Drug Repositioning for the Treatment of Hematologic Disease: Limits, Challenges and Future Perspectives

Page: [2195 - 2217] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Drug repositioning is a strategy to identify new uses for approved or investigational drugs that are used off-label outside the scope of the original medical indication.

In this review, we report the most relevant studies about drug repositioning in hematology, reporting the signalling pathways and molecular targets of these drugs, and describing the biological mechanisms which are responsible for their anticancer effects.

Although the majority of studies on drug repositioning in hematology concern acute myeloid leukemia and multiple myeloma, numerous studies are present in the literature on the possibility of using these drugs also in other hematological diseases, such as acute lymphoblastic leukemia, chronic myeloid leukemia, and lymphomas. Numerous anti-infectious drugs and chemical entities used for the therapy of neurological or endocrine diseases, oral antidiabetics, statins and medications used to treat high blood pressure and heart failure, bisphosphonate and natural substance such as artemisin and curcumin, have found a place in the treatment of hematological diseases. Moreover, several molecules drastically reversed the resistance of the tumor cells to the chemotherapeutic drugs both in vitro and in vivo.

Keywords: Drug repositioning, hematological disease, cancer, acute leukemia, multiple myeloma, lymphoma, Clarithromycin, bromocriptine, curcumin, nelfinavir.

[1]
Ashburn, T.T.; Thor, K.B. Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[2]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[3]
Haupt, V.J.; Aguilar Uvalle, J.E.; Salentin, S.; Daminelli, S.; Leonhardt, F.; Konc, J.; Schroeder, M. Computational drug repositioning by target hopping: a use case in Chagas disease drug repositioning by target hopping. Curr. Pharm. Des., 2016, 22(21), 3124-3134.
[http://dx.doi.org/10.2174/1381612822666160224143008] [PMID: 26873186]
[4]
Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res., 2015, 43(W1)W443-7
[http://dx.doi.org/10.1093/nar/gkv315] [PMID: 25873628]
[5]
Antoszczak, M.; Markowska, A.; Markowska, J.; Huczyński, A. Old wine in new bottles: drug repurposing in oncology. Eur. J. Pharmacol., 2020.866172784
[http://dx.doi.org/10.1016/j.ejphar.2019.172784] [PMID: 31730760]
[6]
Lara-Castillo, M.C.; Cornet-Masana, J.M.; Etxabe, A.; Banús-Mulet, A.; Torrente, M.A.; Nomdedeu, M.; Díaz-Beyá, M.; Esteve, J.; Risueño, R.M. Repositioning of bromocriptine for treatment of acute myeloid leukemia. J. Transl. Med., 2016, 14(1), 261.
[http://dx.doi.org/10.1186/s12967-016-1007-5] [PMID: 27604463]
[7]
Etxabe, A.; Lara-Castillo, M.C.; Cornet-Masana, J.M.; Banús-Mulet, A.; Nomdedeu, M.; Torrente, M.A.; Pratcorona, M.; Díaz-Beyá, M.; Esteve, J.; Risueño, R.M. Inhibition of serotonin receptor type 1 in acute myeloid leukemia impairs leukemia stem cell functionality: a promising novel therapeutic target. Leukemia, 2017, 31(11), 2288-2302.
[http://dx.doi.org/10.1038/leu.2017.52] [PMID: 28193998]
[8]
Sachlos, E.; Risueño, R.M.; Laronde, S.; Shapovalova, Z.; Lee, J-H.; Russell, J.; Malig, M.; McNicol, J.D.; Fiebig-Comyn, A.; Graham, M.; Levadoux-Martin, M.; Lee, J.B.; Giacomelli, A.O.; Hassell, J.A.; Fischer-Russell, D.; Trus, M.R.; Foley, R.; Leber, B.; Xenocostas, A.; Brown, E.D.; Collins, T.J.; Bhatia, M. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell, 2012, 149(6), 1284-1297.
[http://dx.doi.org/10.1016/j.cell.2012.03.049] [PMID: 22632761]
[9]
Liberante, F.G.; Pouryahya, T.; McMullin, M.F.; Zhang, S.D.; Mills, K.I. Identification and validation of the dopamine agonist bromocriptine as a novel therapy for high-risk myelodysplastic syndromes and secondary acute myeloid leukemia. Oncotarget, 2016, 7(6), 6609-6619.
[http://dx.doi.org/10.18632/oncotarget.6773] [PMID: 26735888]
[10]
Du, Y.; Li, K.; Wang, X.; Kaushik, A.C.; Junaid, M.; Wei, D. Identification of chlorprothixene as a potential drug that induces apoptosis and autophagic cell death in acute myeloid leukemia cells. FEBS J., 2020, 287(8), 1645-1665.
[http://dx.doi.org/10.1111/febs.15102]] [PMID: 31625692]
[11]
Spagnuolo, P.A.; Hu, J.; Hurren, R.; Wang, X.; Gronda, M.; Sukhai, M.A.; Di Meo, A.; Boss, J.; Ashali, I.; Beheshti Zavareh, R.; Fine, N.; Simpson, C.D.; Sharmeen, S.; Rottapel, R.; Schimmer, A.D. The antihelmintic flubendazole inhibits microtubule function through a mechanism distinct from Vinca alkaloids and displays preclinical activity in leukemia and myeloma. Blood, 2010, 115(23), 4824-4833.
[http://dx.doi.org/10.1182/blood-2009-09-243055] [PMID: 20348394]
[12]
Nygren, P.; Fryknäs, M.; Ågerup, B.; Larsson, R. Repositioning of the anthelmintic drug mebendazole for the treatment for colon cancer. J. Cancer Res. Clin. Oncol., 2013, 139(12), 2133-2140.
[http://dx.doi.org/10.1007/s00432-013-1539-5] [PMID: 24135855]
[13]
Ehsanian, R.; Van Waes, C.; Feller, S.M. Beyond DNA binding - a review of the potential mechanisms mediating quinacrine’s therapeutic activities in parasitic infections, inflammation, and cancers. Cell Commun. Signal., 2011, 9, 13.
[http://dx.doi.org/10.1186/1478-811X-9-13] [PMID: 21569639]
[14]
Gurova, K.V.; Hill, J.E.; Guo, C.; Prokvolit, A.; Burdelya, L.G.; Samoylova, E.; Khodyakova, A.V.; Ganapathi, R.; Ganapathi, M.; Tararova, N.D.; Bosykh, D.; Lvovskiy, D.; Webb, T.R.; Stark, G.R.; Gudkov, A.V. Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-kappaB-dependent mechanism of p53 suppression in tumors. Proc. Natl. Acad. Sci. USA, 2005, 102(48), 17448-17453.
[http://dx.doi.org/10.1073/pnas.0508888102] [PMID: 16287968]
[15]
Eriksson, A.; Österroos, A.; Hassan, S.; Gullbo, J.; Rickardson, L.; Jarvius, M.; Nygren, P.; Fryknäs, M.; Höglund, M.; Larsson, R. Drug screen in patient cells suggests quinacrine to be repositioned for treatment of acute myeloid leukemia. Blood Cancer J., 2015, 5(4)e307
[http://dx.doi.org/10.1038/bcj.2015.31] [PMID: 25885427]
[16]
Guzman, M.L.; Neering, S.J.; Upchurch, D.; Grimes, B.; Howard, D.S.; Rizzieri, D.A.; Luger, S.M.; Jordan, C.T. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood, 2001, 98(8), 2301-2307.
[http://dx.doi.org/10.1182/blood.V98.8.2301] [PMID: 11588023]
[17]
Keutgens, A.; Robert, I.; Viatour, P.; Chariot, A. Deregulated NF-kappaB activity in haematological malignancies. Biochem. Pharmacol., 2006, 72(9), 1069-1080.
[http://dx.doi.org/10.1016/j.bcp.2006.06.011] [PMID: 16854381]
[18]
Eriksson, A.; Chantzi, E.; Fryknäs, M.; Gullbo, J.; Nygren, P.; Gustafsson, M.; Höglund, M.; Larsson, R. Towards repositioning of quinacrine for treatment of acute myeloid leukemia - promising synergies and in vivo effects. Leuk. Res., 2017, 63, 41-46.
[http://dx.doi.org/10.1016/j.leukres.2017.10.012] [PMID: 29100024]
[19]
Ali, B.H. Pharmacological, therapeutic and toxicological properties of furazolidone: some recent research. Vet. Res. Commun., 1999, 23(6), 343-360.
[http://dx.doi.org/10.1023/A:1006333608012] [PMID: 10543364]
[20]
Zullo, A.; Ierardi, E.; Hassan, C.; De Francesco, V. Furazolidone-based therapies for Helicobacter pylori infection: a pooled-data analysis. Saudi J. Gastroenterol., 2012, 18(1), 11-17.
[http://dx.doi.org/10.4103/1319-3767.91729] [PMID: 22249086]
[21]
Jiang, X.; Sun, L.; Qiu, J.J.; Sun, X.; Li, S.; Wang, X.; So, C.W.; Dong, S. A novel application of furazolidone: anti-leukemic activity in acute myeloid leukemia. PLoS One, 2013, 8(8)e72335
[http://dx.doi.org/10.1371/journal.pone.0072335] [PMID: 23951311]
[22]
Insel, P.A.; Zhang, L.; Murray, F.; Yokouchi, H.; Zambon, A.C. Cyclic AMP is both a pro-apoptotic and anti-apoptotic second messenger. Acta Physiol. (Oxf.), 2012, 204(2), 277-287.
[http://dx.doi.org/10.1111/j.1748-1716.2011.02273.x] [PMID: 21385327]
[23]
Conti, M.; Mika, D.; Richter, W. Cyclic AMP compartments and signaling specificity: role of cyclic nucleotide phosphodiesterases. J. Gen. Physiol., 2014, 143(1), 29-38.
[http://dx.doi.org/10.1085/jgp.201311083] [PMID: 24378905]
[24]
Perez, D.R.; Smagley, Y.; Garcia, M.; Carter, M.B.; Evangelisti, A.; Matlawska-Wasowska, K.; Winter, S.S.; Sklar, L.A.; Chigaev, A. Cyclic AMP efflux inhibitors as potential therapeutic agents for leukemia. Oncotarget, 2016, 7(23), 33960-33982.
[http://dx.doi.org/10.18632/oncotarget.8986] [PMID: 27129155]
[25]
Yonezawa, H.; Ogawa, M. Katayama, S.; Shimizu, Y.; Omori, N.; Oku, Y.; Sakyo, T.; Uehara, Y.; Nishiya, N. Clotrimazole inhibits the Wnt/b-catenin pathway by activating two eIF2a kinases: The heme-regulated translational inhibitor and the double-stranded RNA-induced protein kinase. Biochem. Biophys. Res. Commun., 2018, 506(1), 183-188.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.053] [PMID: 30342850]
[26]
Allegra, A.; Innao, V.; Gerace, D.; Bianco, O.; Musolino, C. The metabolomic signature of hematologic malignancies. Leuk. Res., 2016, 49, 22-35.
[http://dx.doi.org/10.1016/j.leukres.2016.08.002] [PMID: 27526405]
[27]
Nangia-Makker, P.; Yu, Y.; Vasudevan, A.; Farhana, L.; Rajendra, S.G.; Levi, E.; Majumdar, A.P. Metformin: a potential therapeutic agent for recurrent colon cancer. PLoS One, 2014, 9(1)e84369
[http://dx.doi.org/10.1371/journal.pone.0084369] [PMID: 24465408]
[28]
Whitburn, J.; Edwards, C.M.; Sooriakumaran, P. Metformin and prostate cancer: a new role for an old drug. Curr. Urol. Rep., 2017, 18(6), 46.
[http://dx.doi.org/10.1007/s11934-017-0693-8] [PMID: 28444639]
[29]
Minami, Y.; Yamamoto, K.; Kiyoi, H.; Ueda, R.; Saito, H.; Naoe, T. Different antiapoptotic pathways between wild-type and mutated FLT3: insights into therapeutic targets in leukemia. Blood, 2003, 102(8), 2969-2975.
[http://dx.doi.org/10.1182/blood-2002-12-3813] [PMID: 12842996]
[30]
Chang, F.; Steelman, L.S.; Lee, J.T.; Shelton, J.G.; Navolanic, P.M.; Blalock, W.L.; Franklin, R.A.; McCubrey, J.A. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia, 2003, 17(7), 1263-1293.
[http://dx.doi.org/10.1038/sj.leu.2402945] [PMID: 12835716]
[31]
Sabnis, H.S.; Bradley, H.L.; Tripathi, S.; Yu, W.M.; Tse, W.; Qu, C.K.; Bunting, K.D. Synergistic cell death in FLT3-ITD positive acute myeloid leukemia by combined treatment with metformin and 6-benzylthioinosine. Leuk. Res., 2016, 50, 132-140.
[http://dx.doi.org/10.1016/j.leukres.2016.10.004] [PMID: 27760406]
[32]
Wang, F.; Liu, Z.; Zeng, J.; Zhu, H.; Li, J.; Cheng, X.; Jiang, T.; Zhang, L.; Zhang, C.; Chen, T.; Liu, T.; Jia, Y. Metformin synergistically sensitizes FLT3-ITD-positive acute myeloid leukemia to sorafenib by promoting mTOR-mediated apoptosis and autophagy. Leuk. Res., 2015, 39(12), 1421-1427.
[http://dx.doi.org/10.1016/j.leukres.2015.09.016] [PMID: 26505133]
[33]
Buemi, M.; Allegra, A.; Senatore, M.; Marino, D.; Medici, M.A.; Aloisi, C.; Di Pasquale, G.; Corica, F. Pro-apoptotic effect of fluvastatin on human smooth muscle cells. Eur. J. Pharmacol., 1999, 370(2), 201-203.
[http://dx.doi.org/10.1016/S0014-2999(99)00122-3] [PMID: 10323270]
[34]
Jang, J.; Lee, J.; Jang, J.H.; Jung, C.W.; Park, S. Anti-leukemic effects of simvastatin on NRASG12D mutant acute myeloid leukemia cells. Mol. Biol. Rep., 2019, 46(6), 5859-5866.
[http://dx.doi.org/10.1007/s11033-019-05019-8] [PMID: 31452046]
[35]
Advani, A.S.; Li, H.; Michaelis, L.C.; Medeiros, B.C.; Liedtke, M.; List, A.F.; O’Dwyer, K.; Othus, M.; Erba, H.P.; Appelbaum, F.R. Report of the relapsed/refractory cohort of SWOG S0919: A phase 2 study of idarubicin and cytarabine in combination with pravastatin for acute myelogenous leukemia (AML). Leuk. Res., 2018, 67, 17-20.
[http://dx.doi.org/10.1016/j.leukres.2018.01.021] [PMID: 29407182]
[36]
Shadman, M.; Mawad, R.; Dean, C.; Chen, T.L.; Shannon-Dorcy, K.; Sandhu, V.; Hendrie, P.C.; Scott, B.L.; Walter, R.B.; Becker, P.S.; Pagel, J.M.; Estey, E.H. Idarubicin, cytarabine, and pravastatin as induction therapy for untreated acute myeloid leukemia and high-risk myelodysplastic syndrome. Am. J. Hematol., 2015, 90(6), 483-486.
[http://dx.doi.org/10.1002/ajh.23981] [PMID: 25689471]
[37]
Pemovska, T.; Kontro, M.; Yadav, B.; Edgren, H.; Eldfors, S.; Szwajda, A.; Almusa, H.; Bespalov, M.M.; Ellonen, P.; Elonen, E.; Gjertsen, B.T.; Karjalainen, R.; Kulesskiy, E.; Lagström, S.; Lehto, A.; Lepistö, M.; Lundán, T.; Majumder, M.M.; Marti, J.M.; Mattila, P.; Murumägi, A.; Mustjoki, S.; Palva, A.; Parsons, A.; Pirttinen, T.; Rämet, M.E.; Suvela, M.; Turunen, L.; Västrik, I.; Wolf, M.; Knowles, J.; Aittokallio, T.; Heckman, C.A.; Porkka, K.; Kallioniemi, O.; Wennerberg, K. Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. Cancer Discov., 2013, 3(12), 1416-1429.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0350] [PMID: 24056683]
[38]
Sredni, B.; Tichler, T.; Shani, A.; Catane, R.; Kaufman, B.; Strassmann, G.; Albeck, M.; Kalechman, Y. Predominance of TH1 response in tumor-bearing mice and cancer patients treated with AS101. J. Natl. Cancer Inst., 1996, 88(18), 1276-1284.
[http://dx.doi.org/10.1093/jnci/88.18.1276] [PMID: 8797767]
[39]
Sredni, B.; Gal, R.; Cohen, I.J.; Dazard, J.E.; Givol, D.; Gafter, U.; Motro, B.; Eliyahu, S.; Albeck, M.; Lander, H.M.; Kalechman, Y. Hair growth induction by the Tellurium immunomodulator AS101: association with delayed terminal differentiation of follicular keratinocytes and RAS-dependent up-regulation of KGF expression. FASEB J., 2004, 18(2), 400-402.
[http://dx.doi.org/10.1096/fj.03-0552fje] [PMID: 14656992]
[40]
Sredni, B.; Weil, M.; Khomenok, G.; Lebenthal, I.; Teitz, S.; Mardor, Y.; Ram, Z.; Orenstein, A.; Kershenovich, A.; Michowiz, S.; Cohen, Y.I.; Rappaport, Z.H.; Freidkin, I.; Albeck, M.; Longo, D.L.; Kalechman, Y. Ammonium trichloro(dioxoethylene-o,o′)tellurate (AS101) sensitizes tumors to chemotherapy by inhibiting the tumor interleukin 10 autocrine loop. Cancer Res., 2004, 64(5), 1843-1852.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3179] [PMID: 14996748]
[41]
O’Neill, S.; Robinson, A.; Deering, A.; Ryan, M.; Fitzgerald, D.J.; Moran, N. The platelet integrin alpha IIbbeta 3 has an endogenous thiol isomerase activity. J. Biol. Chem., 2000, 275(47), 36984-36990.
[http://dx.doi.org/10.1074/jbc.M003279200] [PMID: 10942760]
[42]
Sredni, B.; Geffen-Aricha, R.; Duan, W.; Albeck, M.; Shalit, F.; Lander, H.M.; Kinor, N.; Sagi, O.; Albeck, A.; Yosef, S.; Brodsky, M.; Sredni-Kenigsbuch, D.; Sonino, T.; Longo, D.L.; Mattson, M.P.; Yadid, G. Multifunctional tellurium molecule protects and restores dopaminergic neurons in Parkinson’s disease models. FASEB J., 2007, 21(8), 1870-1883.
[http://dx.doi.org/10.1096/fj.06-7500com] [PMID: 17314138]
[43]
Chigaev, A.; Zwartz, G.J.; Buranda, T.; Edwards, B.S.; Prossnitz, E.R.; Sklar, L.A. Conformational regulation of alpha 4 beta 1-integrin affinity by reducing agents. “Inside-out” signaling is independent of and additive to reduction-regulated integrin activation. J. Biol. Chem., 2004, 279(31), 32435-32443.
[http://dx.doi.org/10.1074/jbc.M404387200] [PMID: 15166232]
[44]
Yan, B.; Smith, J.W. Mechanism of integrin activation by disulfide bond reduction. Biochemistry, 2001, 40(30), 8861-8867.
[http://dx.doi.org/10.1021/bi002902i] [PMID: 11467947]
[45]
Layani-Bazar, A.; Skornick, I.; Berrebi, A.; Pauker, M.H.; Noy, E.; Silberman, A.; Albeck, M.; Longo, D.L.; Kalechman, Y.; Sredni, B. Redox modulation of adjacent thiols in VLA-4 by AS101 converts myeloid leukemia cells from a drug-resistant to drug-sensitive state. Cancer Res., 2014, 74(11), 3092-3103.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2159] [PMID: 24699624]
[46]
King, C.L.; Suamani, J.; Sanuku, N.; Cheng, Y.C.; Satofan, S.; Mancuso, B.; Goss, C.W.; Robinson, L.J.; Siba, P.M.; Weil, G.J.; Kazura, J.W. A trial of a triple-drug treatment for lymphatic filariasis. N. Engl. J. Med., 2018, 379(19), 1801-1810.
[http://dx.doi.org/10.1056/NEJMoa1706854] [PMID: 30403937]
[47]
Melotti, A.; Mas, C.; Kuciak, M.; Lorente-Trigos, A.; Borges, I.; Ruiz i Altaba, A. The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT-TCF pathway responses in human cancer. EMBO Mol. Med., 2014, 6(10), 1263-1278.
[http://dx.doi.org/10.15252/emmm.201404084] [PMID: 25143352]
[48]
Dou, Q.; Chen, H.N.; Wang, K.; Yuan, K.; Lei, Y.; Li, K.; Lan, J.; Chen, Y.; Huang, Z.; Xie, N.; Zhang, L.; Xiang, R.; Nice, E.C.; Wei, Y.; Huang, C. Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer. Cancer Res., 2016, 76(15), 4457-4469.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2887] [PMID: 27302166]
[49]
Lespine, A.; Martin, S.; Dupuy, J.; Roulet, A.; Pineau, T.; Orlowski, S.; Alvinerie, M. Interaction of macrocyclic lactones with P-glycoprotein: structure-affinity relationship. Eur. J. Pharm. Sci., 2007, 30(1), 84-94.
[http://dx.doi.org/10.1016/j.ejps.2006.10.004] [PMID: 17134887]
[50]
Lespine, A.; Dupuy, J.; Orlowski, S.; Nagy, T.; Glavinas, H.; Krajcsi, P.; Alvinerie, M. Interaction of ivermectin with multidrug resistance proteins (MRP1, 2 and 3). Chem. Biol. Interact., 2006, 159(3), 169-179.
[http://dx.doi.org/10.1016/j.cbi.2005.11.002] [PMID: 16384552]
[51]
Korystov, Y.N.; Ermakova, N.V.; Kublik, L.N.; Levitman, M.Kh.; Shaposhnikova, V.V.; Mosin, V.A.; Drinyaev, V.A.; Kruglyak, E.B.; Novik, T.S.; Sterlina, T.S. Avermectins inhibit multidrug resistance of tumor cells. Eur. J. Pharmacol., 2004, 493(1-3), 57-64.
[http://dx.doi.org/10.1016/j.ejphar.2004.03.067] [PMID: 15189764]
[52]
Jiang, L.; Wang, P.; Sun, Y.J.; Wu, Y.J. Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 265.
[http://dx.doi.org/10.1186/s13046-019-1251-7] [PMID: 31215501]
[53]
Xu, S.; Liu, P. Tanshinone II-A: new perspectives for old remedies. Expert Opin. Ther. Pat., 2013, 23(2), 149-153.
[http://dx.doi.org/10.1517/13543776.2013.743995] [PMID: 23231009 ]
[54]
Dong, Y.; Morris-Natschke, S.L.; Lee, K.H. Biosynthesis, total syntheses, and antitumor activity of tanshinones and their analogs as potential therapeutic agents. Nat. Prod. Rep., 2011, 28(3), 529-542.
[http://dx.doi.org/10.1039/c0np00035c] [PMID: 21225077]
[55]
Pan, T.L.; Wang, P.W.; Hung, Y.C.; Huang, C.H.; Rau, K.M. Proteomic analysis reveals tanshinone IIA enhances apoptosis of advanced cervix carcinoma CaSki cells through mitochondria intrinsic and endoplasmic reticulum stress pathways. Proteomics, 2013, 13(23-24), 3411-3423.
[http://dx.doi.org/10.1002/pmic.201300274] [PMID: 24167031]
[56]
Shan, Y.F.; Shen, X.; Xie, Y.K.; Chen, J.C.; Shi, H.Q.; Yu, Z.P.; Song, Q.T.; Zhou, M.T.; Zhang, Q.Y. Inhibitory effects of tanshinone II-A on invasion and metastasis of human colon carcinoma cells. Acta Pharmacol. Sin., 2009, 30(11), 1537-1542.
[http://dx.doi.org/10.1038/aps.2009.139] [PMID: 19820721]
[57]
Zhou, L.H.; Hu, Q.; Sui, H.; Ci, S.J.; Wang, Y.; Liu, X.; Liu, N.N.; Yin, P.H.; Qin, J.M.; Li, Q. Tanshinone II--a inhibits angiogenesis through down regulation of COX-2 in human colorectal cancer. Asian Pac. J. Cancer Prev., 2012, 13(9), 4453-4458.
[http://dx.doi.org/10.7314/APJCP.2012.13.9.4453] [PMID: 23167360]
[58]
Zhai, X.M.; He, S.X.; Ren, M.D.; Chen, J.H.; Wang, Z.L.; Han, M.; Hou, H.L. [Effect of Tanshinone II A on expression of EGF and EGFR in hepatocellular carcinoma cell line SMMC-7721]. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2009, 38(2), 163-169.
[PMID: 19363824]
[59]
Lin, C.; Wang, L.; Wang, H.; Yang, L.; Guo, H.; Wang, X. Tanshinone IIA inhibits breast cancer stem cells growth in vitro and in vivo through attenuation of IL-6/STAT3/NF-kB signaling pathways. J. Cell. Biochem., 2013, 114(9), 2061-2070.
[http://dx.doi.org/10.1002/jcb.24553] [PMID: 23553622]
[60]
Chen, S-J. A potential target of Tanshinone IIA for acute promyelocytic leukemia revealed by inverse docking and drug repurposing. Asian Pac. J. Cancer Prev., 2014, 15(10), 4301-4305.
[http://dx.doi.org/10.7314/APJCP.2014.15.10.4301] [PMID: 24935388]
[61]
de Thé, H.; Chen, Z. Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat. Rev. Cancer, 2010, 10(11), 775-783.
[http://dx.doi.org/10.1038/nrc2943] [PMID: 20966922]
[62]
Wang, L.; Zhou, G.B.; Liu, P.; Song, J.H.; Liang, Y.; Yan, X.J.; Xu, F.; Wang, B.S.; Mao, J.H.; Shen, Z.X.; Chen, S.J.; Chen, Z. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc. Natl. Acad. Sci. USA, 2008, 105(12), 4826-4831.
[http://dx.doi.org/10.1073/pnas.0712365105] [PMID: 18344322]
[63]
Marstrand, T.T.; Borup, R.; Willer, A.; Borregaard, N.; Sandelin, A.; Porse, B.T.; Theilgaard-Mönch, K. A conceptual framework for the identification of candidate drugs and drug targets in acute promyelocytic leukemia. Leukemia, 2010, 24(7), 1265-1275.
[http://dx.doi.org/10.1038/leu.2010.95] [PMID: 20508621]
[64]
Kasner, M.T.; Luger, S.M. Update on the therapy for myelodysplastic syndrome. Am. J. Hematol., 2009, 84(3), 177-186.
[http://dx.doi.org/10.1002/ajh.21352] [PMID: 19195035]
[65]
Musolino, C.; Sant’antonio, E.; Penna, G.; Alonci, A.; Russo, S.; Granata, A.; Allegra, A. Epigenetic therapy in myelodysplastic syndromes. Eur. J. Haematol., 2010, 84(6), 463-473.
[http://dx.doi.org/10.1111/j.1600-0609.2010.01433.x] [PMID: 20192987]
[66]
Gore, S.D. In vitro basis for treatment with hypomethylating agents and histone deacetylase inhibitors: can epigenetic changes be used to monitor treatment? Leuk. Res., 2009, 33(Suppl. 2), S2-S6.
[http://dx.doi.org/10.1016/S0145-2126(09)70226-7] [PMID: 20004793]
[67]
Segura-Pacheco, B.; Trejo-Becerril, C.; Pérez-Cárdenas, E.; Taja-Chayeb, L.; Mariscal, I.; Chavez, A.; Acuña, C.; Salazar, A.M.; Lizano, M.; Dueñas-Gonzalez, A. Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy. Clin. Cancer Res., 2003, 9(5), 1596-1603.
[PMID: 12738711]
[68]
Zambrano, P.; Segura-Pacheco, B.; Pérez-Cárdenas, E.; Cetina, L.; Revilla-Vazquez, A.; Taja-Chayeb, L.; Chavez-Blanco, A.; Angeles, E.; Cabrera, G.; Sandoval, K.; Trejo-Becerril, C.; Chanona-Vilchis, J.; Duenas-González, A. A phase I study of hydralazine to demethylate and reactivate the expression of tumor suppressor genes. BMC Cancer, 2005, 5, 44.
[http://dx.doi.org/10.1186/1471-2407-5-44] [PMID: 15862127]
[69]
Li, H.; Chen, S.; Shu, Y.; Chen, Y.; Su, Y.; Wang, X.; Zou, S. Synergy of DNA methylation and histone deacetylase inhibitors in the re-expression of RASSF1A and P16 genes silenced in QBC cells. Chinese-German J. Clin. Oncol., 2008, 7, 627-630.
[http://dx.doi.org/10.1007/s10330-008-0119-7]
[70]
Li, H.; Chen, S.; Shu, Y.; Chen, Y.; Su, Y.; Wang, X.; Zou, S. Effects of hydralazine and valproate on the expression of E-cadherin gene and the invasiveness and the invasiveness of QBC939 cells. Front. Med. China, 2009, 3, 153-157.
[http://dx.doi.org/10.1007/s11684-009-0034-5]
[71]
Candelaria, M.; Gallardo-Rincón, D.; Arce, C.; Cetina, L.; Aguilar-Ponce, J.L.; Arrieta, O.; González-Fierro, A.; Chávez-Blanco, A.; de la Cruz-Hernández, E.; Camargo, M.F.; Trejo-Becerril, C.; Pérez-Cárdenas, E.; Pérez-Plasencia, C.; Taja-Chayeb, L.; Wegman-Ostrosky, T.; Revilla-Vazquez, A.; Dueñas-González, A. A phase II study of epigenetic therapy with hydralazine and magnesium valproate to overcome chemotherapy resistance in refractory solid tumors. Ann. Oncol., 2007, 18(9), 1529-1538.
[http://dx.doi.org/10.1093/annonc/mdm204] [PMID: 17761710]
[72]
Göttlicher, M.; Minucci, S.; Zhu, P.; Krämer, O.H.; Schimpf, A.; Giavara, S.; Sleeman, J.P.; Lo Coco, F.; Nervi, C.; Pelicci, P.G.; Heinzel, T. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J., 2001, 20(24), 6969-6978.
[http://dx.doi.org/10.1093/emboj/20.24.6969] [PMID: 11742974]
[73]
Blaheta, R.A.; Michaelis, M.; Driever, P.H.; Cinatl, J., Jr Evolving anticancer drug valproic acid: insights into the mechanism and clinical studies. Med. Res. Rev., 2005, 25(4), 383-397.
[http://dx.doi.org/10.1002/med.20027] [PMID: 15637697]
[74]
Soto, H.; Sanchez, K.; Escobar, J.Y.; Constanzo, A.; Fernandez, Z.; Melendez, C. Cost-effectiveness analysis of hydralazine and magnesium valproate LP associated with treatment for adult patients with metastatic recurrent or persistent cervical cancer in Mexico. Value Health, 2014, 17(7), A639.
[http://dx.doi.org/10.1016/j.jval.2014.08.2300] [PMID: 27202285]
[75]
Candelaria, M.; Herrera, A.; Labardini, J.; González-Fierro, A.; Trejo-Becerril, C.; Taja-Chayeb, L.; Pérez-Cárdenas, E.; de la Cruz-Hernández, E.; Arias-Bofill, D.; Vidal, S.; Cervera, E.; Dueñas-Gonzalez, A. Hydralazine and magnesium valproate as epigenetic treatment for myelodysplastic syndrome. Preliminary results of a phase-II trial. Ann. Hematol., 2011, 90(4), 379-387.
[http://dx.doi.org/10.1007/s00277-010-1090-2] [PMID: 20922525]
[76]
Soriano, A.O.; Yang, H.; Faderl, S.; Estrov, Z.; Giles, F.; Ravandi, F.; Cortes, J.; Wierda, W.G.; Ouzounian, S.; Quezada, A.; Pierce, S.; Estey, E.H.; Issa, J.P.; Kantarjian, H.M.; Garcia-Manero, G. Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. Blood, 2007, 110(7), 2302-2308.
[http://dx.doi.org/10.1182/blood-2007-03-078576] [PMID: 17596541]
[77]
Blum, W.; Klisovic, R.B.; Hackanson, B.; Liu, Z.; Liu, S.; Devine, H.; Vukosavljevic, T.; Huynh, L.; Lozanski, G.; Kefauver, C.; Plass, C.; Devine, S.M.; Heerema, N.A.; Murgo, A.; Chan, K.K.; Grever, M.R.; Byrd, J.C.; Marcucci, G. Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J. Clin. Oncol., 2007, 25(25), 3884-3891.
[http://dx.doi.org/10.1200/JCO.2006.09.4169] [PMID: 17679729]
[78]
Kuendgen, A.; Bug, G.; Ottmann, O.G.; Haase, D.; Hildebrandt, B.; Habersang, K.; Dienst, A.; Haas, R.; Germing, U.; Gattermann, N. Treatment of poorrisk myelodysplastic syndromes and acute myeloid leukemia with a combination of 5-azacitidine and valproic acid. Blood, 2008, 112(11), 3639.
[http://dx.doi.org/10.1182/blood.V112.11.3639.3639]
[79]
Voso, M.T.; Santini, V.; Finelli, C.; Musto, P.; Pogliani, E.; Angelucci, E.; Fioritoni, G.; Alimena, G.; Maurillo, L.; Cortelezzi, A.; Buccisano, F.; Gobbi, M.; Borin, L.; Di Tucci, A.; Zini, G.; Petti, M.C.; Martinelli, G.; Fabiani, E.; Fazi, P.; Vignetti, M.; Piciocchi, A.; Liso, V.; Amadori, S.; Leone, G. Valproic acid at therapeutic plasma levels may increase 5-azacytidine efficacy in higher risk myelodysplastic syndromes. Clin. Cancer Res., 2009, 15(15), 5002-5007.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0494] [PMID: 19638460]
[80]
Taoka, K.; Arai, S.; Kataoka, K.; Hosoi, M.; Miyauchi, M.; Yamazaki, S.; Honda, A.; Aixinjueluo, W.; Kobayashi, T.; Kumano, K.; Yoshimi, A.; Otsu, M.; Niwa, A.; Nakahata, T.; Nakauchi, H.; Kurokawa, M. Using patient-derived iPSCs to develop humanized mouse models for chronic myelomonocytic leukemia and therapeutic drug identification, including liposomal clodronate. Sci. Rep., 2018, 8(1), 15855.
[http://dx.doi.org/10.1038/s41598-018-34193-1] [PMID: 30367142]
[81]
Huggett, M.T.; Jermyn, M.; Gillams, A.; Illing, R.; Mosse, S.; Novelli, M.; Kent, E.; Bown, S.G.; Hasan, T.; Pogue, B.W.; Pereira, S.P. Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br. J. Cancer, 2014, 110(7), 1698-1704.
[http://dx.doi.org/10.1038/bjc.2014.95] [PMID: 24569464]
[82]
Lo, V.C.; Akens, M.K.; Moore, S.; Yee, A.J.; Wilson, B.C.; Whyne, C.M. Beyond radiation therapy: photodynamic therapy maintains structural integrity of irradiated healthy and metastatically involved vertebrae in a pre-clinical in vivo model. Breast Cancer Res. Treat., 2012, 135(2), 391-401.
[http://dx.doi.org/10.1007/s10549-012-2146-x] [PMID: 22791364]
[83]
Morishita, T.; Hayakawa, F.; Sugimoto, K.; Iwase, M.; Yamamoto, H.; Hirano, D.; Kojima, Y.; Imoto, N.; Naoe, T.; Kiyoi, H. The photosensitizer verteporfin has light-independent anti-leukemic activity for Ph-positive acute lymphoblastic leukemia and synergistically works with dasatinib. Oncotarget, 2016, 7(35), 56241-56252.
[http://dx.doi.org/10.18632/oncotarget.11025] [PMID: 27494842]
[84]
Wei, G.; Twomey, D.; Lamb, J.; Schlis, K.; Agarwal, J.; Stam, R.W.; Opferman, J.T.; Sallan, S.E.; den Boer, M.L.; Pieters, R.; Golub, T.R.; Armstrong, S.A. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell, 2006, 10(4), 331-342.
[http://dx.doi.org/10.1016/j.ccr.2006.09.006] [PMID: 17010674]
[85]
Becerril, J.L.; Benítez, J.G.; Juárez, J.J.; Bañales, J.M.; Zerón, H.M.; Navarro, M.D. Evaluation of the effect of 1,3-Bis(4-Phenyl)-1H-1,2,3-triazolyl-2-propanolol on gene expression levels of JAK2-STAT3, NF-κB, and SOCS3 in cells cultured from biopsies of mammary lesions. Biochem. Genet., 2015, 53(11-12), 291-300.
[http://dx.doi.org/10.1007/s10528-015-9691-z] [PMID: 26315497]
[86]
Lamkin, D.M.; Sloan, E.K.; Patel, A.J.; Chiang, B.S.; Pimentel, M.A.; Ma, J.C.Y.; Arevalo, J.M.; Morizono, K.; Cole, S.W. Chronic stress enhances progression of acute lymphoblastic leukemia via β-adrenergic signaling. Brain Behav. Immun., 2012, 26(4), 635-641.
[http://dx.doi.org/10.1016/j.bbi.2012.01.013] [PMID: 22306453]
[87]
Verdonck, K.; González, E.; Van Dooren, S.; Vandamme, A.M.; Vanham, G.; Gotuzzo, E. Human T-lymphotropic virus 1: recent knowledge about an ancient infection. Lancet Infect. Dis., 2007, 7(4), 266-281.
[http://dx.doi.org/10.1016/S1473-3099(07)70081-6] [PMID: 17376384]
[88]
Kozako, T.; Soeda, S.; Yoshimitsu, M.; Arima, N.; Kuroki, A.; Hirata, S.; Tanaka, H.; Imakyure, O.; Tone, N.; Honda, S.; Soeda, S. Angiotensin II type 1 receptor blocker telmisartan induces apoptosis and autophagy in adult T-cell leukemia cells. FEBS Open Bio, 2016, 6(5), 442-460.
[http://dx.doi.org/10.1002/2211-5463.12055] [PMID: 27419050]
[89]
Yang, Z.J.; Chee, C.E.; Huang, S.; Sinicrope, F.A. The role of autophagy in cancer: therapeutic implications. Mol. Cancer Ther., 2011, 10(9), 1533-1541.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0047] [PMID: 21878654]
[90]
Allegra, A.; Innao, V.; Allegra, A.G.; Leanza, R.; Musolino, C. Selective inhibitors of nuclear export in the treatment of hematologic malignancies. Clin. Lymphoma Myeloma Leuk., 2019, 19(11), 689-698.
[http://dx.doi.org/10.1016/j.clml.2019.08.011] [PMID: 31543372]
[91]
Ettari, R.; Zappalà, M.; Grasso, S.; Musolino, C.; Innao, V.; Allegra, A. Immunoproteasome-selective and non-selective inhibitors: a promising approach for the treatment of multiple myeloma. Pharmacol. Ther., 2018, 182, 176-192.
[http://dx.doi.org/10.1016/j.pharmthera.2017.09.001] [PMID: 28911826]
[92]
Allegra, A.; Alonci, A.; Gerace, D.; Russo, S.; Innao, V.; Calabrò, L.; Musolino, C. New orally active proteasome inhibitors in multiple myeloma. Leuk. Res., 2014, 38(1), 1-9.
[http://dx.doi.org/10.1016/j.leukres.2013.10.018] [PMID: 24239172]
[93]
Allegra, A.; Penna, G.; Alonci, A.; Russo, S.; Greve, B.; Innao, V.; Minardi, V.; Musolino, C. Monoclonal antibodies: potential new therapeutic treatment against multiple myeloma. Eur. J. Haematol., 2013, 90(6), 441-468.
[http://dx.doi.org/10.1111/ejh.12107] [PMID: 23506222]
[94]
Allegra, A.; Sant’antonio, E.; Penna, G.; Alonci, A.; D’Angelo, A.; Russo, S.; Cannavò, A.; Gerace, D.; Musolino, C. Novel therapeutic strategies in multiple myeloma: role of the heat shock protein inhibitors. Eur. J. Haematol., 2011, 86(2), 93-110.
[http://dx.doi.org/10.1111/j.1600-0609.2010.01558.x] [PMID: 21114539]
[95]
Kanoh, S.; Rubin, B.K. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin. Microbiol. Rev., 2010, 23(3), 590-615.
[http://dx.doi.org/10.1128/CMR.00078-09] [PMID: 20610825]
[96]
Van Nuffel, A.M.; Sukhatme, V.; Pantziarka, P.; Meheus, L.; Sukhatme, V.P.; Bouche, G. Repurposing drugs in oncology (ReDO)-clarithromycin as an anti-cancer agent. Ecancermedicalscience, 2015, 9, 513.
[http://dx.doi.org/10.3332/ecancer.2015.513] [PMID: 25729426]
[97]
Nakamura, M.; Kikukawa, Y.; Takeya, M.; Mitsuya, H.; Hata, H. Clarithromycin attenuates autophagy in myeloma cells. Int. J. Oncol., 2010, 37(4), 815-820.
[PMID: 20811702]
[98]
Moriya, S.; Che, X.F.; Komatsu, S.; Abe, A.; Kawaguchi, T.; Gotoh, A.; Inazu, M.; Tomoda, A.; Miyazawa, K. Macrolide antibiotics block autophagy flux and sensitize to bortezomib via endoplasmic reticulum stress-mediated CHOP induction in myeloma cells. Int. J. Oncol., 2013, 42(5), 1541-1550.
[http://dx.doi.org/10.3892/ijo.2013.1870] [PMID: 23546223]
[99]
Komatsu, S.; Moriya, S.; Che, X.F.; Yokoyama, T.; Kohno, N.; Miyazawa, K. Combined treatment with SAHA, bortezomib, and clarithromycin for concomitant targeting of aggresome formation and intracellular proteolytic pathways enhances ER stress-mediated cell death in breast cancer cells. Biochem. Biophys. Res. Commun., 2013, 437(1), 41-47.
[http://dx.doi.org/10.1016/j.bbrc.2013.06.032] [PMID: 23792097]
[100]
Durie, B.G.; Villarete, L.; Farvard, A.; Ornopia, M.; Urnovitz, H.B. Clarithromycin (Biaxin) as primary treatment for myeloma. American Society of Hematologist. 579(suppl),. 1997.
[101]
Musto, P.; Falcone, A.; Sanpaolo, G.; Bodenizza, C.; Carotenuto, M.; Carella, A.M. Inefficacy of clarithromycin in advanced multiple myeloma: a definitive report. Haematologica, 2002, 87(6), 658-659.
[PMID: 12031924]
[102]
Morris, T.C.; Ranaghan, L.; Morrison, J. Northern Ireland Regional Haematology Group. Phase II trial of clarithromycin and pamidronate therapy in myeloma. Med. Oncol., 2001, 18(1), 79-84.
[http://dx.doi.org/10.1385/MO:18:1:79] [PMID: 11778973]
[103]
Moreau, P.; Huynh, A.; Facon, T.; Bouilly, I.; Sotto, J.J.; Legros, L.; Milpied, N.; Attal, M.; Bataille, R.; Harousseau, J.L. Lack of efficacy of clarithromycin in advanced multiple myeloma. Intergroupe Français du Myélome (IFM). Leukemia, 1999, 13(3), 490-491.
[http://dx.doi.org/10.1038/sj.leu.2401332] [PMID: 10086745]
[104]
Niesvizky, R. Dexamethasone alone, or in combination with low-dose thalidomide as induction therapy for advanced multiple myeloma, and the effect of the addition of clarithromycin on response rate. Interim results of a prospective, sequential, randomized Trial. Blood, 2003, 102(11), 237a.
[105]
Morris, T.C.; Kettle, P.J.; Drake, M.; Jones, F.C.; Hull, D.R.; Boyd, K.; Morrison, A.; Clarke, P.; O’Reilly, P.; Quinn, J. Clarithromycin with low dose dexamethasone and thalidomide is effective therapy in relapsed/refractory myeloma. Br. J. Haematol., 2008, 143(3), 349-354.
[http://dx.doi.org/10.1111/j.1365-2141.2008.07360.x] [PMID: 18759764]
[106]
Knight, R. IMiDs: a novel class of immunomodulators. Semin. Oncol., 2005, 32(4)(Suppl. 5), S24-S30.
[http://dx.doi.org/10.1053/j.seminoncol.2005.06.018] [PMID: 16085014]
[107]
Niesvizky, R.; Jayabalan, D.S.; Christos, P.J.; Furst, J.R.; Naib, T.; Ely, S.; Jalbrzikowski, J.; Pearse, R.N.; Zafar, F.; Pekle, K.; Larow, A.; Lent, R.; Mark, T.; Cho, H.J.; Shore, T.; Tepler, J.; Harpel, J.; Schuster, M.W.; Mathew, S.; Leonard, J.P.; Mazumdar, M.; Chen-Kiang, S.; Coleman, M. BiRD (Biaxin [clarithromycin]/Revlimid [lenalidomide]/dexamethasone) combination therapy results in high complete- and overall-response rates in treatment-naive symptomatic multiple myeloma. Blood, 2008, 111(3), 1101-1109.
[http://dx.doi.org/10.1182/blood-2007-05-090258] [PMID: 17989313]
[108]
Rossi, A.; Mark, T.; Jayabalan, D.; Christos, P.; Zafar, F.; Pekle, K.; Pearse, R.; Chen-Kiang, S.; Coleman, M.; Niesvizky, R. BiRd (clarithromycin, lenalidomide, dexamethasone): an update on long-term lenalidomide therapy in previously untreated patients with multiple myeloma. Blood, 2013, 121(11), 1982-1985.
[http://dx.doi.org/10.1182/blood-2012-08-448563] [PMID: 23299315]
[109]
Rajkumar, S.V.; Hayman, S.R.; Lacy, M.Q.; Dispenzieri, A.; Geyer, S.M.; Kabat, B.; Zeldenrust, S.R.; Kumar, S.; Greipp, P.R.; Fonseca, R.; Lust, J.A.; Russell, S.J.; Kyle, R.A.; Witzig, T.E.; Gertz, M.A. Combination therapy with lenalidomide plus dexamethasone (Rev/Dex) for newly diagnosed myeloma. Blood, 2005, 106(13), 4050-4053.
[http://dx.doi.org/10.1182/blood-2005-07-2817] [PMID: 16118317]
[110]
Rajkumar, S.V.; Jacobus, S.; Callander, N.S.; Fonseca, R.; Vesole, D.H.; Williams, M.E.; Abonour, R.; Siegel, D.S.; Katz, M.; Greipp, P.R. Eastern Cooperative Oncology Group. Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial. Lancet Oncol., 2010, 11(1), 29-37.
[http://dx.doi.org/10.1016/S1470-2045(09)70284-0] [PMID: 19853510]
[111]
Gay, F.; Rajkumar, S.V.; Coleman, M.; Kumar, S.; Mark, T.; Dispenzieri, A.; Pearse, R.; Gertz, M.A.; Leonard, J.; Lacy, M.Q.; Chen-Kiang, S.; Roy, V.; Jayabalan, D.S.; Lust, J.A.; Witzig, T.E.; Fonseca, R.; Kyle, R.A.; Greipp, P.R.; Stewart, A.K.; Niesvizky, R. Clarithromycin (Biaxin)-lenalidomide-low-dose dexamethasone (BiRd) versus lenalidomide-low-dose dexamethasone (Rd) for newly diagnosed myeloma. Am. J. Hematol., 2010, 85(9), 664-669.
[http://dx.doi.org/10.1002/ajh.21777] [PMID: 20645430]
[112]
Kato, H.; Onishi, Y.; Okitsu, Y.; Katsuoka, Y.; Fujiwara, T.; Fukuhara, N.; Ishizawa, K.; Takagawa, M.; Harigae, H. Addition of clarithromycin to lenalidomide/low-dose dexamethasone was effective in a case of relapsed myeloma after long-term use of lenalidomide. Ann. Hematol., 2013, 92(12), 1711-1712.
[http://dx.doi.org/10.1007/s00277-013-1761-x] [PMID: 23625297]
[113]
Ghosh, N.; Tucker, N.; Zahurak, M.; Wozney, J.; Borrello, I.; Huff, C.A. Clarithromycin overcomes resistance to lenalidomide and dexamethasone in multiple myeloma. Am. J. Hematol., 2014, 89(8), E116-E120.
[http://dx.doi.org/10.1002/ajh.23733] [PMID: 24723438]
[114]
Mark, T.M.; Bowman, I.A.; Rossi, A.C.; Shah, M.; Rodriguez, M.; Quinn, R.; Pearse, R.N.; Zafar, F.; Pekle, K.; Jayabalan, D.; Ely, S.; Coleman, M.; Chen-Kiang, S.; Niesvizky, R. Thalidomide, clarithromycin, lenalidomide and dexamethasone therapy in newly diagnosed, symptomatic multiple myeloma. Leuk. Lymphoma, 2014, 55(12), 2842-2849.
[http://dx.doi.org/10.3109/10428194.2014.896005] [PMID: 24576165]
[115]
Rossi, A.C.; Mark, T.M.; Rodriguez, M.; Shah, M.; Quinn, R.; Pearse, R.N.; Zafar, F.; Pekle, K.; Speaker, S.; Jayabalan, D.; Ely, S. Clarithromycin, pomalidomide, and dexamethasone (ClaPD) in relapsed or refractory multiple myeloma. J. Clinical Oncol., 2012, 30(15_suppl), 8036-8036..
[http://dx.doi.org/10.1200/jco.2012.30.15_suppl.8036]
[116]
Salentin, S.; Adasme, M.F.; Heinrich, J.C.; Haupt, V.J.; Daminelli, S.; Zhang, Y.; Schroeder, M. From malaria to cancer: computational drug repositioning of amodiaquine using PLIP interaction patterns. Sci. Rep., 2017, 7(1), 11401.
[http://dx.doi.org/10.1038/s41598-017-11924-4] [PMID: 28900272]
[117]
LiverTox: clinical and research information on drug-induced liver injury. National Institute of Diabetes and Digestive and Kidney Diseases, 2012..
[PMID: 31643176]
[118]
Allegra, A.; Innao, V.; Allegra, A.G.; Pulvirenti, N.; Pugliese, M.; Musolino, C. Antitumorigenic action of nelfinavir: effects on multiple myeloma and hematologic malignancies.(Review) Oncol. Rep., 2020, 43(6), 1729-1736.
[http://dx.doi.org/10.3892/or.2020.7562] [PMID: 32236596]
[119]
Ikezoe, T.; Saito, T.; Bandobashi, K.; Yang, Y.; Koeffler, H.P.; Taguchi, H. HIV-1 protease inhibitor induces growth arrest and apoptosis of human multiple myeloma cells via inactivation of signal transducer and activator of transcription 3 and extracellular signal-regulated kinase 1/2. Mol. Cancer Ther., 2004, 3(4), 473-479.
[PMID: 15078991]
[120]
Kawabata, S.; Gills, J.J.; Mercado-Matos, J.R.; Lopiccolo, J.; Wilson, W., III; Hollander, M.C.; Dennis, P.A. Synergistic effects of nelfinavir and bortezomib on proteotoxic death of NSCLC and multiple myeloma cells. Cell Death Dis., 2012, 3(7)e353
[http://dx.doi.org/10.1038/cddis.2012.87] [PMID: 22825471]
[121]
Leung-Hagesteijn, C.; Erdmann, N.; Cheung, G.; Keats, J.J.; Stewart, A.K.; Reece, D.E.; Chung, K.C.; Tiedemann, R.E. Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell, 2013, 24(3), 289-304.
[http://dx.doi.org/10.1016/j.ccr.2013.08.009] [PMID: 24029229]
[122]
Mayor, T. Navigating the ERAD interaction network. Nat. Cell Biol., 2011, 14(1), 46-47.
[http://dx.doi.org/10.1038/ncb2412] [PMID: 22193163]
[123]
Obeng, E.A.; Carlson, L.M.; Gutman, D.M.; Harrington, W.J. Jr.; Lee, K.P.; Boise, L.H. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood, 2006, 107(12), 4907-4916.
[http://dx.doi.org/10.1182/blood-2005-08-3531] [PMID: 16507771]
[124]
Ling, S.C.; Lau, E.K.; Al-Shabeeb, A.; Nikolic, A.; Catalano, A.; Iland, H.; Horvath, N.; Ho, P.J.; Harrison, S.; Fleming, S.; Joshua, D.E.; Allen, J.D. Response of myeloma to the proteasome inhibitor bortezomib is correlated with the unfolded protein response regulator XBP-1. Haematologica, 2012, 97(1), 64-72.
[http://dx.doi.org/10.3324/haematol.2011.043331] [PMID: 21993678]
[125]
Reimold, A.M.; Iwakoshi, N.N.; Manis, J.; Vallabhajosyula, P.; Szomolanyi-Tsuda, E.; Gravallese, E.M.; Friend, D.; Grusby, M.J.; Alt, F.; Glimcher, L.H. Plasma cell differentiation requires the transcription factor XBP-1. Nature, 2001, 412(6844), 300-307.
[http://dx.doi.org/10.1038/35085509] [PMID: 11460154]
[126]
Papandreou, I.; Denko, N.C.; Olson, M.; Van Melckebeke, H.; Lust, S.; Tam, A.; Solow-Cordero, D.E.; Bouley, D.M.; Offner, F.; Niwa, M.; Koong, A.C. Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood, 2011, 117(4), 1311-1314.
[http://dx.doi.org/10.1182/blood-2010-08-303099] [PMID: 21081713]
[127]
Chow, W.A.; Jiang, C.; Guan, M. Anti-HIV drugs for cancer therapeutics: back to the future? Lancet Oncol., 2009, 10(1), 61-71.
[http://dx.doi.org/10.1016/S1470-2045(08)70334-6] [PMID: 19111246]
[128]
Guan, M.; Fousek, K.; Jiang, C.; Guo, S.; Synold, T.; Xi, B.; Shih, C.C.; Chow, W.A. Nelfinavir induces liposarcoma apoptosis through inhibition of regulated intramembrane proteolysis of SREBP-1 and ATF6. Clin. Cancer Res., 2011, 17(7), 1796-1806.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-3216] [PMID: 21355074]
[129]
Yang, Y.; Ikezoe, T.; Nishioka, C.; Bandobashi, K.; Takeuchi, T.; Adachi, Y.; Kobayashi, M.; Takeuchi, S.; Koeffler, H.P.; Taguchi, H. NFV, an HIV-1 protease inhibitor, induces growth arrest, reduced Akt signalling, apoptosis and docetaxel sensitisation in NSCLC cell lines. Br. J. Cancer, 2006, 95(12), 1653-1662.
[http://dx.doi.org/10.1038/sj.bjc.6603435] [PMID: 17133272]
[130]
Bono, C.; Karlin, L.; Harel, S.; Mouly, E.; Labaume, S.; Galicier, L.; Apcher, S.; Sauvageon, H.; Fermand, J.P.; Bories, J.C.; Arnulf, B. The HIV-1 protease inhibitor nelfinavir impairs protea-some activity and inhibits the multiple myeloma cells proliferation in vitro and in vivo. Haematologica, 2012, 97(7), 1101-1109.
[http://dx.doi.org/10.3324/haematol.2011.049981] [PMID: 22271897]
[131]
Driessen, C.; Kraus, M.; Joerger, M.; Rosing, H.; Bader, J.; Hitz, F.; Berset, C.; Xyrafas, A.; Hawle, H.; Berthod, G.; Overkleeft, H.S.; Sessa, C.; Huitema, A.; Pabst, T.; von Moos, R.; Hess, D.; Mey, U.J. Treatment with the HIV protease inhibitor nelfinavir triggers the unfolded protein response and may overcome proteasome inhibitor resistance of multiple myeloma in combination with bortezomib: a phase I trial (SAKK 65/08). Haematologica, 2016, 101(3), 346-355.
[http://dx.doi.org/10.3324/haematol.2015.135780] [PMID: 26659919]
[132]
Driessen, C.; Müller, R.; Novak, U.; Cantoni, N.; Betticher, D.; Mach, N.; Rüfer, A.; Mey, U.; Samaras, P.; Ribi, K.; Besse, L.; Besse, A.; Berset, C.; Rondeau, S.; Hawle, H.; Hitz, F.; Pabst, T.; Zander, T. Promising activity of nelfinavir-bortezomib-dexamethasone in proteasome inhibitor-refractory multiple myeloma. Blood, 2018, 132(19), 2097-2100.
[http://dx.doi.org/10.1182/blood-2018-05-851170] [PMID: 30237154]
[133]
Tu, Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med., 2011, 17(10), 1217-1220.
[http://dx.doi.org/10.1038/nm.2471] [PMID: 21989013]
[134]
World Health Organization. Guidelines for the Treatment of Malaria; WHO press: Geneva, Switzerland, 2006.
[135]
Efferth, T.; Dunstan, H.; Sauerbrey, A.; Miyachi, H.; Chitambar, C.R. The anti-malarial artesunate is also active against cancer. Int. J. Oncol., 2001, 18(4), 767-773.
[http://dx.doi.org/10.3892/ijo.18.4.767] [PMID: 11251172]
[136]
Efferth, T.; Sauerbrey, A.; Olbrich, A.; Gebhart, E.; Rauch, P.; Weber, H.O.; Hengstler, J.G.; Halatsch, M.E.; Volm, M.; Tew, K.D.; Ross, D.D.; Funk, J.O. Molecular modes of action of artesunate in tumor cell lines. Mol. Pharmacol., 2003, 64(2), 382-394.
[http://dx.doi.org/10.1124/mol.64.2.382] [PMID: 12869643]
[137]
Efferth, T.; Briehl, M.M.; Tome, M.E. Role of antioxidant genes for the activity of artesunate against tumor cells. Int. J. Oncol., 2003, 23(4), 1231-1235.
[http://dx.doi.org/10.3892/ijo.23.4.1231] [PMID: 12964009]
[138]
Holien, T.; Olsen, O.E.; Misund, K.; Hella, H.; Waage, A.; Rø, T.B.; Sundan, A. Lymphoma and myeloma cells are highly sensitive to growth arrest and apoptosis induced by artesunate. Eur. J. Haematol., 2013, 91(4), 339-346.
[http://dx.doi.org/10.1111/ejh.12176] [PMID: 23869695]
[139]
Li, Y.; Shan, N.N.; Sui, X.H. Research progress on artemisinin and its derivatives against hematological malignancies. Chin. J. Integr. Med., 2020, 26(12), 947-955.
[http://dx.doi.org/10.1007/s11655-019-3207-3] [PMID: 32048169]
[140]
Chen, H.; Shi, L.; Yang, X.; Li, S.; Guo, X.; Pan, L. Artesunate inhibiting angiogenesis induced by human myeloma RPMI8226 cells. Int. J. Hematol., 2010, 92(4), 587-597.
[http://dx.doi.org/10.1007/s12185-010-0697-3] [PMID: 20945119]
[141]
Davis, T.M.; Phuong, H.L.; Ilett, K.F.; Hung, N.C.; Batty, K.T.; Phuong, V.D.; Powell, S.M.; Thien, H.V.; Binh, T.Q. Pharmacokinetics and pharmacodynamics of intravenous artesunate in severe falciparum malaria. Antimicrob. Agents Chemother., 2001, 45(1), 181-186.
[http://dx.doi.org/10.1128/AAC.45.1.181-186.2001] [PMID: 11120963]
[142]
Krishna, S.; Uhlemann, A.C.; Haynes, R.K. Artemisinins: mechanisms of action and potential for resistance. Drug Resist. Updat., 2004, 7(4-5), 233-244.
[http://dx.doi.org/10.1016/j.drup.2004.07.001] [PMID: 15533761]
[143]
Ettari, R.; Previti, S.; Maiorana, S.; Allegra, A.; Schirmeister, T.; Grasso, S.; Zappalà, M. Drug combination studies of curcumin and genistein against rhodesain of Trypanosoma brucei rhodesiense. Nat. Prod. Res., 2019, 33(24), 3577-3581.
[http://dx.doi.org/10.1080/14786419.2018.1483927] [PMID: 29897253]
[144]
Huang, T.Y.; Tsai, T.H.; Hsu, C.W.; Hsu, Y.C. Curcuminoids suppress the growth and induce apoptosis through caspase-3-dependent pathways in glioblastoma multiforme (GBM) 8401 cells. J. Agric. Food Chem., 2010, 58(19), 10639-10645.
[http://dx.doi.org/10.1021/jf1016303] [PMID: 20822178]
[145]
Bharti, A.C.; Donato, N.; Singh, S.; Aggarwal, B.B. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood, 2003, 101(3), 1053-1062.
[http://dx.doi.org/10.1182/blood-2002-05-1320] [PMID: 12393461]
[146]
Bharti, A.C.; Takada, Y.; Aggarwal, B.B. Curcumin (diferuloylmethane) inhibits receptor activator of NF-κ B ligand-induced NF-κ B activation in osteoclast precursors and suppresses osteoclastogenesis. J. Immunol., 2004, 172(10), 5940-5947.
[http://dx.doi.org/10.4049/jimmunol.172.10.5940] [PMID: 15128775]
[147]
Golombick, T.; Diamond, T.H.; Manoharan, A.; Ramakrishna, R. Monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, and curcumin: a randomized, double-blind placebo-controlled cross-over 4g study and an open-label 8g extension study. Am. J. Hematol., 2012, 87(5), 455-460.
[http://dx.doi.org/10.1002/ajh.23159] [PMID: 22473809]
[148]
Yang, H.; Landis-Piwowar, K.R.; Chen, D.; Milacic, V.; Dou, Q.P. Natural compounds with proteasome inhibitory activity for cancer prevention and treatment. Curr. Protein Pept. Sci., 2008, 9(3), 227-239.
[http://dx.doi.org/10.2174/138920308784533998] [PMID: 18537678]
[149]
Milacic, V.; Banerjee, S.; Landis-Piwowar, K.R.; Sarkar, F.H.; Majumdar, A.P.; Dou, Q.P. Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo. Cancer Res., 2008, 68(18), 7283-7292.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6246] [PMID: 18794115]
[150]
Wan, S.B.; Yang, H.; Zhou, Z.; Cui, Q.C.; Chen, D.; Kanwar, J.; Mohammad, I.; Dou, Q.P.; Chan, T.H. Evaluation of curcumin acetates and amino acid conjugates as proteasome inhibitors. Int. J. Mol. Med., 2010, 26(4), 447-455.
[http://dx.doi.org/10.3892/ijmm_00000484]] [PMID: 20818481]
[151]
Mujtaba, T.; Kanwar, J.; Wan, S.B.; Chan, T.H.; Dou, Q.P. Sensitizing human multiple myeloma cells to the proteasome inhibitor bortezomib by novel curcumin analogs. Int. J. Mol. Med., 2012, 29(1), 102-106.
[http://dx.doi.org/10.3892/ijmm.2011.814]] [PMID: 22012631]
[152]
Park, J.; Ayyappan, V.; Bae, E.K.; Lee, C.; Kim, B.S.; Kim, B.K.; Lee, Y.Y.; Ahn, K.S.; Yoon, S.S. Curcumin in combination with bortezomib synergistically induced apoptosis in human multiple myeloma U266 cells. Mol. Oncol., 2008, 2(4), 317-326.
[http://dx.doi.org/10.1016/j.molonc.2008.09.006] [PMID: 19383353]
[153]
Sung, B.; Kunnumakkara, A.B.; Sethi, G.; Anand, P.; Guha, S.; Aggarwal, B.B. Curcumin circumvents chemoresistance in vitro and potentiates the effect of thalidomide and bortezomib against human multiple myeloma in nude mice model. Mol. Cancer Ther., 2009, 8(4), 959-970.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0905] [PMID: 19372569]
[154]
Allegra, A.; Speciale, A.; Molonia, M.S.; Guglielmo, L.; Musolino, C.; Ferlazzo, G.; Costa, G.; Saija, A.; Cimino, F. Curcumin ameliorates the in vitro efficacy of carfilzomib in human multiple myeloma U266 cells targeting p53 and NF-κB pathways. Toxicol. In Vitro, 2018, 47, 186-194.
[http://dx.doi.org/10.1016/j.tiv.2017.12.001] [PMID: 29223572]
[155]
Catalano, R.; Rocca, R.; Juli, G.; Costa, G.; Maruca, A.; Artese, A.; Caracciolo, D.; Tagliaferri, P.; Alcaro, S.; Tassone, P.; Amodio, N. A drug repurposing screening reveals a novel epigenetic activity of hydroxychloroquine. Eur. J. Med. Chem., 2019, 183111715
[http://dx.doi.org/10.1016/j.ejmech.2019.111715] [PMID: 31550663]
[156]
Meyer, D.M.; Jesson, M.I.; Li, X.; Elrick, M.M.; Funckes-Shippy, C.L.; Warner, J.D.; Gross, C.J.; Dowty, M.E.; Ramaiah, S.K.; Hirsch, J.L.; Saabye, M.J.; Barks, J.L.; Kishore, N.; Morris, D.L. Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis. J. Inflamm. (Lond.), 2010, 7, 41.
[http://dx.doi.org/10.1186/1476-9255-7-41] [PMID: 20701804]
[157]
Shuai, K.; Liu, B. Regulation of JAK-STAT signalling in the immune system. Nat. Rev. Immunol., 2003, 3(11), 900-911.
[http://dx.doi.org/10.1038/nri1226] [PMID: 14668806]
[158]
Allegra, A.; Innao, V.; Allegra, A.G.; Pugliese, M.; Di Salvo, E.; Ventura-Spagnolo, E.; Musolino, C.; Gangemi, S. Lymphocyte subsets and inflammatory cytokines of monoclonal gammopathy of undetermined significance and multiple myeloma. Int. J. Mol. Sci., 2019, 20(11), 2822.
[http://dx.doi.org/10.3390/ijms20112822] [PMID: 31185596]
[159]
Lam, C.; Ferguson, I.D.; Mariano, M.C.; Lin, Y.T.; Murnane, M.; Liu, H.; Smith, G.A.; Wong, S.W.; Taunton, J.; Liu, J.O.; Mitsiades, C.S.; Hann, B.C.; Aftab, B.T.; Wiita, A.P. Repurposing tofacitinib as an anti-myeloma therapeutic to reverse growth-promoting effects of the bone marrow microenvironment. Haematologica, 2018, 103(7), 1218-1228.
[http://dx.doi.org/10.3324/haematol.2017.174482] [PMID: 29622655]
[160]
Dimopoulos, M.A.; Tsatalas, C.; Zomas, A.; Hamilos, G.; Panayiotidis, P.; Margaritis, D.; Matsouka, C.; Economopoulos, T.; Anagnostopoulos, N. Treatment of Waldenstrom’s macroglobulinemia with single-agent thalidomide or with the combination of clarithromycin, thalidomide and dexamethasone. Semin. Oncol., 2003, 30(2), 265-269.
[http://dx.doi.org/10.1053/sonc.2003.50079] [PMID: 12720150]
[161]
Coleman, M.; Leonard, J.; Lyons, L.; Szelenyi, H.; Niesvizky, R. Treatment of Waldenstrom’s macroglobulinemia with clarithromycin, low-dose thalidomide, and dexamethasone. Semin. Oncol., 2003, 30(2), 270-274.
[http://dx.doi.org/10.1053/sonc.2003.50044] [PMID: 12720151]
[162]
Schafranek, L.; Leclercq, T.M.; White, D.L.; Hughes, T.P. Clarithromycin enhances dasatinib-induced cell death in chronic myeloid leukemia cells, by inhibition of late stage autophagy. Leuk. Lymphoma, 2013, 54(1), 198-201.
[http://dx.doi.org/10.3109/10428194.2012.698737] [PMID: 22656271]
[163]
Carella, A.M.; Beltrami, G.; Pica, G.; Carella, A.; Catania, G. Clarithromycin potentiates tyrosine kinase inhibitor treatment in patients with resistant chronic myeloid leukemia. Leuk. Lymphoma, 2012, 53(7), 1409-1411.
[http://dx.doi.org/10.3109/10428194.2012.656105] [PMID: 22233113]
[164]
Singh, V.K.; Chang, H.H.; Kuo, C.C.; Shiao, H.Y.; Hsieh, H.P.; Coumar, M.S. Drug repurposing for chronic myeloid leukemia: in silico and in vitro investigation of DrugBank database for allosteric Bcr-Abl inhibitors. J. Biomol. Struct. Dyn., 2017, 35(8), 1833-1848.
[http://dx.doi.org/10.1080/07391102.2016.1196462] [PMID: 27353341]
[165]
Barouch-Bentov, R.; Sauer, K. Mechanisms of drug resistance in kinases. Expert Opin. Investig. Drugs, 2011, 20(2), 153-208.
[http://dx.doi.org/10.1517/13543784.2011.546344] [PMID: 21235428]
[166]
Bixby, D.; Talpaz, M. Seeking the causes and solutions to imatinib-resistance in chronic myeloid leukemia. Leukemia, 2011, 25(1), 7-22.
[http://dx.doi.org/10.1038/leu.2010.238] [PMID: 21102425]
[167]
Sohraby, F.; Bagheri, M.; Aliyar, M.; Aryapour, H. In silico drug repurposing of FDA-approved drugs to predict new inhibitors for drug resistant T315I mutant and wild-type BCR-ABL1: a virtual screening and molecular dynamics study. J. Mol. Graph. Model., 2017, 74, 234-240.
[http://dx.doi.org/10.1016/j.jmgm.2017.04.005] [PMID: 28458002]
[168]
Pemovska, T.; Johnson, E.; Kontro, M.; Repasky, G.A.; Chen, J.; Wells, P.; Cronin, C.N.; McTigue, M.; Kallioniemi, O.; Porkka, K.; Murray, B.W.; Wennerberg, K. Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature, 2015, 519(7541), 102-105.
[http://dx.doi.org/10.1038/nature14119] [PMID: 25686603]
[169]
Kuo, S.H.; Yeh, K.H.; Wu, M.S.; Lin, C.W.; Hsu, P.N.; Wang, H.P.; Chen, L.T.; Cheng, A.L. Helicobacter pylori eradication therapy is effective in the treatment of early-stage H pylori-positive gastric diffuse large B-cell lymphomas. Blood, 2012, 119(21), 4838-4844.
[http://dx.doi.org/10.1182/blood-2012-01-404194] [PMID: 22403257]
[170]
Ferreri, A.J.; Govi, S.; Raderer, M.; Mulè, A.; Andriani, A.; Caracciolo, D.; Devizzi, L.; Ilariucci, F.; Luminari, S.; Viale, E.; Müllauer, L.; Dell’Oro, S.; Arcidiacono, P.G.; Ponzoni, M.; Patti, C. Helicobacter pylori eradication as exclusive treatment for limited-stage gastric diffuse large B-cell lymphoma: results of a multicenter phase 2 trial. Blood, 2012, 120(18), 3858-3860.
[http://dx.doi.org/10.1182/blood-2012-06-438424] [PMID: 23118214]
[171]
Ochi, M.; Tominaga, K.; Okazaki, H.; Yamamori, K.; Wada, T.; Shiba, M.; Sasaki, E.; Watanabe, T.; Fujiwara, Y.; Oshitani, N.; Higuchi, K.; Arakawa, T. Regression of primary low-grade mucosa-associated lymphoid tissue lymphoma of duodenum after long-term treatment with clarithromycin. Scand. J. Gastroenterol., 2006, 41(3), 365-369.
[http://dx.doi.org/10.1080/00365520500331224] [PMID: 16497629]
[172]
Govi, S.; Dognini, G.P.; Licata, G.; Crocchiolo, R.; Resti, A.G.; Ponzoni, M.; Ferreri, A.J. Six-month oral clarithromycin regimen is safe and active in extranodal marginal zone B-cell lymphomas: final results of a single-centre phase II trial. Br. J. Haematol., 2010, 150(2), 226-229.
[http://dx.doi.org/10.1111/j.1365-2141.2010.08179.x] [PMID: 20433679]
[173]
Ishimatsu, Y.; Mukae, H.; Matsumoto, K.; Harada, T.; Hara, A.; Hara, S.; Amenomori, M.; Fujita, H.; Sakamoto, N.; Hayashi, T.; Kohno, S. Two cases with pulmonary mucosa-associated lymphoid tissue lymphoma successfully treated with clarithromycin. Chest, 2010, 138(3), 730-733.
[http://dx.doi.org/10.1378/chest.09-2358] [PMID: 20822996]