Palladium-Catalyzed Cascade Reactions for Annulative π -Extension of Indoles to Carbazoles through C–H Bond Activation

Page: [2612 - 2633] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

The annulative π-extension (APEX) reactions through C-H bond activation has tremendous potential to access fused aromatic systems from relatively simple aromatic compounds in a single step. This state-of-the-art technique has the ability to streamline the synthesis of functionalized materials useful in material science, biomedical research, agroand pharmaceutical industries. Furthermore, C-H activation strategy does not require prefunctionalization steps, which allows for the late-stage modification of the functional molecule with requisite molecular properties. Owing to their unique photophysical properties, carbazoles are widely used in photovoltaic cells, biomedical imaging, fluorescent polymer, etc. It is also ubiquitously found in many natural products, agrochemicals and privileged medicinal scaffolds. Hence, direct conversion of easily accessible indole to carbazole remains an active research area. In the last decades, significant advancement has been made to access carbazole moiety directly from indole through cascade C-H activation. The underlying mechanism behind this cascade π-extension strategy is the facile electrophilic metalation at the C-3 position of the indole moiety, 1,2- migration and electro cyclization. In this review, we will discuss recent literature reports for the palladium-catalyzed π-extension of indole to carbazole moiety through C-H bond activation.

Keywords: Indole, carbazole, π-extension, C-H activation, annulation, palladium, cascade.

Graphical Abstract

[1]
Schmidt, A.W.; Reddy, K.R.; Knölker, H-J. Occurrence, biogenesis, and synthesis of biologically active carbazole. Alkaloids. Chem. Rev., 2012, 112, 3193-3328.
[http://dx.doi.org/10.1021/cr200447s]
[2]
Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev., 2012, 112, 2208-2267.
[http://dx.doi.org/10.1021/cr100380z]
[3]
Knölker, H-J.; Reddy, K.R. Isolation and synthesis of biologically active carbazole alkaloids. Chem. Rev., 2002, 102, 4303-4428.
[http://dx.doi.org/10.1021/cr020059j]
[4]
Ribierre, J.C.; Aoyama, T.; Muto, T.; André, P. Hybrid organic–inorganic liquid bistable memory devices. Org. Electron., 2011, 12, 1800-1805.
[http://dx.doi.org/10.1016/j.orgel.2011.07.007]
[5]
Li, J.; Grimsdale, A.C. Carbazole-based polymers for organic photovoltaic devices. Chem. Soc. Rev., 2010, 39, 2399-2410.
[http://dx.doi.org/10.1039/b915995a]
[6]
Grazulevicius, J.V.; Strohriegl, P.; Pielichowski, J.; Pielichowski, K. Carbazole-containing polymers: synthesis, properties and applications. Prog. Polym. Sci., 2003, 28, 1297-1353.
[http://dx.doi.org/10.1016/S0079-6700(03)00036-4]
[7]
Sadiq, Z.; Akbar Hussain, E.; Naz, S. Carbazole derivatives by microwave promoted protocols. Mini Rev. Org. Chem., 2017, 14, 469-488.
[http://dx.doi.org/10.2174/1570193X14666170518125756]
[8]
Stokes, B.J.; Jovanović, B.; Dong, H.; Richert, K.J.; Riell, R.D.; Driver, T.G. Rh2(II)-catalyzed synthesis of carbazoles from biaryl azides. J. Org. Chem., 2009, 74, 3225-3228.
[http://dx.doi.org/10.1021/jo9002536]
[9]
Yaqub, G.; Hussain, E.A.; Rehman, M.A.; Matten, B. Advancements in syntheses of carbazole and its dervatives. Asian J. Chem., 2009, 21, 2485-2520.
[10]
Campbell, N.; Barclay, B.M. Recent advances in the chemistry of carbazole. Chem. Rev., 1947, 40, 359-380.
[http://dx.doi.org/10.1021/cr60127a001]
[11]
Wang, T.; Hoye, T.R. Hexadehydro-Diels-Alder (HDDA)-enabled carbazolyne chemistry: single step, de Novo construction of the pyranocarbazole core of alkaloids of the Murraya koenigii (curry tree) family. J. Am. Chem. Soc., 2016, 138, 13870-13873.
[http://dx.doi.org/10.1021/jacs.6b09628]
[12]
Patel, O.P.S.; Mishra, A.; Maurya, R.; Saini, D.; Pandey, J.; Taneja, I.; Raju, K.S.R.; Kanojiya, S.; Shukla, S.K.; Srivastava, M.N.; Wahajuddin, M.; Tamrakar, A.K.; Srivastava, A.K.; Yadav, P.P. Naturally occurring carbazole alkaloids from Murraya koenigii as potential antidiabetic agents. J. Nat. Prod., 2016, 79, 1276-1284.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00883]
[13]
Naz, S.; Saied, S.; Ahmed, A.; Shahid, S.M. Three new carbazole alkaloids and biological activities of Murraya koenigii. J. Asian Nat. Prod. Res., 2015, 17, 7-13.
[http://dx.doi.org/10.1080/10286020.2014.959940]
[14]
Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S. Ackermann, L. 3d Transition metals for C–H activation. Chem. Rev., 2019, 119, 2192-2452.
[http://dx.doi.org/10.1021/acs.chemrev.8b00507]
[15]
Yanqi, W.; Yuehua, W.; Fengzhi, Z. Characteristics and trends of C-H activation research: a review of literature. Curr. Org. Synth., 2018, 15, 781-792.
[http://dx.doi.org/10.2174/1570179415666180426115417]
[16]
Chen, X.; Engle, K.M.; Wang, D-H.; Yu, J-Q. Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: versatility and practicality. Angew. Chem. Int. Ed., 2009, 48, 5094-5115.
[http://dx.doi.org/10.1002/anie.200806273]
[17]
Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Pd Metal catalysts for cross-couplings and related reactions in the 21st century: a critical review. Chem. Rev., 2018, 118, 2249-2295.
[http://dx.doi.org/10.1021/acs.chemrev.7b00443]
[18]
Ruiz-Castillo, P.; Buchwald, S.L. Applications of palladium-catalyzed C–N cross-coupling reactions. Chem. Rev., 2016, 116, 12564-12649.
[http://dx.doi.org/10.1021/acs.chemrev.6b00512]
[19]
Abrams, D.J.; Provencher, P.A.; Sorensen, E.J. Recent applications of C–H functionalization in complex natural product synthesis. Chem. Soc. Rev., 2018, 47, 8925-8967.
[http://dx.doi.org/10.1039/C8CS00716K]
[20]
Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A.K.; Lei, A. Recent advances in radical C–H activation/radical cross-coupling. Chem. Rev., 2017, 117, 9016-9085.
[http://dx.doi.org/10.1021/acs.chemrev.6b00620]
[21]
Drechsel, E. Ueber Elektrolyse des Phenols mit Wechselströmen. J. Prakt. Chem., 1888, 38, 65-74.
[http://dx.doi.org/10.1002/prac.18880380105]
[22]
Borsche, W. Ueber Tetra- and Hexahydrocarbazolverbindungen und eine neue Carbazolsynthese. Justus Liebigs Ann. Chem., 1908, 359, 49-80.
[http://dx.doi.org/10.1002/jlac.19083590103]
[23]
Graebe, C.; Ullmann, F. About a new carbazole synthesis. Justus Liebigs Ann. Chem., 1896, 291, 16-17.
[http://dx.doi.org/10.1002/jlac.18962910104]
[24]
Cadogan, J.I.G.; Cameron-Wood, M.; Mackie, R.K.; Searle, R.J.G. The reactivity of organophosphorus compounds. Part XIX. Reduction of nitro-compounds by triethyl phosphite: a convenient new route to carbazoles, indoles, indazoles, triazoles, and related compounds. J. Chem. Soc., 1965, 1965, 4831-4837.
[http://dx.doi.org/10.1039/jr9650004831]
[25]
Choi, S.; Chatterjee, T.; Choi, W.J.; You, Y.; Cho, E.J. Synthesis of carbazoles by a merged visible light photoredox and palladium-catalyzed process. ACS Catal., 2015, 5, 4796-4802.
[http://dx.doi.org/10.1021/acscatal.5b00817]
[26]
Tsang, W.C.P.; Munday, R.H.; Brasche, G.; Zheng, N.; Buchwald, S.L. Palladium-catalyzed method for the synthesis of carbazoles via tandem C−H functionalization and C−N bond formation. J. Org. Chem., 2008, 73, 7603-7610.
[http://dx.doi.org/10.1021/jo801273q]
[27]
Watanabe, T.; Ueda, S.; Inuki, S.; Oishi, S.; Fujii, N.; Ohno, H. One-pot synthesis of carbazoles by palladium-catalyzed N-arylation and oxidative coupling. Chem. Commun. (Camb.), 2007, 43, 4516-4518.
[http://dx.doi.org/10.1039/b707899d]
[28]
Liegault, B.; Lee, D.; Huestis, M.P.; Stuart, D.R.; Fagnou, K. Intramolecular Pd(II)-catalyzed oxidative biaryl synthesis under air: reaction development and scope. J. Org. Chem., 2008, 73, 5022-5028.
[http://dx.doi.org/10.1021/jo800596m]]
[29]
Aggarwal, T. Sushmita; Verma, A.K. Recent advances in the synthesis of carbazoles from indoles. Org. Biomol. Chem., 2019, 17, 8330-8342.
[http://dx.doi.org/10.1039/C9OB01381D]
[30]
Ito, H.; Ozaki, K.; Itami, K. Annulative π-Extension (APEX): rapid access to fused arenes, heteroarenes, and nanographenes. Angew. Chem. Int. Ed., 2017, 56, 11144-11164.
[http://dx.doi.org/10.1002/anie.201701058]
[31]
Van Order, R.B.; Lindwall, H.G. Indole. Chem. Rev., 1942, 30, 69-96.
[http://dx.doi.org/10.1021/cr60095a004]
[32]
Robinson, B. The Fischer indole synthesis. Chem. Rev., 1963, 63, 373-401.
[http://dx.doi.org/10.1021/cr60224a003]
[33]
Fischer, E.; Jourdan, F. Ueber die Hydrazine der Brenztraubensäure. Ber. Dtsch. Chem. Ges., 1883, 16, 2241-2245.
[http://dx.doi.org/10.1002/cber.188301602141]
[34]
Larock, R.C.; Yum, E.K.; Refvik, M.D. Synthesis of 2,3-disubstituted indoles via palladium-catalyzed annulation of internal alkynes. J. Org. Chem., 1998, 63, 7652-7662.
[http://dx.doi.org/10.1021/jo9803277]
[35]
Larock, R.C.; Yum, E.K. Synthesis of indoles via palladium-catalyzed heteroannulation of internal alkynes. J. Am. Chem. Soc., 1991, 113, 6689-6690.
[http://dx.doi.org/10.1021/ja00017a059]
[36]
Rutherford, J.L.; Rainka, M.P.; Buchwald, S.L. An annulative approach to highly substituted indoles: unusual effect of phenolic additives on the success of the arylation of ketone enolates. J. Am. Chem. Soc., 2002, 124, 15168-15169.
[http://dx.doi.org/10.1021/ja0288993]
[37]
Wagaw, S.; Yang, B.H.; Buchwald, S.L. A palladium-catalyzed method for the preparation of indoles via the Fischer indole synthesis. J. Am. Chem. Soc., 1999, 121, 10251-10263.
[http://dx.doi.org/10.1021/ja992077x]
[38]
Wagaw, S.; Yang, B.H.; Buchwald, S.L. A palladium-catalyzed strategy for the preparation of indoles: a novel entry into the Fischer indole synthesis. J. Am. Chem. Soc., 1998, 120, 6621-6622.
[http://dx.doi.org/10.1021/ja981045r]
[39]
Hegedus, L.S. Transition metals in the synthesis and functionalization of indoles. Angew. Chem. Int. Ed. Engl., 1988, 27, 1113-1126.
[http://dx.doi.org/10.1002/anie.198811133]
[40]
Hegedus, L.S.; Allen, G.F.; Bozell, J.J.; Waterman, E.L. Palladium-assisted intramolecular amination of olefins. Synthesis of nitrogen heterocycles. J. Am. Chem. Soc., 1978, 100, 5800-5807.
[http://dx.doi.org/10.1021/ja00486a035]
[41]
Hegedus, L.S.; Allen, G.F.; Waterman, E.L. Palladium assisted intramolecular amination of olefins. A new synthesis of indoles. J. Am. Chem. Soc., 1976, 98, 2674-2676.
[http://dx.doi.org/10.1021/ja00425a051]
[42]
Agasti, S.; Dey, A.; Maiti, D. Palladium-catalyzed benzofuran and indole synthesis by multiple C-H functionalizations. Chem. Commun. (Camb.), 2017, 53, 6544-6556.
[http://dx.doi.org/10.1039/C7CC02053H]
[43]
Yoshikai, N.; Wei, Y. Synthesis of pyrroles, indoles, and carbazoles through transition-metal-catalyzed C-H functionalization. Asian J. Org. Chem., 2013, 2, 466-478.
[http://dx.doi.org/10.1002/ajoc.201300016]
[44]
Song, J.J.; Reeves, J.T.; Fandrick, D.R.; Tan, Z.; Yee, N.K.; Senanayake, C.H. Construction of the indole nucleus through C-H functionalization reactions. ARKIVOC, 2010, 2010(1), 390-449.
[http://dx.doi.org/10.3998/ark.5550190.0011.110]
[45]
Wei, Y.; Deb, I.; Yoshikai, N. Palladium-catalyzed aerobic oxidative cyclization of N-aryl imines: indole synthesis from anilines and ketones. J. Am. Chem. Soc., 2012, 134, 9098-9101.
[http://dx.doi.org/10.1021/ja3030824]
[46]
Neumann, J.J.; Rakshit, S.; Dröge, T.; Würtz, S.; Glorius, F. Exploring the oxidative cyclization of substituted N-aryl enamines: Pd-catalyzed formation of indoles from anilines. Chemistry, 2011, 17, 7298-7303.
[http://dx.doi.org/10.1002/chem.201100631]
[47]
Guan, Z-H.; Yan, Z-Y.; Ren, Z-H.; Liu, X-Y.; Liang, Y-M. Preparation of indolesvia iron catalyzed direct oxidative coupling. Chem. Commun. (Camb.), 2010, 46, 2823-2825.
[http://dx.doi.org/10.1039/b923971e]
[48]
Bernini, R.; Fabrizi, G.; Sferrazza, A.; Cacchi, S. Copper-catalyzed C-C bond formation through C-H functionalization: synthesis of multisubstituted indoles from N-aryl enaminones. Angew. Chem. Int. Ed., 2009, 48, 8078-8081.
[http://dx.doi.org/10.1002/anie.200902440]
[49]
Yu, W.; Du, Y.; Zhao, K. PIDA-mediated oxidative C−C bond formation: novel synthesis of indoles from N-aryl enamines. Org. Lett., 2009, 11, 2417-2420.
[http://dx.doi.org/10.1021/ol900576a]
[50]
Würtz, S.; Rakshit, S.; Neumann, J.J.; Dröge, T.; Glorius, F. Palladium-catalyzed oxidative cyclization of N-aryl enamines: from anilines to indoles. Angew. Chem. Int. Ed., 2008, 47, 7230-7233.
[http://dx.doi.org/10.1002/anie.200802482]
[51]
Zhao, D.; Shi, Z.; Glorius, F. Indole synthesis by rhodium(III)-catalyzed hydrazine-directed c-h activation: Redox-neutral and traceless by N-N bond cleavage. Angew. Chem. Int. Ed., 2013, 52, 12426-12429.
[http://dx.doi.org/10.1002/anie.201306098]
[52]
Wang, C.; Sun, H.; Fang, Y.; Huang, Y. General and efficient synthesis of indoles through triazene-directed C–H annulation. Angew. Chem. Int. Ed., 2013, 52, 5795-5798.
[http://dx.doi.org/10.1002/anie.201301742]
[53]
Ackermann, L.; Lygin, A.V. Cationic ruthenium(II) catalysts for oxidative C–H/N–H bond functionalizations of anilines with removable directing group: synthesis of indoles in water. Org. Lett., 2012, 14, 764-767.
[http://dx.doi.org/10.1021/ol203309y]
[54]
Stuart, D.R.; Alsabeh, P.; Kuhn, M.; Fagnou, K. Rhodium(III)-catalyzed arene and alkene C−H bond functionalization leading to indoles and pyrroles. J. Am. Chem. Soc., 2010, 132, 18326-18339.
[http://dx.doi.org/10.1021/ja1082624]
[55]
Shi, Z.; Zhang, C.; Li, S.; Pan, D.; Ding, S.; Cui, Y.; Jiao, N. Indoles from simple anilines and alkynes: palladium-catalyzed C-H activation using dioxygen as the oxidant. Angew. Chem. Int. Ed., 2009, 48, 4572-4576.
[http://dx.doi.org/10.1002/anie.200901484]
[56]
Stuart, D.R.; Bertrand-Laperle, M.; Burgess, K.M.N.; Fagnou, K. Indole synthesis via rhodium catalyzed oxidative coupling of acetanilides and internal alkynes. J. Am. Chem. Soc., 2008, 130, 16474-16475.
[http://dx.doi.org/10.1021/ja806955s]
[57]
Sharma, U.; Kancherla, R.; Naveen, T.; Agasti, S.; Maiti, D. Palladium catalyzed annulation of diarylamines with olefins through C-H activation: direct access to N-arylindoles. Angew. Chem. Int. Ed., 2014, 53, 11895-11899.
[http://dx.doi.org/10.1002/anie.201406284]
[58]
Manna, M.K.; Hossian, A.; Jana, R. Merging C–H activation and alkene difunctionalization at room temperature: a palladium-catalyzed divergent synthesis of indoles and indolines. Org. Lett., 2015, 17, 672-675.
[http://dx.doi.org/10.1021/ol5036968]
[59]
Jagtap, R.A.; Punji, B. C−H Functionalization of indoles by 3d transition-metal catalysis. Asian J. Org. Chem., 2020, 9, 326-342.
[http://dx.doi.org/10.1002/ajoc.201900554]
[60]
Sandtorv, A.H. Transition metal-catalyzed C-H activation of indoles. Adv. Synth. Catal., 2015, 357, 2403-2435.
[http://dx.doi.org/10.1002/adsc.201500374]
[61]
Leitch, J.A.; Bhonoah, Y.; Frost, C.G. Beyond C2 and C3: transition-metal-catalyzed C–H functionalization of indole. ACS Catal., 2017, 7, 5618-5627.
[http://dx.doi.org/10.1021/acscatal.7b01785]
[62]
Deprez, N.R.; Kalyani, D.; Krause, A.; Sanford, M.S. Room temperature palladium-catalyzed 2-arylation of indoles. J. Am. Chem. Soc., 2006, 128(15), 4972-4973.
[http://dx.doi.org/10.1021/ja060809x]
[63]
Bellina, F.; Benelli, F.; Rossi, R. Direct palladium-catalyzed C-3 arylation of free (NH)-indoles with aryl bromides under ligandless conditions. J. Org. Chem., 2008, 73, 5529-5535.
[http://dx.doi.org/10.1021/jo8007572]
[64]
Phipps, R.J.; Grimster, N.P.; Gaunt, M.J. Cu(II)-Catalyzed direct and site-selective arylation of indoles under mild conditions. J. Am. Chem. Soc., 2008, 130, 8172-8174.
[http://dx.doi.org/10.1021/ja801767s]
[65]
Lane, B.S.; Brown, M.A.; Sames, D. Direct palladium-catalyzed C-2 and C-3 arylation of indoles: a mechanistic rationale for regioselectivity. J. Am. Chem. Soc., 2005, 127, 8050-8057.
[http://dx.doi.org/10.1021/ja043273t]
[66]
Grimster, N.P.; Gauntlett, C.; Godfrey, C.R.A.; Gaunt, M.J. Palladium-catalyzed intermolecular alkenylation of indoles by solvent-controlled regioselective C-H functionalization. Angew. Chem. Int. Ed., 2005, 44, 3125-3129.
[http://dx.doi.org/10.1002/anie.200500468]
[67]
Ozaki, K.; Zhang, H.; Ito, H.; Lei, A.; Itami, K. One-shot indole-to-carbazole π-extension by a Pd–Cu–Ag trimetallic system. Chem. Sci. (Camb.), 2013, 4, 3416-3420.
[http://dx.doi.org/10.1039/c3sc51447a]
[68]
Laha, J.K.; Dayal, N. A tandem approach to functionalized carbazoles from indoles via two successive regioselective oxidative Heck reactions followed by thermal electrocyclization. Org. Lett., 2015, 17, 4742-4745.
[http://dx.doi.org/10.1021/acs.orglett.5b02265]
[69]
Verma, A.K.; Danodia, A.K.; Saunthwal, R.K.; Patel, M.; Choudhary, D. Palladium-catalyzed triple successive C–H functionalization: direct synthesis of functionalized carbazoles from indoles. Org. Lett., 2015, 17, 3658-3661.
[http://dx.doi.org/10.1021/acs.orglett.5b01476]
[70]
An, Y-L.; Yang, Z-H.; Zhang, H-H.; Zhao, S-Y. Palladium-catalyzed tandem regioselective oxidative coupling from indoles and maleimides: one-pot synthesis of indolopyrrolocarbazoles and related indolylmaleimides. Org. Lett., 2016, 18, 152-155.
[http://dx.doi.org/10.1021/acs.orglett.5b02944]
[71]
Kong, A.; Han, X.; Lu, X. Highly efficient construction of benzene ring in carbazoles by palladium-catalyzed endo-mode oxidative cyclization of 3-(3‘-alkenyl)indoles. Org. Lett., 2006, 8, 1339-1342.
[http://dx.doi.org/10.1021/ol060039u]
[72]
Lin, K.; Jian, Y.; Zhao, P.; Zhao, C.S.; Pan, W.D.; Liu, S. A rapid construction of a specific quino[4,3-b] carbazolone system and its application for the synthesis of calothrixin B. Org. Chem. Front., 2018, 5, 590-594.
[http://dx.doi.org/10.1039/C7QO00864C]
[73]
Lianghua, G.; Mei, X.; Yong, J.; Sheng, L.; Weidong, P.; Lian, D. Tandem approach to functionalized pyrrolo[3,4-a]carbazole-1,3-diones via a Pd-catalyzed indole-to-carbazole transformation. Chem. Res. Chin. Univ., 2019, 35, 621-626.
[http://dx.doi.org/10.1007/s40242-019-8399-8]
[74]
Shi, Z.; Ding, S.; Cui, Y.; Jiao, N. A palladium-catalyzed oxidative cycloaromatization of biaryls with alkynes using molecular oxygen as the oxidant. Angew. Chem. Int. Ed., 2009, 48, 7895-7898.
[http://dx.doi.org/10.1002/anie.200903975]
[75]
Kumar, K.S.; Meesa, S.R.; Naikawadi, P.K. Palladium-catalyzed [2 + 2 + 2] annulation via transformations of multiple C-H bonds: one-pot synthesis of diverse indolo[3,2-a]carbazoles. Org. Lett., 2018, 20, 6079-6083.
[http://dx.doi.org/10.1021/acs.orglett.8b02465]
[76]
Raji Reddy, C.; Subbarao, M.; Sathish, P.; Kolgave, D.H.; Donthiri, R.R. One-pot assembly of 3-hydroxycarbazoles via uninterrupted propargylation/hydroxylative benzannulation reactions. Org. Lett., 2020, 22, 689-693.
[http://dx.doi.org/10.1021/acs.orglett.9b04472]
[77]
Yamashita, M.; Horiguchi, H.; Hirano, K.; Satoh, T.; Miura, M. Fused ring construction around pyrrole, indole, and related compounds via palladium-catalyzed oxidative coupling with alkynes. J. Org. Chem., 2009, 74, 7481-7488.
[http://dx.doi.org/10.1021/jo9016698]
[78]
Fosu, S.C.; Hambira, C.M.; Chen, A.D.; Fuchs, J.R.; Nagib, D.A. Site-selective C–H functionalization of (hetero)arenes via transient, non-symmetric iodanes. Chem, 2019, 5, 417-428.
[http://dx.doi.org/10.1016/j.chempr.2018.11.007]
[79]
Modha, S.G.; Greaney, M.F. Atom-economical transformation of diaryliodonium salts: tandem C–H and N–H arylation of indoles. J. Am. Chem. Soc., 2015, 137, 1416-1419.
[http://dx.doi.org/10.1021/ja5124754]
[80]
Zhu, D.; Liu, Q.; Luo, B.; Chen, M.; Pi, R.; Huang, P.; Wen, S. Synthesis of carbazoles via one-pot copper-catalyzed amine insertion into cyclic diphenyleneiodoniums as a strategy to generate a drug-like chemical library. Adv. Synth. Catal., 2013, 355, 2172-2178.
[http://dx.doi.org/10.1002/adsc.201300271]
[81]
Wu, Y.; Peng, X.; Luo, B.; Wu, F.; Liu, B.; Song, F.; Huang, P.; Wen, S. Palladium catalyzed dual C–H functionalization of indoles with cyclic diaryliodoniums, an approach to ring fused carbazole derivatives. Org. Biomol. Chem., 2014, 12, 9777-9780.
[http://dx.doi.org/10.1039/C4OB02170C]
[82]
Ye, Z.; Li, Y.; Xu, K.; Chen, N.; Zhang, F. Cascade π-extended decarboxylative annulation involving cyclic diaryliodonium salts: site-selective synthesis of phenanthridines and benzocarbazoles via a traceless directing group strategy. Org. Lett., 2019, 21, 9869-9873.
[http://dx.doi.org/10.1021/acs.orglett.9b03775]
[83]
Ozaki, K.; Matsuoka, W.; Ito, H.; Itami, K. Annulative π-Extension (APEX) of heteroarenes with dibenzosiloles and dibenzogermoles by palladium/o-chloranil catalysis. Org. Lett., 2017, 19, 1930-1933.
[http://dx.doi.org/10.1021/acs.orglett.7b00684]
[84]
Bhunia, S.K.; Polley, A.; Natarajan, R.; Jana, R. Through-space 1,4-palladium migration and 1,2-aryl shift: direct access to dibenzo[a,c]carbazoles through a triple C-H functionalization cascade. Chemistry, 2015, 21, 16786-16791.
[http://dx.doi.org/10.1002/chem.201503474]
[85]
Youn, S.W.; Lee, S.R. Unusual 1,2-aryl migration in Pd(II)-catalyzed aza-Wacker-type cyclization of 2-alkenylanilines. Org. Biomol. Chem., 2015, 13, 4652-4656.
[http://dx.doi.org/10.1039/C5OB00361J]
[86]
Kanno, H.; Nakamura, K.; Noguchi, K.; Shibata, Y.; Tanaka, K. Rhodium-catalyzed cycloisomerization of 2-silylethynyl phenols and anilines via 1,2-silicon migration. Org. Lett., 2016, 18, 1654-1657.
[http://dx.doi.org/10.1021/acs.orglett.6b00529]
[87]
Wu, L.; Deng, G.; Liang, Y. Synthesis of dibenzo[a,c]carbazoles from 2-(2-halophenyl)-indoles and iodobenzenes via palladium-catalyzed dual C–H functionalization. Org. Biomol. Chem., 2017, 15, 6808-6812.
[http://dx.doi.org/10.1039/C7OB01638G]
[88]
Kitano, H.; Matsuoka, W.; Ito, H.; Itami, K. Annulative π-extension of indoles and pyrroles with diiodobiaryls by Pd catalysis: rapid synthesis of nitrogen-containing polycyclic aromatic compounds. Chem. Sci. (Camb.), 2018, 9, 7556-7561.
[http://dx.doi.org/10.1039/C8SC02802H]
[89]
Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Iazzetti, A. Dibenzo[a,c]carbazoles from 2-(2-bromoaryl)-3-arylindoles via a palladium-catalyzed intramolecular C-H functionalization/C-C bond formation process. Org. Biomol. Chem., 2012, 10, 9142-9146.
[http://dx.doi.org/10.1039/c2ob26741a]
[90]
Tang, R-Y.; Li, J-H. PdCl2-catalyzed Domino reactions of 2-alkynylbenzaldehydes with indoles: synthesis of fluorescent 5H-benzo[b]carbazol-6-yl ketones. Chemistry, 2010, 16, 4733-4738.
[http://dx.doi.org/10.1002/chem.201000133]
[91]
Li, D-Y.; Wang, A.; Zhu, X-P.; Feng, W.; Liu, P-N. Direct access to substituted benzo[b]carbazoles through cascade annulation of 2-vinylbenzaldehydes with indoles. Chem. Commun. (Camb.), 2019, 55, 3339-3342.
[http://dx.doi.org/10.1039/C8CC10253H]
[92]
Ghanbari, M.; Kianmehr, E.; Karimi Behzad, S.; Ng, S.W. Direct synthesis of benzo[a]carbazoles by palladium-catalyzed domino reactions: synthesis and photophysical properties of diverse benzo[a]carbazoles. J. Iranian Chem. Soc., 2016, 13, 7-18.
[http://dx.doi.org/10.1007/s13738-015-0706-9]
[93]
Wang, T-T.; Zhao, L.; Zhang, Y-J.; Liao, W-W. Pd-Catalyzed intramolecular cyclization via direct C-H addition to nitriles: skeletal diverse synthesis of fused polycyclic indoles. Org. Lett., 2016, 18, 5002-5005.
[http://dx.doi.org/10.1021/acs.orglett.6b02460]
[94]
Kandukuri, S.R.; Jiao, L-Y.; Machotta, A.B.; Oestreich, M. Diastereotopic group selection in hydroxy-directed intramolecular C-H alkenylation of indole under oxidative palladium(II) catalysis. Adv. Synth. Catal., 2014, 356, 1597-1609.
[http://dx.doi.org/10.1002/adsc.201301108]
[95]
Jia, J.; Shi, J.; Zhou, J.; Liu, X.; Song, Y.; Xu, H.E.; Yi, W. Rhodium(III)-catalyzed C-H activation and intermolecular annulation with terminal alkynes: from indoles to carbazoles. Chem. Commun. (Camb.), 2015, 51, 2925-2928.
[http://dx.doi.org/10.1039/C4CC09823D]
[96]
Qiao, Y.; Wu, X-X.; Zhao, Y.; Sun, Y.; Li, B.; Chen, S. Copper‐catalyzed successive C-C bond formations on indoles or pyrrole: a convergent synthesis of symmetric and unsymmetric hydroxyl substituted N‐H carbazoles. Adv. Synth. Catal., 2018, 360, 2138-2143.
[http://dx.doi.org/10.1002/adsc.201800154]
[97]
Lee, J.Y.; Ha, H.; Bae, S.; Han, I.; Joo, J.M. Catalytic C‐2 allylation of indoles by electronic modulation of the indole ring and its application to the synthesis of functionalized carbazoles. Adv. Synth. Catal., 2016, 358, 3458-3470.
[http://dx.doi.org/10.1002/adsc.201600568]
[98]
Sha, F.; Tao, Y.; Tang, C-Y.; Zhang, F.; Wu, X-Y. Construction of benzo[c]carbazoles and their antitumor derivatives through the Diels-Alder reaction of 2-alkenylindoles and arynes. J. Org. Chem., 2015, 80, 8122-8133.
[http://dx.doi.org/10.1021/acs.joc.5b01223]
[99]
Lim, J.W.; Kim, S.H.; Kim, J.; Kim, J.N. Synthesis of benzo[a ]carbazoles from 2‐arylindoles via a sequential propargylation, propargyl‐allenyl isomerization, and 6π‐electrocyclization. Bull. Korean Chem. Soc., 2015, 36, 1351-1359.
[http://dx.doi.org/10.1002/bkcs.10258]
[100]
Chen, S.; Wang, L.; Zhang, J.; Hao, Z.; Huang, H.; Deng, G-J. Modular synthesis of carbazole-based conjugated molecules through a one-pot annulation/dehydrogenation sequence. J. Org. Chem., 2017, 82, 11182-11191.
[http://dx.doi.org/10.1021/acs.joc.7b02305]
[101]
Liu, C.; Huang, W.; Wang, M.; Pan, B.; Gu, Y. Expedient synthesis of substituted benzoheterocycles using 2-butoxy-2,3-dihydrofurans as benzannulation reagents. Adv. Synth. Catal., 2016, 358, 2260-2266.
[http://dx.doi.org/10.1002/adsc.201600185]
[102]
Gu, Y.; Huang, W.; Chen, S.; Wang, X. Bismuth(III) triflate catalyzed three-component reactions of indoles, ketones, and α-bromoacetaldehyde acetals enable indoleto-carbazole transformation. Org. Lett., 2018, 20, 4285-4289.
[http://dx.doi.org/10.1021/acs.orglett.8b01707]
[103]
Wu, F.; Huang, W. Yiliqi; Yang, J.; Gu, Y. Relay catalysis of bismuth trichloride and byproduct hydrogen bromide enables the synthesis of carbazole and benzo[α]carbazoles from indoles and α‐bromoacetaldehyde acetals. Adv. Synth. Catal., 2018, 360, 3318-3330.
[http://dx.doi.org/10.1002/adsc.201800669]
[104]
Yuan, Z.-G.; Wang, Q.; Zheng, A.; Zhang, K.; Lu, L.-Q.; Tang, Z.; Xiao, WJ. Visible light-photocatalysed carbazole synthesis via a formal (4+2) cycloaddition of indole-derived bromides and alkynes. Chem. Commun. (Camb.), 2016, 52, 5128-5131.
[http://dx.doi.org/10.1039/C5CC10542K]