Investigation of the Role of Aromatic Residues in the Antimicrobial Peptide BuCATHL4B

Page: [388 - 402] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Antimicrobial Peptides (AMPs) are an attractive alternative to traditional small molecule antibiotics as AMPs typically target the bacterial cell membrane. A Trp-rich peptide sequence derived from water buffalo (Bubalus bubalis), BuCATHL4B was previously identified as a broad-spectrum antimicrobial peptide.

Objective: In this work, native Trp residues were replaced with other naturally occurring aromatic amino acids to begin to elucidate the importance of these residues on peptide activity.

Methods: Minimal Inhibitory Concentration (MIC) results demonstrated activity against seven strains of bacteria. Membrane and bilayer permeabilization assays were performed to address the role of bilayer disruption in the activity of the peptides. Lipid vesicle binding and quenching experiments were also performed to gain an understanding of how the peptides interacted with lipid bilayers.

Results: MIC results indicate the original, tryptophan-rich sequence, and the phenylalanine substituted sequences exhibit strong inhibition of bacterial growth. In permeabilization assays, peptides with phenylalanine substitutions have higher levels of membrane permeabilization than those substituted with tyrosine. In addition, one of the two-tyrosine substituted sequence, YWY, behaves most differently in the lowest antimicrobial activity, showing no permeabilization of bacterial membranes. Notably the antimicrobial activity is inherently species dependent, with varying levels of activity against different bacteria.

Conclusion: There appears to be little correlation between membrane permeabilization and activity, indicating these peptides may have additional mechanisms of action beyond membrane disruption. The results also identify two sequences, denoted FFF and YYW, which retain antibacterial activity but have markedly reduced hemolytic activity.

Keywords: Antimicrobial peptides, fluorescence spectroscopy, model membranes, peptides, membrane permeabilization, antibacterial activity.

Graphical Abstract

[1]
World Health Organization, Monitoring Global Progress On Addressing Antimicrobial Resistance. AMR, 2018.
[2]
CDC, Antibiotic Resistance Threats in the United States, 2019. U.S. Department of Health and Human Services, CDC, 2019.
[3]
Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr., 2016, 4(2), 10.1128.
[http://dx.doi.org/10.1128/microbiolspec.VMBF-0016-2015] [PMID: 27227291]
[4]
Khattri, R.B.; Morris, D.L.; Bilinovich, S.M.; Manandhar, E.; Napper, K.R.; Sweet, J.W.; Modarelli, D.A.; Leeper, T.C. Identifying ortholog selective fragment molecules for bacterial glutaredoxins by NMR and affinity enhancement by modification with an acrylamide warhead. Molecules, 2019, 25(1), E147.
[http://dx.doi.org/10.3390/molecules25010147] [PMID: 31905878]
[5]
Xiang, Y.; Zhang, Y.J.; Ge, Y.; Zhou, Y.; Chen, C.; Wahlgren, W.Y.; Tan, X.; Chen, X.; Yang, K.W. Kinetic, thermodynamic, and crystallographic studies of 2-triazolylthioacetamides as verona integron-encoded metallo-β-lactamase 2 (VIM-2) Inhibitor. Biomolecules, 2020, 10(1), E72.
[http://dx.doi.org/10.3390/biom10010072] [PMID: 31906402]
[6]
Aboody, M.S.A.; Mickymaray, S. Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics (Basel), 2020, 9(2), E45.
[http://dx.doi.org/10.3390/antibiotics9020045] [PMID: 31991883]
[7]
Qian, W.; Fu, Y.; Liu, M.; Wang, T.; Zhang, J.; Yang, M.; Sun, Z.; Li, X.; Li, Y. In vitro antibacterial activity and mechanism of vanillic acid against carbapenem-resistant Enterobacter cloacae. Antibiotics (Basel), 2019, 8(4), E220.
[http://dx.doi.org/10.3390/antibiotics8040220] [PMID: 31766130]
[8]
Saint Jean, K.D.; Henderson, K.D.; Chrom, C.L.; Abiuso, L.E.; Renn, L.M.; Caputo, G.A. Effects of hydrophobic amino acid substitutions on antimicrobial peptide behavior. Probiotics Antimicrob. Proteins, 2018, 10(3), 408-419.
[http://dx.doi.org/10.1007/s12602-017-9345-z] [PMID: 29103131]
[9]
Shirley, D.J.; Chrom, C.L.; Richards, E.A.; Carone, B.R.; Caputo, G.A. Antimicrobial activity of a porphyrin binding peptide. Pept Sci (Hoboken), 2018, 110(4), e24074.
[http://dx.doi.org/10.1002/pep2.24074] [PMID: 30637367]
[10]
Mensa, B.; Kim, Y.H.; Choi, S.; Scott, R.; Caputo, G.A.; DeGrado, W.F. Antibacterial mechanism of action of arylamide foldamers. Antimicrob. Agents Chemother., 2011, 55(11), 5043-5053.
[http://dx.doi.org/10.1128/AAC.05009-11] [PMID: 21844313]
[11]
Takahashi, H.; Palermo, E.F.; Yasuhara, K.; Caputo, G.A.; Kuroda, K. Molecular design, structures, and activity of antimicrobial peptide-mimetic polymers. Macromol. Biosci., 2013, 13(10), 1285-1299.
[http://dx.doi.org/10.1002/mabi.201300126] [PMID: 23832766]
[12]
Cook, K.; Tarnawsky, K.; Swinton, A.J.; Yang, D.D.; Senetra, A.S.; Caputo, G.A.; Carone, B.R.; Vaden, T.D. Correlating lipid membrane permeabilities of imidazolium ionic liquids with their cytotoxicities on yeast, bacterial, and mammalian cells. Biomolecules, 2019, 9(6), E251.
[http://dx.doi.org/10.3390/biom9060251] [PMID: 31242711]
[13]
Zhang, T.H.; He, H.X.; Du, J.L.; He, Z.J.; Yao, S. Novel 3-Methyl-2-alkylthio benzothiazolyl-based ionic liquids: Synthesis, characterization, and antibiotic activity. Molecules, 2018, 23(8), E2011.
[http://dx.doi.org/10.3390/molecules23082011] [PMID: 30103555]
[14]
Takahashi, H.; Caputo, G.A.; Vemparala, S.; Kuroda, K. Synthetic random copolymers as a molecular platform to mimic host-defense antimicrobial peptides. Bioconjug. Chem., 2017, 28(5), 1340-1350.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00114] [PMID: 28379682]
[15]
Gibney, K.A.; Sovadinova, I.; Lopez, A.I.; Urban, M.; Ridgway, Z.; Caputo, G.A.; Kuroda, K. Poly(ethylene imine)s as antimicrobial agents with selective activity. Macromol. Biosci., 2012, 12(9), 1279-1289.
[http://dx.doi.org/10.1002/mabi.201200052] [PMID: 22865776]
[16]
Zhou, Z.; Ergene, C.; Lee, J.Y.; Shirley, D.J.; Carone, B.R.; Caputo, G.A.; Palermo, E.F. Sequence and dispersity are determinants of photodynamic antibacterial activity exerted by peptidomimetic oligo(thiophene)s. ACS Appl. Mater. Interfaces, 2019, 11(2), 1896-1906.
[http://dx.doi.org/10.1021/acsami.8b19098] [PMID: 30574776]
[17]
Capilato, J.N.; PHilippi, S.V.; Reardon, T.; McConnell, A.; Oliver, D.C.; Warren, A.; Adams, J.S.; Wu, C.; Perez, L.J. Development of a novel series of non-natural triaryl agonists and antagonists of the Pseudomonas aeruginosa LasR quorum sensing receptor. Bioorg. Med. Chem., 2017, 25(1), 153-165.
[http://dx.doi.org/10.1016/j.bmc.2016.10.021] [PMID: 27825554]
[18]
Goderecci, S.S.; Kaiser, E.; Yanakas, M.; Norris, Z.; Scaturro, J.; Oszust, R.; Medina, C.D.; Waechter, F.; Heon, M.; Krchnavek, R.R.; Yu, L.; Lofland, S.E.; Demarest, R.M.; Caputo, G.A.; Hettinger, J.D. Silver oxide coatings with high silver-ion elution rates and characterization of bactericidal activity. Molecules, 2017, 22(9), E1487.
[http://dx.doi.org/10.3390/molecules22091487] [PMID: 28880225]
[19]
Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver nanoparticles as potential antibacterial agents. Molecules, 2015, 20(5), 8856-8874.
[http://dx.doi.org/10.3390/molecules20058856] [PMID: 25993417]
[20]
Cardoso, M.H.; Orozco, R.Q.; Rezende, S.B.; Rodrigues, G.; Oshiro, K.G.N.; Cândido, E.S.; Franco, O.L. Computer-aided design of antimicrobial peptides: Are we generating effective drug candidates? Front. Microbiol., 2020, 10, 3097.
[http://dx.doi.org/10.3389/fmicb.2019.03097] [PMID: 32038544]
[21]
Chen, C.H.; Lu, T.K. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics (Basel), 2020, 9(1), E24.
[http://dx.doi.org/10.3390/antibiotics9010024] [PMID: 31941022]
[22]
Sierra, J.M.; Fusté, E.; Rabanal, F.; Vinuesa, T.; Viñas, M. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin. Biol. Ther., 2017, 17(6), 663-676.
[http://dx.doi.org/10.1080/14712598.2017.1315402] [PMID: 28368216]
[23]
Hilchie, A.L.; Wuerth, K.; Hancock, R.E. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat. Chem. Biol., 2013, 9(12), 761-768.
[http://dx.doi.org/10.1038/nchembio.1393] [PMID: 24231617]
[24]
Ahmed, S.; Raqib, R.; Guðmundsson, G.H.; Bergman, P.; Agerberth, B.; Rekha, R.S. Host-directed therapy as a novel treatment strategy to overcome tuberculosis: Targeting immune modulation. Antibiotics (Basel), 2020, 9(1), E21.
[http://dx.doi.org/10.3390/antibiotics9010021] [PMID: 31936156]
[25]
Lai, Y.; Gallo, R.L. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol., 2009, 30(3), 131-141.
[http://dx.doi.org/10.1016/j.it.2008.12.003] [PMID: 19217824]
[26]
Gromiha, M.M. Protein Bioinformatics: From Sequence to Function; Elsevier Science, 2010.
[27]
Shagaghi, N.; Palombo, E.A.; Clayton, A.H.; Bhave, M. Archetypal tryptophan-rich antimicrobial peptides: properties and applications. World J. Microbiol. Biotechnol., 2016, 32(2), 31.
[http://dx.doi.org/10.1007/s11274-015-1986-z] [PMID: 26748808]
[28]
Ulvatne, H.; Samuelsen, O.; Haukland, H.H.; Krämer, M.; Vorland, L.H. Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis. FEMS Microbiol. Lett., 2004, 237(2), 377-384.
[http://dx.doi.org/10.1111/j.1574-6968.2004.tb09720.x] [PMID: 15321686]
[29]
Ghosh, A.; Kar, R.K.; Jana, J.; Saha, A.; Jana, B.; Krishnamoorthy, J.; Kumar, D.; Ghosh, S.; Chatterjee, S.; Bhunia, A. Indolicidin targets duplex DNA: structural and mechanistic insight through a combination of spectroscopy and microscopy. ChemMedChem, 2014, 9(9), 2052-2058.
[http://dx.doi.org/10.1002/cmdc.201402215] [PMID: 25044630]
[30]
Brahma, B.; Patra, M.C.; Karri, S.; Chopra, M.; Mishra, P.; De, B.C.; Kumar, S.; Mahanty, S.; Thakur, K.; Poluri, K.M.; Datta, T.K.; De, S. Diversity, antimicrobial action and structure-activity relationship of Buffalo cathelicidins. PLoS One, 2015, 10(12), e0144741.
[http://dx.doi.org/10.1371/journal.pone.0144741] [PMID: 26675301]
[31]
Senetra, A.S.; Necelis, M.R.; Caputo, G.A. Investigation of the structure-activity relationship in ponericin L1 from Neoponera goeldii. Peptide Science, 2020, 112, e24162.
[http://dx.doi.org/10.1002/pep2.24162]
[32]
Caputo, G.A.; London, E. Using a novel dual fluorescence quenching assay for measurement of tryptophan depth within lipid bilayers to determine hydrophobic alpha-helix locations within membranes. Biochemistry, 2003, 42(11), 3265-3274.
[http://dx.doi.org/10.1021/bi026696l] [PMID: 12641458]
[33]
Caputo, G.A.; London, E. Analyzing transmembrane protein and hydrophobic helix topography by dual fluorescence quenching. Methods Mol. Biol., 2013, 974, 279-295.
[http://dx.doi.org/10.1007/978-1-62703-275-9_13] [PMID: 23404281]
[34]
Caputo, G.A.; London, E. Analyzing transmembrane protein and hydrophobic helix topography by dual fluorescence quenching. Methods Mol. Biol., 2019, 2003, 351-368.
[http://dx.doi.org/10.1007/978-1-4939-9512-7_15] [PMID: 31218625]
[35]
Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol., 1982, 157(1), 105-132.
[http://dx.doi.org/10.1016/0022-2836(82)90515-0] [PMID: 7108955]
[36]
Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res., 2003, 31(13), 3784-3788.
[http://dx.doi.org/10.1093/nar/gkg563] [PMID: 12824418]
[37]
Haldar, S.; Raghuraman, H.; Chattopadhyay, A. Monitoring orientation and dynamics of membrane-bound melittin utilizing dansyl fluorescence. J. Phys. Chem. B, 2008, 112(44), 14075-14082.
[http://dx.doi.org/10.1021/jp805299g] [PMID: 18842019]
[38]
Raghuraman, H.; Chattopadhyay, A. Effect of ionic strength on folding and aggregation of the hemolytic peptide melittin in solution. Biopolymers, 2006, 83(2), 111-121.
[http://dx.doi.org/10.1002/bip.20536] [PMID: 16680713]
[39]
Hitchner, M.A.; Santiago-Ortiz, L.E.; Necelis, M.R.; Shirley, D.J.; Palmer, T.J.; Tarnawsky, K.E.; Vaden, T.D.; Caputo, G.A. Activity and characterization of a pH-sensitive antimicrobial peptide. Biochim. Biophys. Acta Biomembr., 2019, 1861(10), 182984.
[http://dx.doi.org/10.1016/j.bbamem.2019.05.006] [PMID: 31075228]
[40]
Chrom, C.L.; Renn, L.M.; Caputo, G.A. Characterization and antimicrobial activity of amphiphilic peptide AP3 and derivative sequences. Antibiotics (Basel), 2019, 8(1), E20.
[http://dx.doi.org/10.3390/antibiotics8010020] [PMID: 30845708]
[41]
Caputo, G.A. Analyzing the effects of hydrophobic mismatch on transmembrane α-helices using tryptophan fluorescence spectroscopy. Methods Mol. Biol., 2013, 1063, 95-116.
[http://dx.doi.org/10.1007/978-1-62703-583-5_5] [PMID: 23975773]
[42]
Luna-Ramírez, K.; Sani, M.A.; Silva-Sanchez, J.; Jiménez-Vargas, J.M.; Reyna-Flores, F.; Winkel, K.D.; Wright, C.E.; Possani, L.D.; Separovic, F. Membrane interactions and biological activity of antimicrobial peptides from Australian scorpion. Biochim. Biophys. Acta, 2014, 1838(9), 2140-2148.
[http://dx.doi.org/10.1016/j.bbamem.2013.10.022] [PMID: 24200946]
[43]
Chen, A.; Karanastasis, A.; Casey, K.R.; Necelis, M.; Carone, B.R.; Caputo, G.A.; Palermo, E.F. Cationic molecular umbrellas as antibacterial agents with remarkable cell-type selectivity. ACS Appl. Mater. Interfaces, 2020, 12(19), 21270-21282.
[http://dx.doi.org/10.1021/acsami.9b19076] [PMID: 31917544]
[44]
Yang, S-T.; Yub Shin, S.Y.; Kim, Y-C.; Kim, Y.; Hahm, K-S.; Kim, J.I. Conformation-dependent antibiotic activity of tritrpticin, a cathelicidin-derived antimicrobial peptide. Biochem. Biophys. Res. Commun., 2002, 296(5), 1044-1050.
[http://dx.doi.org/10.1016/S0006-291X(02)02048-X] [PMID: 12207877]
[45]
Arias, M.; Piga, K.B.; Hyndman, M.E.; Vogel, H.J. Improving the activity of Trp-rich antimicrobial peptides by Arg/Lys substitutions and changing the length of cationic residues. Biomolecules, 2018, 8(2), E19.
[http://dx.doi.org/10.3390/biom8020019] [PMID: 29671805]
[46]
Ladokhin, A.S.; Selsted, M.E.; White, S.H. CD spectra of indolicidin antimicrobial peptides suggest turns, not polyproline helix. Biochemistry, 1999, 38(38), 12313-12319.
[http://dx.doi.org/10.1021/bi9907936] [PMID: 10493799]
[47]
Andrushchenko, V.V.; Vogel, H.J.; Prenner, E.J. Solvent-dependent structure of two tryptophan-rich antimicrobial peptides and their analogs studied by FTIR and CD spectroscopy. Biochim. Biophys. Acta, 2006, 1758(10), 1596-1608.
[http://dx.doi.org/10.1016/j.bbamem.2006.07.013] [PMID: 16956577]
[48]
Haney, E.F.; Petersen, A.P.; Lau, C.K.; Jing, W.; Storey, D.G.; Vogel, H.J. Mechanism of action of puroindoline derived tryptophan-rich antimicrobial peptides. Biochim. Biophys. Acta, 2013, 1828(8), 1802-1813.
[http://dx.doi.org/10.1016/j.bbamem.2013.03.023] [PMID: 23562406]
[49]
Yang, S.T.; Shin, S.Y.; Hahm, K.S.; Kim, J.I. Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities. Int. J. Antimicrob. Agents, 2006, 27(4), 325-330.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.11.014] [PMID: 16563706]
[50]
Brown, A.M.; Zondlo, N.J. A propensity scale for type II polyproline helices (PPII): aromatic amino acids in proline-rich sequences strongly disfavor PPII due to proline-aromatic interactions. Biochemistry, 2012, 51(25), 5041-5051.
[http://dx.doi.org/10.1021/bi3002924] [PMID: 22667692]
[51]
de Planque, M.R.; Kruijtzer, J.A.; Liskamp, R.M.; Marsh, D.; Greathouse, D.V.; Koeppe, R.E., II; de Kruijff, B.; Killian, J.A. Different membrane anchoring positions of tryptophan and lysine in synthetic transmembrane alpha-helical peptides. J. Biol. Chem., 1999, 274(30), 20839-20846.
[http://dx.doi.org/10.1074/jbc.274.30.20839] [PMID: 10409625]
[52]
de Jesus, A.J.; Allen, T.W. The role of tryptophan side chains in membrane protein anchoring and hydrophobic mismatch. Biochim. Biophys. Acta, 2013, 1828(2), 864-876.
[http://dx.doi.org/10.1016/j.bbamem.2012.09.009] [PMID: 22989724]
[53]
Nagarajan, D.; Nagarajan, T.; Roy, N.; Kulkarni, O.; Ravichandran, S.; Mishra, M.; Chakravortty, D.; Chandra, N. Computational antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria. J. Biol. Chem., 2018, 293(10), 3492-3509.
[http://dx.doi.org/10.1074/jbc.M117.805499] [PMID: 29259134]
[54]
Hoffknecht, B.C.; Worm, D.J.; Bobersky, S.; Prochnow, P.; Bandow, J.E.; Metzler-Nolte, N. Influence of the multivalency of ultrashort Arg-Trp-based antimicrobial peptides (AMP) on their antibacterial activity. ChemMedChem, 2015, 10(9), 1564-1569.
[http://dx.doi.org/10.1002/cmdc.201500220] [PMID: 26149664]
[55]
Falla, T.J.; Karunaratne, D.N.; Hancock, R.E. Mode of action of the antimicrobial peptide indolicidin. J. Biol. Chem., 1996, 271(32), 19298-19303.
[http://dx.doi.org/10.1074/jbc.271.32.19298] [PMID: 8702613]
[56]
Lawyer, C.; Pai, S.; Watabe, M.; Borgia, P.; Mashimo, T.; Eagleton, L.; Watabe, K. Antimicrobial activity of a 13 amino acid tryptophan-rich peptide derived from a putative porcine precursor protein of a novel family of antibacterial peptides. FEBS Lett., 1996, 390(1), 95-98.
[http://dx.doi.org/10.1016/0014-5793(96)00637-0] [PMID: 8706838]
[57]
Mwangi, J.; Yin, Y.; Wang, G.; Yang, M.; Li, Y.; Zhang, Z.; Lai, R. The antimicrobial peptide ZY4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii infection. Proc. Natl. Acad. Sci. USA, 2019, 2019, 09585.
[PMID: 31843919]
[58]
Singh, J.; Mumtaz, S.; Joshi, S.; Mukhopadhyay, K. In vitro and ex vivo efficacy of novel Trp-Arg rich analogue of α-MSH against Staphylococcus aureus. ACS Omega, 2020, 5(7), 3258-3270.
[http://dx.doi.org/10.1021/acsomega.9b03307] [PMID: 32118141]
[59]
Haug, B.E.; Skar, M.L.; Svendsen, J.S. Bulky aromatic amino acids increase the antibacterial activity of 15-residue bovine lactoferricin derivatives. J. Pept. Sci., 2001, 7(8), 425-432.
[http://dx.doi.org/10.1002/psc.338] [PMID: 11548058]
[60]
Sharma, R.; Lomash, S.; Salunke, D.M. Putative bioactive motif of tritrpticin revealed by an antibody with biological receptor-like properties. PLoS One, 2013, 8(9), e75582.
[http://dx.doi.org/10.1371/journal.pone.0075582] [PMID: 24086578]
[61]
Chen, Y.; Guarnieri, M.T.; Vasil, A.I.; Vasil, M.L.; Mant, C.T.; Hodges, R.S. Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrob. Agents Chemother., 2007, 51(4), 1398-1406.
[http://dx.doi.org/10.1128/AAC.00925-06] [PMID: 17158938]
[62]
Hollmann, A.; Martínez, M.; Noguera, M.E.; Augusto, M.T.; Disalvo, A.; Santos, N.C.; Semorile, L.; Maffía, P.C. Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide-membrane interactions of three related antimicrobial peptides. Colloids Surf. B Biointerfaces, 2016, 141, 528-536.
[http://dx.doi.org/10.1016/j.colsurfb.2016.02.003] [PMID: 26896660]
[63]
Kuroda, K.; Caputo, G.A.; DeGrado, W.F. The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives. Chemistry, 2009, 15(5), 1123-1133.
[http://dx.doi.org/10.1002/chem.200801523] [PMID: 19072946]
[64]
Mortazavian, H.; Foster, L.L.; Bhat, R.; Patel, S.; Kuroda, K. Decoupling the functional roles of cationic and hydrophobic groups in the antimicrobial and hemolytic activities of methacrylate random copolymers. Biomacromolecules, 2018, 19(11), 4370-4378.
[http://dx.doi.org/10.1021/acs.biomac.8b01256] [PMID: 30350596]
[65]
Chee, S.M.Q.; Wongsantichon, J.; Siau, J.; Thean, D.; Ferrer, F.; Robinson, R.C.; Lane, D.P.; Brown, C.J.; Ghadessy, F.J. Structure-activity studies of Mdm2/Mdm4-binding stapled peptides comprising non-natural amino acids. PLoS One, 2017, 12(12), e0189379.
[http://dx.doi.org/10.1371/journal.pone.0189379] [PMID: 29228061]
[66]
Almaaytah, A.; Qaoud, M.T.; Khalil Mohammed, G.; Abualhaijaa, A.; Knappe, D.; Hoffmann, R.; Al-Balas, Q. Antimicrobial and antibiofilm activity of UP-5, an ultrashort antimicrobial peptide designed using only arginine and biphenylalanine. Pharmaceuticals (Basel), 2018, 11(1), E3.
[http://dx.doi.org/10.3390/ph11010003] [PMID: 29301331]
[67]
Moroz, Y.S.; Binder, W.; Nygren, P.; Caputo, G.A.; Korendovych, I.V. Painting proteins blue: β-(1-azulenyl)-L-alanine as a probe for studying protein-protein interactions. Chem. Commun. (Camb.), 2013, 49(5), 490-492.
[http://dx.doi.org/10.1039/C2CC37550H] [PMID: 23207368]
[68]
Ridgway, Z.; Picciano, A.L.; Gosavi, P.M.; Moroz, Y.S.; Angevine, C.E.; Chavis, A.E.; Reiner, J.E.; Korendovych, I.V.; Caputo, G.A. Functional characterization of a melittin analog containing a non-natural tryptophan analog. Biopolymers, 2015, 104(4), 384-394.
[http://dx.doi.org/10.1002/bip.22624] [PMID: 25670241]
[69]
Gosavi, P.M.; Moroz, Y.S.; Korendovych, I.V. β-(1-Azulenyl)-L-alanine--a functional probe for determination of pKa of histidine residues. Chem. Commun. (Camb.), 2015, 51(25), 5347-5350.
[http://dx.doi.org/10.1039/C4CC08720H] [PMID: 25645241]
[70]
Locock, K.E.S.; Michl, T.D.; Stevens, N.; Hayball, J.D.; Vasilev, K.; Postma, A.; Griesser, H.J.; Meagher, L.; Haeussler, M. antimicrobial polymethacrylates synthesized as mimics of tryptophan-rich cationic peptides. ACS Macro Lett., 2014, 3(4), 319-323.
[http://dx.doi.org/10.1021/mz5001527]
[71]
Boopathy, M.; Selvam, R. JohnSanthoshkumar, S.; Subramanian, K., Synthesis and evaluation of polyacrylamides derived from polycyclic pendant naphthalene, indole, and phenothiazine based chalcone moiety as potent antimicrobial agents. Polym. Adv. Technol., 2017, 28(6), 717-727.
[http://dx.doi.org/10.1002/pat.3972]
[72]
Hartlieb, M.; Williams, E.G.L.; Kuroki, A.; Perrier, S.; Locock, K.E.S. Antimicrobial polymers: Mimicking amino acid functionality, sequence control and three-dimensional structure of host-defense peptides. Curr. Med. Chem., 2017, 24(19), 2115-2140.
[http://dx.doi.org/10.2174/0929867324666170116122322] [PMID: 28093986]