodic variation and proliferation during antibiotic treatment. PLoS One, 2013, 8(8)e71806
[http://dx.doi.org/10.1371/journal.pone.0071806] [PMID: 23977147]
[28]
David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; Biddinger, S.B.; Dutton, R.J.; Turnbaugh, P.J. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505(7484), 559-563.
[http://dx.doi.org/10.1038/nature12820] [PMID: 24336217]
[29]
Miller, T.L.; Wolin, M.J.; Conway de Macario, E.; Macario, A.J. Isolation of Methanobrevibacter smithii from human feces. Appl. Environ. Microbiol., 1982, 43(1), 227-232.
[http://dx.doi.org/10.1128/AEM.43.1.227-232.1982] [PMID: 6798932]
[30]
Fricke, W.F.; Seedorf, H.; Henne, A.; Krüer, M.; Liesegang, H.; Hedderich, R.; Gottschalk, G.; Thauer, R.K. The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. J. Bacteriol., 2006, 188(2), 642-658.
[http://dx.doi.org/10.1128/JB.188.2.642-658.2006] [PMID: 16385054]
[31]
Horz, H-P. Archaeal lineages within the human microbiome: Absent, rare or elusive? Life (Basel), 2015, 5(2), 1333-1345.
[http://dx.doi.org/10.3390/life5021333] [PMID: 25950865]
[32]
Minot, S.; Bryson, A.; Chehoud, C.; Wu, G.D.; Lewis, J.D.; Bushman, F.D. Rapid evolution of the human gut virome. Proc. Natl. Acad. Sci. USA, 2013, 110(30), 12450-12455.
[http://dx.doi.org/10.1073/pnas.1300833110] [PMID: 23836644]
[33]
Virgin, H.W. The virome in mammalian physiology and disease. Cell, 2014, 157(1), 142-150.
[http://dx.doi.org/10.1016/j.cell.2014.02.032] [PMID: 24679532]
[34]
Berry, D.; Loy, A. Stable-isotope probing of human and animal microbiome function. Trends Microbiol., 2018, 26(12), 999-1007.
[http://dx.doi.org/10.1016/j.tim.2018.06.004] [PMID: 30001854]
[35]
Egert, M.; Weis, S.; Schnell, S. RNA-based stable isotope probing (RNA-SIP) to unravel intestinal host-microbe interactions. Methods, 2018, 149, 25-30.
[http://dx.doi.org/10.1016/j.ymeth.2018.05.022] [PMID: 29857194]
[36]
Reichardt, N.; Barclay, A.R.; Weaver, L.T.; Morrison, D.J. Use of stable isotopes to measure the metabolic activity of the human intestinal microbiota. Appl. Environ. Microbiol., 2011, 77(22), 8009-8014.
[http://dx.doi.org/10.1128/AEM.05573-11] [PMID: 21948826]
[37]
Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444(7122), 1027-1031.
[http://dx.doi.org/10.1038/nature05414] [PMID: 17183312]
[38]
Sivan, A.; Corrales, L.; Hubert, N.; Williams, J.B.; Aquino-Michaels, K.; Earley, Z.M.; Benyamin, F.W.; Lei, Y.M.; Jabri, B.; Alegre, M-L.; Chang, E.B.; Gajewski, T.F. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science, 2015, 350(6264), 1084-1089.
[http://dx.doi.org/10.1126/science.aac4255] [PMID: 26541606]
[39]
Luoto, R.; Kalliomäki, M.; Laitinen, K.; Isolauri, E. The impact of perinatal probiotic intervention on the development of overweight and obesity: follow-up study from birth to 10 years. Int. J. Obes., 2010, 34(10), 1531-1537.
[http://dx.doi.org/10.1038/ijo.2010.50] [PMID: 20231842]
[40]
Deplancke, B.; Gaskins, H.R. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am. J. Clin. Nutr., 2001, 73(6), 1131S-1141S.
[http://dx.doi.org/10.1093/ajcn/73.6.1131S] [PMID: 11393191]
[41]
Ivanov, I.I.; Frutos, R. de L.; Manel, N.; Yoshinaga, K.; Rifkin, D.B.; Sartor, R.B.; Finlay, B.B.; Littman, D.R. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe, 2008, 4(4), 337-349.
[http://dx.doi.org/10.1016/j.chom.2008.09.009] [PMID: 18854238]
[42]
Chakrabarty, A.M. Microorganisms and cancer: quest for a therapy. J. Bacteriol., 2003, 185(9), 2683-2686.
[http://dx.doi.org/10.1128/JB.185.9.2683-2686.2003] [PMID: 12700245]
[43]
Wu, X.; Zhou, Q.H.; Xu, K. Are isothiocyanates potential anti-cancer drugs? Acta Pharmacol. Sin., 2009, 30(5), 501-512.
[http://dx.doi.org/10.1038/aps.2009.50] [PMID: 19417730]
[44]
Liu, P.; Behray, M.; Wang, Q.; Wang, W.; Zhou, Z.; Chao, Y.; Bao, Y. Anti-cancer activities of allyl isothiocyanate and its conjugated silicon quantum dots. Sci. Rep., 2018, 8(1), 1084.
[http://dx.doi.org/10.1038/s41598-018-19353-7] [PMID: 29348534]
[45]
Mitsiogianni; Koutsidis; Mavroudis; Trafalis; Botaitis; Franco; Zoumpourlis; Amery; Galanis; Pappa; A. The role of isothiocyanates as cancer chemo-preventive, chemo-therapeutic and anti-melanoma agents. Antioxidants, 2019, 8(4), 106.
[46]
Li, F.; Hullar, M.A.J.; Schwarz, Y.; Lampe, J.W. Human gut bacterial communities are altered by addition of cruciferous vegetables to a controlled fruit- and vegetable-free diet. J. Nutr., 2009, 139(9), 1685-1691.
[http://dx.doi.org/10.3945/jn.109.108191] [PMID: 19640972]
[47]
Rabot, S.; Guerin, C.; Nugon-Boudon, L.; Szylit, O. Glucosinolate Degradation by Bacterial Strains Isolated from a Human Intestinal Microflora. Proceedings from the 9th Internation Rapeseed Congress, Cambridge, U.K, 1995.
[48]
Krul, C.; Humblot, C.; Philippe, C.; Vermeulen, M.; van Nuenen, M.; Havenaar, R.; Rabot, S. Metabolism of sinigrin (2-propenyl glucosinolate) by the human colonic microflora in a dynamic in vitro large-intestinal model. Carcinogenesis, 2002, 23(6), 1009-1016.
[http://dx.doi.org/10.1093/carcin/23.6.1009] [PMID: 12082023]
[49]
Cheng, D-L.; Hashimoto, K.; Uda, Y. In vitro digestion of sinigrin and glucotropaeolin by single strains of Bifidobacterium and identification of the digestive products. Food Chem. Toxicol., 2004, 42(3), 351-357.
[http://dx.doi.org/10.1016/j.fct.2003.09.008] [PMID: 14871576]
[50]
Parracho, H.M.; Bingham, M.O.; Gibson, G.R.; McCartney, A.L. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol., 2005, 54(Pt 10), 987-991.
[http://dx.doi.org/10.1099/jmm.0.46101-0] [PMID: 16157555]
[51]
Blaser, M.J. Who are we? Indigenous microbes and the ecology of human diseases. EMBO Rep., 2006, 7(10), 956-960.
[http://dx.doi.org/10.1038/sj.embor.7400812] [PMID: 17016449]
[52]
Frank, D.N.; St Amand, A.L.; Feldman, R.A.; Boedeker, E.C.; Harpaz, N.; Pace, N.R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA, 2007, 104(34), 13780-13785.
[http://dx.doi.org/10.1073/pnas.0706625104] [PMID: 17699621]
[53]
Abrahamsson, T.R.; Jakobsson, H.E.; Andersson, A.F.; Björkstén, B.; Engstrand, L.; Jenmalm, M.C. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin. Exp. Allergy, 2014, 44(6), 842-850.
[http://dx.doi.org/10.1111/cea.12253] [PMID: 24330256]
[54]
Petersen, C.; Round, J.L. Defining dysbiosis and its influence on host immunity and disease. Cell. Microbiol., 2014, 16(7), 1024-1033.
[http://dx.doi.org/10.1111/cmi.12308] [PMID: 24798552]
[55]
MacFie, J.; O’Boyle, C.; Mitchell, C.J.; Buckley, P.M.; Johnstone, D.; Sudworth, P. Gut origin of sepsis: a prospective study investigating associations between bacterial translocation, gastric microflora, and septic morbidity. Gut, 1999, 45(2), 223-228.
[http://dx.doi.org/10.1136/gut.45.2.223] [PMID: 10403734]
[56]
Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y-Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; Sinha, R.; Gilroy, E.; Gupta, K.; Baldassano, R.; Nessel, L.; Li, H.; Bushman, F.D.; Lewis, J.D. Linking long-term dietary patterns with gut microbial enterotypes. Science, 2011, 334(6052), 105-108.
[http://dx.doi.org/10.1126/science.1208344] [PMID: 21885731]
[57]
Ott, B.; Skurk, T.; Hastreiter, L.; Lagkouvardos, I.; Fischer, S.; Büttner, J.; Kellerer, T.; Clavel, T.; Rychlik, M.; Haller, D.; Hauner, H. Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women. Sci. Rep., 2017, 7(1), 11955.
[http://dx.doi.org/10.1038/s41598-017-12109-9] [PMID: 28931850]
[58]
O’Flanagan, C.H.; Smith, L.A.; McDonell, S.B.; Hursting, S.D. When less may be more: calorie restriction and response to cancer therapy. BMC Med., 2017, 15(1), 106.
[http://dx.doi.org/10.1186/s12916-017-0873-x] [PMID: 28539118]
[59]
Fraumene, C.; Manghina, V.; Cadoni, E.; Marongiu, F.; Abbondio, M.; Serra, M.; Palomba, A.; Tanca, A.; Laconi, E.; Uzzau, S. Caloric restriction promotes rapid expansion and long-lasting increase of Lactobacillus in the rat fecal microbiota. Gut Microbes, 2018, 9(2), 104-114.
[http://dx.doi.org/10.1080/19490976.2017.1371894] [PMID: 28891744]
[60]
Kandikattu, H.K.; Upparahalli Venkateshaiah, S.; Mishra, A. Synergy of Interleukin (IL)-5 and IL-18 in eosinophil mediated pathogenesis of allergic diseases. Cytokine Growth Factor Rev., 2019, 47, 83-98.
[http://dx.doi.org/10.1016/j.cytogfr.2019.05.003] [PMID: 31126874]
[61]
Thomas, D.F.M.; Fernie, D.S.; Malone, M.; Bayston, R.; Spitz, L. Association between Clostridium difficile and enterocolitis in Hirschsprung’s disease. Lancet, 1982, 1(8263), 78-79.
[http://dx.doi.org/10.1016/S0140-6736(82)90216-1] [PMID: 6119496]
[62]
Shen, D-H.; Shi, C-R.; Chen, J-J.; Yu, S-Y.; Wu, Y.; Yan, W-B. Detection of intestinal bifidobacteria and lactobacilli in patients with Hirschsprung’s disease associated enterocolitis. World J. Pediatr., 2009, 5(3), 201-205.
[http://dx.doi.org/10.1007/s12519-009-0038-x] [PMID: 19693464]
[63]
Toprak, N.U.; Yagci, A.; Gulluoglu, B.M.; Akin, M.L.; Demirkalem, P.; Celenk, T.; Soyletir, G. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin. Microbiol. Infect., 2006, 12(8), 782-786.
[http://dx.doi.org/10.1111/j.1469-0691.2006.01494.x] [PMID: 16842574]
[64]
Wu, S.; Rhee, K-J.; Albesiano, E.; Rabizadeh, S.; Wu, X.; Yen, H-R.; Huso, D.L.; Brancati, F.L.; Wick, E.; McAllister, F.; Housseau, F.; Pardoll, D.M.; Sears, C.L. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med., 2009, 15(9), 1016-1022.
[http://dx.doi.org/10.1038/nm.2015] [PMID: 19701202]
[65]
Pandareesh, M.D.; Kandikattu, H.K.; Razack, S.; Amruta, N.; Choudhari, R.; Vikram, A.; Doddapattar, P. Nutrition and nutraceuticals in neuroinflammatory and brain metabolic stress: Implications for neurodegenerative disorders. CNS Neurol. Disord. Drug Targets, 2018, 17(9), 680-688.
[http://dx.doi.org/10.2174/1871527317666180625104753] [PMID: 29938622]
[66]
Sjölund, M.; Wreiber, K.; Andersson, D.I.; Blaser, M.J.; Engstrand, L. Long-term persistence of resistant Enterococcus species after antibiotics to eradicate Helicobacter pylori. Ann. Intern. Med., 2003, 139(6), 483-487.
[http://dx.doi.org/10.7326/0003-4819-139-6-200309160-00011] [PMID: 13679325]
[67]
Sjölund, M.; Tano, E.; Blaser, M.J.; Andersson, D.I.; Engstrand, L. Persistence of resistant Staphylococcus epidermidis after single course of clarithromycin. Emerg. Infect. Dis., 2005, 11(9), 1389-1393.
[http://dx.doi.org/10.3201/eid1109.050124] [PMID: 16229767]
[68]
Thumann, T.A.; Pferschy-Wenzig, E-M.; Moissl-Eichinger, C.; Bauer, R. The role of gut microbiota for the activity of medicinal plants traditionally used in the European Union for gastrointestinal disorders. J. Ethnopharmacol., 2019, 245112153
[http://dx.doi.org/10.1016/j.jep.2019.112153] [PMID: 31408679]
[69]
Xu, J.; Chen, H-B.; Li, S-L. Understanding the molecular mechanisms of the interplay between herbal medicines and gut microbiota. Med. Res. Rev., 2017, 37(5), 1140-1185.
[http://dx.doi.org/10.1002/med.21431] [PMID: 28052344]
[70]
Verma, A.K.; Kandikattu, H.K.; Manohar, M.; Shukla, A.; Upparahalli Venkateshaiah, S.; Zhu, X.; Mishra, A. Intestinal overexpression of IL-18 promotes eosinophils-mediated allergic disorders. Immunology, 2019, 157(2), 110-121.
[http://dx.doi.org/10.1111/imm.13051] [PMID: 30779114]
[71]
Upparahalli Venkateshaiah, S.; Niranjan, R.; Manohar, M.; Verma, A.K.; Kandikattu, H.K.; Lasky, J.A.; Mishra, A. Attenuation of allergen-, IL-13-, and TGF-α-induced lung fibrosis after the treatment of rIL-15 in mice. Am. J. Respir. Cell Mol. Biol., 2019, 61(1), 97-109.
[http://dx.doi.org/10.1165/rcmb.2018-0254OC] [PMID: 30702923]
[72]
Manohar, M.; Kandikattu, H.K.; Verma, A.K.; Mishra, A. IL-15 regulates fibrosis and inflammation in a mouse model of chronic pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2018, 315(6), G954-G965.
[http://dx.doi.org/10.1152/ajpgi.00139.2018] [PMID: 30212254]
[73]
Baffy, G. Gut Microbiota and Cancer of the Host: Colliding Interests. Tumor Microenvironment : The Main Driver of Metabolic Adaptation; Serpa, J., Ed.; Advances in Experimental Medicine and Biology; Springer International, 2020.
[http://dx.doi.org/10.1007/978-3-030-34025-4_5] [PMID: 32130695]
[75]
Dalmasso, G.; Cougnoux, A.; Delmas, J.; Darfeuille-Michaud, A.; Bonnet, R. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes, 2014, 5(5), 675-680.
[http://dx.doi.org/10.4161/19490976.2014.969989] [PMID: 25483338]
[76]
Whisner, C.M.; Athena Aktipis, C. The role of the microbiome in cancer initiation and progression: How microbes and cancer cells utilize excess energy and promote one another’s growth. Curr. Nutr. Rep., 2019, 8(1), 42-51.
[http://dx.doi.org/10.1007/s13668-019-0257-2] [PMID: 30758778]
[77]
Cancers Attributable to Infections https://gco.iarc.fr/causes/infections/help
[78]
Mao, Q.; Jiang, F.; Yin, R.; Wang, J.; Xia, W.; Dong, G.; Ma, W.; Yang, Y.; Xu, L.; Hu, J. Interplay between the lung microbiome and lung cancer. Cancer Lett., 2018, 415, 40-48.
[http://dx.doi.org/10.1016/j.canlet.2017.11.036] [PMID: 29197615]
[79]
Elinav, E.; Garrett, W.S.; Trinchieri, G.; Wargo, J. The cancer microbiome. Nat. Rev. Cancer, 2019, 19(7), 371-376.
[http://dx.doi.org/10.1038/s41568-019-0155-3] [PMID: 31186547]
[80]
Sha, S.; Ni, L.; Stefil, M.; Dixon, M.; Mouraviev, V. The human gastrointestinal microbiota and prostate cancer development and treatment. Investig. Clin. Urol., 2020, 61(Suppl. 1), S43-S50.
[http://dx.doi.org/10.4111/icu.2020.61.S1.S43] [PMID: 32055753]
[81]
Buc, E.; Dubois, D.; Sauvanet, P.; Raisch, J.; Delmas, J.; Darfeuille-Michaud, A.; Pezet, D.; Bonnet, R. High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS One, 2013, 8(2), e56964.
[http://dx.doi.org/10.1371/journal.pone.0056964] [PMID: 23457644]
[82]
Riquelme, E.; Zhang, Y.; Zhang, L.; Montiel, M.; Zoltan, M.; Dong, W.; Quesada, P.; Sahin, I.; Chandra, V.; San Lucas, A.; Scheet, P.; Xu, H.; Hanash, S.M.; Feng, L.; Burks, J.K.; Do, K.A.; Peterson, C.B.; Nejman, D.; Tzeng, C.D.; Kim, M.P.; Sears, C.L.; Ajami, N.; Petrosino, J.; Wood, L.D.; Maitra, A.; Straussman, R.; Katz, M.; White, J.R.; Jenq, R.; Wargo, J.; McAllister, F. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell, 2019, 178(4), 795-806.e12.
[http://dx.doi.org/10.1016/j.cell.2019.07.008] [PMID: 31398337]
[83]
Dejea, C.M.; Wick, E.C.; Hechenbleikner, E.M.; White, J.R.; Mark Welch, J.L.; Rossetti, B.J.; Peterson, S.N.; Snesrud, E.C.; Borisy, G.G.; Lazarev, M.; Stein, E.; Vadivelu, J.; Roslani, A.C.; Malik, A.A.; Wanyiri, J.W.; Goh, K.L.; Thevambiga, I.; Fu, K.; Wan, F.; Llosa, N.; Housseau, F.; Romans, K.; Wu, X.; McAllister, F.M.; Wu, S.; Vogelstein, B.; Kinzler, K.W.; Pardoll, D.M.; Sears, C.L. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl. Acad. Sci. USA, 2014, 111(51), 18321-18326.
[http://dx.doi.org/10.1073/pnas.1406199111] [PMID: 25489084]
[84]
Hamid, N.A.; Brown, C.; Gaston, K. The regulation of cell proliferation by the papillomavirus early proteins. Cell. Mol. Life Sci., 2009, 66(10), 1700-1717.
[http://dx.doi.org/10.1007/s00018-009-8631-7] [PMID: 19183849]
[85]
Rubinstein, M.R.; Wang, X.; Liu, W.; Hao, Y.; Cai, G.; Han, Y.W. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe, 2013, 14(2), 195-206.
[http://dx.doi.org/10.1016/j.chom.2013.07.012] [PMID: 23954158]
[86]
Castellarin, M.; Warren, R.L.; Freeman, J.D.; Dreolini, L.; Krzywinski, M.; Strauss, J.; Barnes, R.; Watson, P.; Allen-Vercoe, E.; Moore, R.A.; Holt, R.A. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res., 2012, 22(2), 299-306.
[http://dx.doi.org/10.1101/gr.126516.111] [PMID: 22009989]
[87]
Dutta, U.; Garg, P.K.; Kumar, R.; Tandon, R.K. Typhoid carriers among patients with gallstones are at increased risk for carcinoma of the gallbladder. Am. J. Gastroenterol., 2000, 95(3), 784-787.
[http://dx.doi.org/10.1111/j.1572-0241.2000.01860.x] [PMID: 10710075]
[88]
Wistuba, I.I.; Gazdar, A.F. Gallbladder cancer: lessons from a rare tumour. Nat. Rev. Cancer, 2004, 4(9), 695-706.
[http://dx.doi.org/10.1038/nrc1429] [PMID: 15343276]
[89]
Lee, S.H.; Sung, J.Y.; Yong, D.; Chun, J.; Kim, S.Y.; Song, J.H.; Chung, K.S.; Kim, E.Y.; Jung, J.Y.; Kang, Y.A.; Kim, Y.S.; Kim, S.K.; Chang, J.; Park, M.S. Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesions. Lung Cancer, 2016, 102, 89-95.
[http://dx.doi.org/10.1016/j.lungcan.2016.10.016] [PMID: 27987594]
[90]
Yu, G.; Gail, M.H.; Consonni, D.; Carugno, M.; Humphrys, M.; Pesatori, A.C.; Caporaso, N.E.; Goedert, J.J.; Ravel, J.; Landi, M.T. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biol., 2016, 17(1), 163.
[http://dx.doi.org/10.1186/s13059-016-1021-1] [PMID: 27468850]
[91]
Greathouse, K.L.; White, J.R.; Vargas, A.J.; Bliskovsky, V.V.; Beck, J.A.; von Muhlinen, N.; Polley, E.C.; Bowman, E.D.; Khan, M.A.; Robles, A.I.; Cooks, T.; Ryan, B.M.; Padgett, N.; Dzutsev, A.H.; Trinchieri, G.; Pineda, M.A.; Bilke, S.; Meltzer, P.S.; Hokenstad, A.N.; Stickrod, T.M.; Walther-Antonio, M.R.; Earl, J.P.; Mell, J.C.; Krol, J.E.; Balashov, S.V.; Bhat, A.S.; Ehrlich, G.D.; Valm, A.; Deming, C.; Conlan, S.; Oh, J.; Segre, J.A.; Harris, C.C. Interaction between the microbiome and TP53 in human lung cancer. Genome Biol., 2018, 19(1), 123.
[http://dx.doi.org/10.1186/s13059-018-1501-6] [PMID: 30143034]
[92]
Yu, J.; Feng, Q.; Wong, S.H.; Zhang, D.; Liang, Q.Y.; Qin, Y.; Tang, L.; Zhao, H.; Stenvang, J.; Li, Y.; Wang, X.; Xu, X.; Chen, N.; Wu, W.K.; Al-Aama, J.; Nielsen, H.J.; Kiilerich, P.; Jensen, B.A.; Yau, T.O.; Lan, Z.; Jia, H.; Li, J.; Xiao, L.; Lam, T.Y.; Ng, S.C.; Cheng, A.S.; Wong, V.W.; Chan, F.K.; Xu, X.; Yang, H.; Madsen, L.; Datz, C.; Tilg, H.; Wang, J.; Brünner, N.; Kristiansen, K.; Arumugam, M.; Sung, J.J.; Wang, J. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut, 2017, 66(1), 70-78.
[http://dx.doi.org/10.1136/gutjnl-2015-309800] [PMID: 26408641]
[93]
Frankel, A.E.; Coughlin, L.A.; Kim, J.; Froehlich, T.W.; Xie, Y.; Frenkel, E.P.; Koh, A.Y. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia, 2017, 19(10), 848-855.
[http://dx.doi.org/10.1016/j.neo.2017.08.004] [PMID: 28923537]
[94]
Matson, V.; Fessler, J.; Bao, R.; Chongsuwat, T.; Zha, Y.; Alegre, M-L.; Luke, J.J.; Gajewski, T.F. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science, 2018, 359(6371), 104-108.
[http://dx.doi.org/10.1126/science.aao3290] [PMID: 29302014]
[95]
Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; Cogdill, A.P.; Zhao, L.; Hudgens, C.W.; Hutchinson, D.S.; Manzo, T.; Petaccia de Macedo, M.; Cotechini, T.; Kumar, T.; Chen, W.S.; Reddy, S.M.; Szczepaniak Sloane, R.; Galloway-Pena, J.; Jiang, H.; Chen, P.L.; Shpall, E.J.; Rezvani, K.; Alousi, A.M.; Chemaly, R.F.; Shelburne, S.; Vence, L.M.; Okhuysen, P.C.; Jensen, V.B.; Swennes, A.G.; McAllister, F.; Marcelo Riquelme Sanchez, E.; Zhang, Y.; Le Chatelier, E.; Zitvogel, L.; Pons, N.; Austin-Breneman, J.L.; Haydu, L.E.; Burton, E.M.; Gardner, J.M.; Sirmans, E.; Hu, J.; Lazar, A.J.; Tsujikawa, T.; Diab, A.; Tawbi, H.; Glitza, I.C.; Hwu, W.J.; Patel, S.P.; Woodman, S.E.; Amaria, R.N.; Davies, M.A.; Gershenwald, J.E.; Hwu, P.; Lee, J.E.; Zhang, J.; Coussens, L.M.; Cooper, Z.A.; Futreal, P.A.; Daniel, C.R.; Ajami, N.J.; Petrosino, J.F.; Tetzlaff, M.T.; Sharma, P.; Allison, J.P.; Jenq, R.R.; Wargo, J.A. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science, 2018, 359(6371), 97-103.
[http://dx.doi.org/10.1126/science.aan4236] [PMID: 29097493]
[96]
Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C.P.M.; Alou, M.T.; Daillère, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P.; Fidelle, M.; Flament, C.; Poirier-Colame, V.; Opolon, P.; Klein, C.; Iribarren, K.; Mondragón, L.; Jacquelot, N.; Qu, B.; Ferrere, G.; Clémenson, C.; Mezquita, L.; Masip, J.R.; Naltet, C.; Brosseau, S.; Kaderbhai, C.; Richard, C.; Rizvi, H.; Levenez, F.; Galleron, N.; Quinquis, B.; Pons, N.; Ryffel, B.; Minard-Colin, V.; Gonin, P.; Soria, J.C.; Deutsch, E.; Loriot, Y.; Ghiringhelli, F.; Zalcman, G.; Goldwasser, F.; Escudier, B.; Hellmann, M.D.; Eggermont, A.; Raoult, D.; Albiges, L.; Kroemer, G.; Zitvogel, L. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science, 2018, 359(6371), 91-97.
[http://dx.doi.org/10.1126/science.aan3706] [PMID: 29097494]
[97]
Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr., 2018, 57(1), 1-24.
[http://dx.doi.org/10.1007/s00394-017-1445-8] [PMID: 28393285]
[98]
Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[99]
Ha, K.D.; Bidlingmaier, S.M.; Liu, B. Macropinocytosis exploitation by cancers and cancer therapeutics. Front. Physiol., 2016, 7, 381.
[http://dx.doi.org/10.3389/fphys.2016.00381] [PMID: 27672367]
[100]
Kerr, M.C.; Teasdale, R.D. Defining macropinocytosis. Traffic, 2009, 10(4), 364-371.
[http://dx.doi.org/10.1111/j.1600-0854.2009.00878.x] [PMID: 19192253]
[101]
Szablewski, L. Expression of glucose transporters in cancers. Biochim. Biophys. Acta, 2013, 1835(2), 164-169.
[http://dx.doi.org/10.1016/j.bbcan.2012.12.004] [PMID: 23266512]
[102]
Yu, L.; Chen, X.; Sun, X.; Wang, L.; Chen, S. The glycolytic switch in tumors: How many players are involved? J. Cancer, 2017, 8(17), 3430-3440.
[http://dx.doi.org/10.7150/jca.21125] [PMID: 29151926]
[103]
Ward, P.S.; Thompson, C.B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell, 2012, 21(3), 297-308.
[http://dx.doi.org/10.1016/j.ccr.2012.02.014] [PMID: 22439925]
[104]
Ganapathy-Kanniappan, S.; Geschwind, J-F.H. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol. Cancer, 2013, 12(1), 152.
[http://dx.doi.org/10.1186/1476-4598-12-152] [PMID: 24298908]
[105]
Heiss, C.N.; Olofsson, L.E. Gut microbiota-dependent modulation of energy metabolism. J. Innate Immun., 2018, 10(3), 163-171.
[http://dx.doi.org/10.1159/000481519] [PMID: 29131106]
[106]
Fluitman, K.S.; De Clercq, N.C.; Keijser, B.J.F.; Visser, M.; Nieuwdorp, M.; IJzerman, R.G. The intestinal microbiota, energy balance, and malnutrition: emphasis on the role of short-chain fatty acids. Expert Rev. Endocrinol. Metab., 2017, 12(3), 215-226.
[http://dx.doi.org/10.1080/17446651.2017.1318060] [PMID: 30063458]
[107]
Org, E.; Blum, Y.; Kasela, S.; Mehrabian, M.; Kuusisto, J.; Kangas, A.J.; Soininen, P.; Wang, Z.; Ala-Korpela, M.; Hazen, S.L.; Laakso, M.; Lusis, A.J. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol., 2017, 18(1), 70.
[http://dx.doi.org/10.1186/s13059-017-1194-2] [PMID: 28407784]
[108]
Singh, R.K.; Chang, H-W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; Bhutani, T.; Liao, W. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med., 2017, 15(1), 73.
[http://dx.doi.org/10.1186/s12967-017-1175-y] [PMID: 28388917]
[109]
Sharon, G.; Garg, N.; Debelius, J.; Knight, R.; Dorrestein, P.C.; Mazmanian, S.K. Specialized metabolites from the microbiome in health and disease. Cell Metab., 2014, 20(5), 719-730.
[http://dx.doi.org/10.1016/j.cmet.2014.10.016] [PMID: 25440054]
[110]
DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv., 2016, 2(5)e1600200
[http://dx.doi.org/10.1126/sciadv.1600200] [PMID: 27386546]
[111]
Walczak, K.; Wnorowski, A.; Turski, W.A.; Plech, T. Kynurenic acid and cancer: facts and controversies. Cell. Mol. Life Sci., 2020, 77(8), 1531-1550.
[http://dx.doi.org/10.1007/s00018-019-03332-w] [PMID: 31659416]
[112]
Wang, G.; Yu, Y.; Wang, Y-Z.; Wang, J-J.; Guan, R.; Sun, Y.; Shi, F.; Gao, J.; Fu, X-L. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. J. Cell. Physiol., 2019, 234(10), 17023-17049.
[http://dx.doi.org/10.1002/jcp.28436] [PMID: 30888065]
[113]
Comerford, S.A.; Huang, Z.; Du, X.; Wang, Y.; Cai, L.; Witkiewicz, A.K.; Walters, H.; Tantawy, M.N.; Fu, A.; Manning, H.C.; Horton, J.D.; Hammer, R.E.; McKnight, S.L.; Tu, B.P. Acetate dependence of tumors. Cell, 2014, 159(7), 1591-1602.
[http://dx.doi.org/10.1016/j.cell.2014.11.020] [PMID: 25525877]
[114]
Levy, M.; Thaiss, C.A.; Elinav, E. Metabolites: messengers between the microbiota and the immune system. Genes Dev., 2016, 30(14), 1589-1597.
[http://dx.doi.org/10.1101/gad.284091.116] [PMID: 27474437]
[115]
den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D-J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res., 2013, 54(9), 2325-2340.
[http://dx.doi.org/10.1194/jlr.R036012] [PMID: 23821742]
[116]
Rooks, M.G.; Garrett, W.S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol., 2016, 16(6), 341-352.
[http://dx.doi.org/10.1038/nri.2016.42] [PMID: 27231050]
[117]
Li, Z.; Quan, G.; Jiang, X.; Yang, Y.; Ding, X.; Zhang, D.; Wang, X.; Hardwidge, P.R.; Ren, W.; Zhu, G. Effects of metabolites derived from gut microbiota and hosts on pathogens. Front. Cell. Infect. Microbiol., 2018, 8, 314.
[http://dx.doi.org/10.3389/fcimb.2018.00314] [PMID: 30276161]
[118]
Schug, Z.T.; Peck, B.; Jones, D.T.; Zhang, Q.; Grosskurth, S.; Alam, I.S.; Goodwin, L.M.; Smethurst, E.; Mason, S.; Blyth, K.; McGarry, L.; James, D.; Shanks, E.; Kalna, G.; Saunders, R.E.; Jiang, M.; Howell, M.; Lassailly, F.; Thin, M.Z.; Spencer-Dene, B.; Stamp, G.; van den Broek, N.J.; Mackay, G.; Bulusu, V.; Kamphorst, J.J.; Tardito, S.; Strachan, D.; Harris, A.L.; Aboagye, E.O.; Critchlow, S.E.; Wakelam, M.J.; Schulze, A.; Gottlieb, E. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell, 2015, 27(1), 57-71.
[http://dx.doi.org/10.1016/j.ccell.2014.12.002] [PMID: 25584894]
[119]
Keku, T.O.; Dulal, S.; Deveaux, A.; Jovov, B.; Han, X. The gastrointestinal microbiota and colorectal cancer. Am. J. Physiol. Gastrointest. Liver Physiol., 2015, 308(5), G351-G363.
[http://dx.doi.org/10.1152/ajpgi.00360.2012] [PMID: 25540232]
[120]
Grice, E.A.; Segre, J.A. The skin microbiome. Nat. Rev. Microbiol., 2011, 9(4), 244-253.
[http://dx.doi.org/10.1038/nrmicro2537] [PMID: 21407241]
[121]
Colosimo, D.A.; Kohn, J.A.; Luo, P.M.; Piscotta, F.J.; Han, S.M.; Pickard, A.J.; Rao, A.; Cross, J.R.; Cohen, L.J.; Brady, S.F. Mapping interactions of microbial metabolites with human G-protein-coupled receptors. Cell Host Microbe, 2019, 26(2), 273-282.e7.
[http://dx.doi.org/10.1016/j.chom.2019.07.002] [PMID: 31378678]
[122]
Melhem, H.; Kaya, B.; Ayata, C.K.; Hruz, P.; Niess, J.H.; Metabolite-Sensing, G. Metabolite-sensing G protein-coupled receptors connect the diet-microbiota-metabolites axis to inflammatory bowel disease. Cells, 2019, 8(5)E450
[http://dx.doi.org/10.3390/cells8050450] [PMID: 31091682]
[123]
Jan, G.; Belzacq, A-S.; Haouzi, D.; Rouault, A.; Métivier, D.; Kroemer, G.; Brenner, C. Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ., 2002, 9(2), 179-188.
[http://dx.doi.org/10.1038/sj.cdd.4400935] [PMID: 11840168]
[124]
Zhang, Y.; Zhou, L.; Bao, Y.L.; Wu, Y.; Yu, C.L.; Huang, Y.X.; Sun, Y.; Zheng, L.H.; Li, Y.X. Butyrate induces cell apoptosis through activation of JNK MAP kinase pathway in human colon cancer RKO cells. Chem. Biol. Interact., 2010, 185(3), 174-181.
[http://dx.doi.org/10.1016/j.cbi.2010.03.035] [PMID: 20346929]
[125]
Chen, J.; Zhao, K-N.; Vitetta, L. Effects of intestinal microbial⁻elaborated butyrate on oncogenic signaling pathways. Nutrients, 2019, 11(5), 1026.
[http://dx.doi.org/10.3390/nu11051026] [PMID: 31067776]
[126]
Sivaprakasam, S.; Prasad, P.D.; Singh, N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol. Ther., 2016, 164, 144-151.
[http://dx.doi.org/10.1016/j.pharmthera.2016.04.007] [PMID: 27113407]
[127]
Sun, L.; Suo, C.; Li, S-T.; Zhang, H.; Gao, P. Metabolic reprogramming for cancer cells and their microenvironment: beyond the warburg effect. Biochim. Biophys. Acta Rev. Cancer, 2018, 1870(1), 51-66.
[http://dx.doi.org/10.1016/j.bbcan.2018.06.005] [PMID: 29959989]
[128]
Sonveaux, P.; Végran, F.; Schroeder, T.; Wergin, M.C.; Verrax, J.; Rabbani, Z.N.; De Saedeleer, C.J.; Kennedy, K.M.; Diepart, C.; Jordan, B.F.; Kelley, M.J.; Gallez, B.; Wahl, M.L.; Feron, O.; Dewhirst, M.W. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest., 2008, 118(12), 3930-3942.
[http://dx.doi.org/10.1172/JCI36843] [PMID: 19033663]
[129]
Chen, Y-J.; Mahieu, N.G.; Huang, X.; Singh, M.; Crawford, P.A.; Johnson, S.L.; Gross, R.W.; Schaefer, J.; Patti, G.J. Lactate metabolism is associated with mammalian mitochondria. Nat. Chem. Biol., 2016, 12(11), 937-943.
[http://dx.doi.org/10.1038/nchembio.2172] [PMID: 27618187]
[130]
Zhong, L.; Zhang, X.; Covasa, M. Emerging roles of lactic acid bacteria in protection against colorectal cancer. World J. Gastroenterol., 2014, 20(24), 7878-7886.
[http://dx.doi.org/10.3748/wjg.v20.i24.7878] [PMID: 24976724]
[131]
Valkenburg, K.C.; de Groot, A.E.; Pienta, K.J. Targeting the tumour stroma to improve cancer therapy. Nat. Rev. Clin. Oncol., 2018, 15(6), 366-381.
[http://dx.doi.org/10.1038/s41571-018-0007-1] [PMID: 29651130]
[132]
Aktipis, C.A.; Boddy, A.M.; Gatenby, R.A.; Brown, J.S.; Maley, C.C. Life history trade-offs in cancer evolution. Nat. Rev. Cancer, 2013, 13(12), 883-892.
[http://dx.doi.org/10.1038/nrc3606] [PMID: 24213474]
[133]
Kostic, A.D.; Chun, E.; Robertson, L.; Glickman, J.N.; Gallini, C.A.; Michaud, M.; Clancy, T.E.; Chung, D.C.; Lochhead, P.; Hold, G.L.; El-Omar, E.M.; Brenner, D.; Fuchs, C.S.; Meyerson, M.; Garrett, W.S. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe, 2013, 14(2), 207-215.
[http://dx.doi.org/10.1016/j.chom.2013.07.007] [PMID: 23954159]
[134]
Osherov, N.; Ben-Ami, R. Modulation of host angiogenesis as a microbial survival strategy and therapeutic target. PLoS Pathog., 2016, 12(4), e1005479.
[http://dx.doi.org/10.1371/journal.ppat.1005479] [PMID: 27078259]
[135]
Paulos, C.M.; Wrzesinski, C.; Kaiser, A.; Hinrichs, C.S.; Chieppa, M.; Cassard, L.; Palmer, D.C.; Boni, A.; Muranski, P.; Yu, Z.; Gattinoni, L.; Antony, P.A.; Rosenberg, S.A.; Restifo, N.P. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J. Clin. Invest., 2007, 117(8), 2197-2204.
[http://dx.doi.org/10.1172/JCI32205] [PMID: 17657310]
[136]
Baquero, F.; Nombela, C. The microbiome as a human organ. Clin. Microbiol. Infect., 2012, 18(Suppl. 4), 2-4.
[http://dx.doi.org/10.1111/j.1469-0691.2012.03916.x] [PMID: 22647038]
[137]
Peterson, J.; Garges, S.; Giovanni, M.; McInnes, P.; Wang, L.; Schloss, J.A.; Bonazzi, V.; McEwen, J.E.; Wetterstrand, K.A.; Deal, C.; Baker, C.C.; Di Francesco, V.; Howcroft, T.K.; Karp, R.W.; Lunsford, R.D.; Wellington, C.R.; Belachew, T.; Wright, M.; Giblin, C.; David, H.; Mills, M.; Salomon, R.; Mullins, C.; Akolkar, B.; Begg, L.; Davis, C.; Grandison, L.; Humble, M.; Khalsa, J.; Little, A.R.; Peavy, H.; Pontzer, C.; Portnoy, M.; Sayre, M.H.; Starke-Reed, P.; Zakhari, S.; Read, J.; Watson, B.; Guyer, M. NIH HMP working group. The NIH human microbiome project. Genome Res., 2009, 19(12), 2317-2323.
[http://dx.doi.org/10.1101/gr.096651.109] [PMID: 19819907]
[138]
Iida, N.; Dzutsev, A.; Stewart, C.A.; Smith, L.; Bouladoux, N.; Weingarten, R.A.; Molina, D.A.; Salcedo, R.; Back, T.; Cramer, S.; Dai, R.M.; Kiu, H.; Cardone, M.; Naik, S.; Patri, A.K.; Wang, E.; Marincola, F.M.; Frank, K.M.; Belkaid, Y.; Trinchieri, G.; Goldszmid, R.S. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science, 2013, 342(6161), 967-970.
[http://dx.doi.org/10.1126/science.1240527] [PMID: 24264989]
[139]
Watanabe, K. Collagenolytic proteases from bacteria. Appl. Microbiol. Biotechnol., 2004, 63(5), 520-526.
[http://dx.doi.org/10.1007/s00253-003-1442-0] [PMID: 14556041]
[140]
Wysocki, A.B.; Bhalla-Regev, S.K.; Tierno, P.M., Jr; Stevens-Riley, M.; Wiygul, R-C. Proteolytic activity by multiple bacterial species isolated from chronic venous leg ulcers degrades matrix substrates. Biol. Res. Nurs., 2013, 15(4), 407-415.
[http://dx.doi.org/10.1177/1099800412464683] [PMID: 23118301]
[141]
Berka, R.M.; Gray, G.L.; Vasil, M.L. Studies of phospholipase C (heat-labile hemolysin) in Pseudomonas aeruginosa. Infect. Immun., 1981, 34(3), 1071-1074.
[http://dx.doi.org/10.1128/IAI.34.3.1071-1074.1981] [PMID: 6800952]
[142]
Alfano, M.; Canducci, F.; Nebuloni, M.; Clementi, M.; Montorsi, F.; Salonia, A. The interplay of extracellular matrix and microbiome in urothelial bladder cancer. Nat. Rev. Urol., 2016, 13(2), 77-90.
[http://dx.doi.org/10.1038/nrurol.2015.292] [PMID: 26666363]
[143]
Poutahidis, T.; Erdman, S.E. Commensal bacteria modulate the tumor microenvironment. Cancer Lett., 2016, 380(1), 356-358.
[http://dx.doi.org/10.1016/j.canlet.2015.12.028] [PMID: 26739062]
[144]
Karin, M.; Jobin, C.; Balkwill, F. Chemotherapy, immunity and microbiota--a new triumvirate? Nat. Med., 2014, 20(2), 126-127.
[http://dx.doi.org/10.1038/nm.3473] [PMID: 24504404]
[145]
Iizumi, T.; Battaglia, T.; Ruiz, V.; Perez Perez, G.I. Gut Microbiome and Antibiotics. Arch. Med. Res., 2017, 48(8), 727-734.
[http://dx.doi.org/10.1016/j.arcmed.2017.11.004] [PMID: 29221800]
[146]
Wardill, H.R.; Secombe, K.R.; Bryant, R.V.; Hazenberg, M.D.; Costello, S.P. Adjunctive fecal microbiota transplantation in supportive oncology: Emerging indications and considerations in immunocompromised patients. EBioMedicine, 2019, 44, 730-740.
[http://dx.doi.org/10.1016/j.ebiom.2019.03.070] [PMID: 30940601]
[147]
He, B.; Liu, Y.; Hoang, T.K.; Tian, X.; Taylor, C.M.; Luo, M.; Tran, D.Q.; Tatevian, N.; Rhoads, J.M. Antibiotic-modulated microbiome suppresses lethal inflammation and prolongs lifespan in Treg-deficient mice. Microbiome, 2019, 7(1), 145.
[http://dx.doi.org/10.1186/s40168-019-0751-1] [PMID: 31699146]
[148]
So, S.S.Y.; Wan, M.L.Y.; El-Nezami, H. Probiotics-mediated suppression of cancer. Curr. Opin. Oncol., 2017, 29(1), 62-72.
[http://dx.doi.org/10.1097/CCO.0000000000000342] [PMID: 27792053]
[149]
Yu, A-Q.; Li, L. The potential role of probiotics in cancer prevention and treatment. Nutr. Cancer, 2016, 68(4), 535-544.
[http://dx.doi.org/10.1080/01635581.2016.1158300] [PMID: 27144297]
[150]
Sharifi, M.; Moridnia, A.; Mortazavi, D.; Salehi, M.; Bagheri, M.; Sheikhi, A. Kefir: a powerful probiotics with anticancer properties. Med. Oncol., 2017, 34(11), 183.
[http://dx.doi.org/10.1007/s12032-017-1044-9] [PMID: 28956261]
[151]
Uccello, M.; Malaguarnera, G.; Basile, F.; D’agata, V.; Malaguarnera, M.; Bertino, G.; Vacante, M.; Drago, F.; Biondi, A. Potential role of probiotics on colorectal cancer prevention. BMC Surg., 2012, 12(Suppl. 1), S35.
[http://dx.doi.org/10.1186/1471-2482-12-S1-S35] [PMID: 23173670]
[152]
Lee, J-E.; Lee, J.; Kim, J.H.; Cho, N.; Lee, S.H.; Park, S.B.; Koh, B.; Kang, D.; Kim, S.; Yoo, H.M. Characterization of the anti-cancer activity of the probiotic bacterium Lactobacillus fermentum using 2D vs. 3D culture in colorectal cancer cells. Biomolecules, 2019, 9(10)E557
[http://dx.doi.org/10.3390/biom9100557] [PMID: 31581581]
[153]
Quigley, E.M.M. Nutraceuticals as Modulators of Gut Microbiota: Role in Therapy. Br. J. Pharmacol., 2019. 177(6), 1351-1362.
[http://dx.doi.org/10.1111/bph.14902] [PMID: 31659751]
[154]
Sarkar, A.; Lehto, S.M.; Harty, S.; Dinan, T.G.; Cryan, J.F.; Burnet, P.W.J. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci., 2016, 39(11), 763-781.
[http://dx.doi.org/10.1016/j.tins.2016.09.002] [PMID: 27793434]
[155]
Cani, P.D. Human gut microbiome: hopes, threats and promises. Gut, 2018, 67(9), 1716-1725.
[http://dx.doi.org/10.1136/gutjnl-2018-316723] [PMID: 29934437]
[156]
Conlon, M.A.; Bird, A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 2014, 7(1), 17-44.
[http://dx.doi.org/10.3390/nu7010017] [PMID: 25545101]
[157]
Monda, V.; Villano, I.; Messina, A.; Valenzano, A.; Esposito, T.; Moscatelli, F.; Viggiano, A.; Cibelli, G.; Chieffi, S.; Monda, M.; Messina, G. Exercise modifies the gut microbiota with positive health effects. Oxid. Med. Cell. Longev., 2017, 20173831972
[http://dx.doi.org/10.1155/2017/3831972] [PMID: 28357027]
[158]
Fuller, R. Probiotics in man and animals. J. Appl. Bacteriol., 1989, 66(5), 365-378.
[http://dx.doi.org/10.1111/j.1365-2672.1989.tb05105.x] [PMID: 2666378]
[159]
Dunne, C. Adaptation of bacteria to the intestinal niche: probiotics and gut disorder. Inflamm. Bowel Dis., 2001, 7(2), 136-145.
[http://dx.doi.org/10.1097/00054725-200105000-00010] [PMID: 11383587]
[160]
Collado, M.C.; Isolauri, E.; Salminen, S.; Sanz, Y. The impact of probiotic on gut health. Curr. Drug Metab., 2009, 10(1), 68-78.
[http://dx.doi.org/10.2174/138920009787048437] [PMID: 19149514]
[161]
Rolfe, R.D. The role of probiotic cultures in the control of gastrointestinal health. J. Nutr., 2000, 130(2S)(Suppl.), 396S-402S.
[http://dx.doi.org/10.1093/jn/130.2.396S] [PMID: 10721914]
[162]
Parvez, S.; Malik, K.A.; Ah Kang, S.; Kim, H-Y. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol., 2006, 100(6), 1171-1185.
[http://dx.doi.org/10.1111/j.1365-2672.2006.02963.x] [PMID: 16696665]
[163]
Mangell, P.; Lennernäs, P.; Wang, M.; Olsson, C.; Ahrné, S.; Molin, G.; Thorlacius, H.; Jeppsson, B. Adhesive capability of Lactobacillus plantarum 299v is important for preventing bacterial translocation in endotoxemic rats. APMIS, 2006, 114(9), 611-618.
[http://dx.doi.org/10.1111/j.1600-0463.2006.apm_369.x] [PMID: 16948813]
[164]
Donaldson, G.P.; Lee, S.M.; Mazmanian, S.K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol., 2016, 14(1), 20-32.
[http://dx.doi.org/10.1038/nrmicro3552] [PMID: 26499895]
[165]
Hu, J.; Wang, C.; Ye, L.; Yang, W.; Huang, H.; Meng, F.; Shi, S.; Ding, Z. Anti-tumour immune effect of oral administration of Lactobacillus plantarum to CT26 tumour-bearing mice. J. Biosci., 2015, 40(2), 269-279.
[http://dx.doi.org/10.1007/s12038-015-9518-4] [PMID: 25963256]
[166]
Kato, I.; Endo, K.; Yokokura, T. Effects of oral administration of Lactobacillus casei on antitumor responses induced by tumor resection in mice. Int. J. Immunopharmacol., 1994, 16(1), 29-36.
[http://dx.doi.org/10.1016/0192-0561(94)90116-3] [PMID: 8150553]
[167]
Michail, S.; Durbin, M.; Turner, D.; Griffiths, A.M.; Mack, D.R.; Hyams, J.; Leleiko, N.; Kenche, H.; Stolfi, A.; Wine, E. Alterations in the gut microbiome of children with severe ulcerative colitis. Inflamm. Bowel Dis., 2012, 18(10), 1799-1808.
[http://dx.doi.org/10.1002/ibd.22860] [PMID: 22170749]
[168]
Watson, A.J.M.; Biancheri, P.; Patterson, A. The mucosal microbiome and recurrence after surgery for crohn’s disease. Gastroenterology, 2016, 150(7), 1682-1684.
[http://dx.doi.org/10.1053/j.gastro.2016.04.026] [PMID: 27151260]
[169]
Tedesco, D.; Thapa, M.; Chin, C.Y.; Ge, Y.; Gong, M.; Li, J.; Gumber, S.; Speck, P.; Elrod, E.J.; Burd, E.M.; Kitchens, W.H.; Magliocca, J.F.; Adams, A.B.; Weiss, D.S.; Mohamadzadeh, M.; Grakoui, A. Alterations in intestinal microbiota lead to production of interleukin 17 by intrahepatic γδ T-cell receptor-positive cells and pathogenesis of cholestatic liver disease. Gastroenterology, 2018, 154(8), 2178-2193.
[http://dx.doi.org/10.1053/j.gastro.2018.02.019] [PMID: 29454797]
[170]
Tripathi, A.; Debelius, J.; Brenner, D.A.; Karin, M.; Loomba, R.; Schnabl, B.; Knight, R. The gut-liver axis and the intersection with the microbiome. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(7), 397-411.
[http://dx.doi.org/10.1038/s41575-018-0011-z] [PMID: 29748586]
[171]
Meijnikman, A.S.; Gerdes, V.E.; Nieuwdorp, M.; Herrema, H. Evaluating causality of gut microbiota in obesity and diabetes in humans. Endocr. Rev., 2018, 39(2), 133-153.
[http://dx.doi.org/10.1210/er.2017-00192] [PMID: 29309555]
[172]
Yang, T.; Richards, E.M.; Pepine, C.J.; Raizada, M.K. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat. Rev. Nephrol., 2018, 14(7), 442-456.
[http://dx.doi.org/10.1038/s41581-018-0018-2] [PMID: 29760448]
[173]
Rothhammer, V.; Borucki, D.M.; Tjon, E.C.; Takenaka, M.C.; Chao, C-C.; Ardura-Fabregat, A.; de Lima, K.A.; Gutiérrez-Vázquez, C.; Hewson, P.; Staszewski, O.; Blain, M.; Healy, L.; Neziraj, T.; Borio, M.; Wheeler, M.; Dragin, L.L.; Laplaud, D.A.; Antel, J.; Alvarez, J.I.; Prinz, M.; Quintana, F.J. Microglial control of astrocytes in response to microbial metabolites. Nature, 2018, 557(7707), 724-728.
[http://dx.doi.org/10.1038/s41586-018-0119-x] [PMID: 29769726]
[174]
Espinoza, J.L.; Matsumoto, A.; Tanaka, H.; Matsumura, I. Gastric microbiota: an emerging player in Helicobacter pylori-induced gastric malignancies. Cancer Lett., 2018, 414, 147-152.
[http://dx.doi.org/10.1016/j.canlet.2017.11.009] [PMID: 29138097]
[175]
Nagasaka, M.; Sexton, R.; Alhasan, R.; Rahman, S.; Azmi, A.S.; Sukari, A. Gut microbiome and response to checkpoint inhibitors in non-small cell lung cancer-A review. Crit. Rev. Oncol. Hematol., 2020, 145, 102841-102841.
[http://dx.doi.org/10.1016/j.critrevonc.2019.102841] [PMID: 31884204]
[176]
Viaud, S.; Daillère, R.; Yamazaki, T.; Lepage, P.; Boneca, I.; Goldszmid, R.; Trinchieri, G.; Zitvogel, L. Why should we need the gut microbiota to respond to cancer therapies? OncoImmunology, 2014, 3(1), e27574.
[http://dx.doi.org/10.4161/onci.27574] [PMID: 24800167]
[177]
de Visser, K.E.; Eichten, A.; Coussens, L.M. Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer, 2006, 6(1), 24-37.
[http://dx.doi.org/10.1038/nrc1782] [PMID: 16397525]
[178]
Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, 19(11), 1423-1437.
[http://dx.doi.org/10.1038/nm.3394] [PMID: 24202395]
[179]
Gentile, C.L.; Weir, T.L. The gut microbiota at the intersection of diet and human health. Science, 2018, 362(6416), 776-780.
[http://dx.doi.org/10.1126/science.aau5812] [PMID: 30442802]
[180]
Sonnenburg, J.L.; Bäckhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature, 2016, 535(7610), 56-64.
[http://dx.doi.org/10.1038/nature18846] [PMID: 27383980]
[181]
Hao, W-L.; Lee, Y-K. Microflora of the Gastrointestinal Tract: A Review.Public Health Microbiology. ; Humana Press: New Jersey, 2004, Vol. 268, pp. 491-502.
[http://dx.doi.org/10.1385/1-59259-766-1:491]
[182]
Thomas, R.M.; Jobin, C. Microbiota in pancreatic health and disease: the next frontier in microbiome research. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(1), 53-64.
[http://dx.doi.org/10.1038/s41575-019-0242-7] [PMID: 31811279]
[183]
Cui, M.; Xiao, H.; Li, Y.; Zhou, L.; Zhao, S.; Luo, D.; Zheng, Q.; Dong, J.; Zhao, Y.; Zhang, X.; Zhang, J.; Lu, L.; Wang, H.; Fan, S. Faecal microbiota transplantation protects against radiation-induced toxicity. EMBO Mol. Med., 2017, 9(4), 448-461.
[http://dx.doi.org/10.15252/emmm.201606932] [PMID: 28242755]
[184]
Zhou, D.; Pan, Q.; Shen, F.; Cao, H.X.; Ding, W.J.; Chen, Y.W.; Fan, J.G. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci. Rep., 2017, 7(1), 1529.
[http://dx.doi.org/10.1038/s41598-017-01751-y] [PMID: 28484247]
[185]
Ferrere, G.; Wrzosek, L.; Cailleux, F.; Turpin, W.; Puchois, V.; Spatz, M.; Ciocan, D.; Rainteau, D.; Humbert, L.; Hugot, C.; Gaudin, F.; Noordine, M.L.; Robert, V.; Berrebi, D.; Thomas, M.; Naveau, S.; Perlemuter, G.; Cassard, A.M. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J. Hepatol., 2017, 66(4), 806-815.
[http://dx.doi.org/10.1016/j.jhep.2016.11.008] [PMID: 27890791]
[186]
Llopis, M.; Cassard, A.M.; Wrzosek, L.; Boschat, L.; Bruneau, A.; Ferrere, G.; Puchois, V.; Martin, J.C.; Lepage, P.; Le Roy, T.; Lefèvre, L.; Langelier, B.; Cailleux, F.; González-Castro, A.M.; Rabot, S.; Gaudin, F.; Agostini, H.; Prévot, S.; Berrebi, D.; Ciocan, D.; Jousse, C.; Naveau, S.; Gérard, P.; Perlemuter, G. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut, 2016, 65(5), 830-839.
[http://dx.doi.org/10.1136/gutjnl-2015-310585] [PMID: 26642859]
[187]
Łaniewski, P.; Ilhan, Z.E.; Herbst-Kralovetz, M.M. The microbiome and gynaecological cancer development, prevention and therapy. Nat. Rev. Urol., 2020, 17(4), 232-250.
[http://dx.doi.org/10.1038/s41585-020-0286-z] [PMID: 32071434]
[188]
Wang, S.; Xu, M.; Wang, W.; Cao, X.; Piao, M.; Khan, S.; Yan, F.; Cao, H.; Wang, B. Systematic Review: Adverse Events of Fecal Microbiota Transplantation. PLoS One, 2016, 11(8)e0161174
[http://dx.doi.org/10.1371/journal.pone.0161174] [PMID: 27529553]
[189]
Kovács, T.; Mikó, E.; Ujlaki, G.; Sári, Z.; Bai, P. The microbiome as a component of the tumor microenvironment. Adv. Exp. Med. Biol., 2020, 1225, 137-153.
[http://dx.doi.org/10.1007/978-3-030-35727-6_10] [PMID: 32030653]
[190]
Song, M.; Chan, A.T.; Sun, J. Influence of the gut microbiome, diet, and environment on risk of colorectal cancer. Gastroenterology, 2020, 158(2), 322-340.
[http://dx.doi.org/10.1053/j.gastro.2019.06.048] [PMID: 31586566]
[191]
Steck, S.E.; Murphy, E.A. Dietary patterns and cancer risk. Nat. Rev. Cancer, 2020, 20(2), 125-138.
[http://dx.doi.org/10.1038/s41568-019-0227-4] [PMID: 31848467]