Microwave Irradiation: Synthesis and Characterization of Substituted Pyranoquinolines

Page: [156 - 159] Pages: 4

  • * (Excluding Mailing and Handling)

Abstract

A new series of pyrano[2,3-b]quinolines were synthesized from 3-formylquinolin-2(1H)- ones via Knoevenagel condensation followed by cyclization reaction of ethyl cyanoacetate using DMSO as solvent. This methodology is a simple; clean, fast, efficient, eco-friendly method with less reaction time, an improvement in the yield and purity of the product. The structures of newly synthesized compounds were confirmed by IR, NMR, Mass and elemental analysis.

Keywords: Knoevenagel, ethyl cyanoacetate, pyrano, microwave, quinoline, synthesis.

Graphical Abstract

[1]
Bennacef, I.; Perrio, C.; Lasne, M.C.; Barré, L. J. Org. Chem., 2007, 72(6), 2161-2165.
[http://dx.doi.org/10.1021/jo062285p] [PMID: 17319724]
[2]
Ibrahim, M.A.; Hassanin, H.M.; Alnamer, Y.A. Synth. Commun., 2014, 44, 3470-3482.
[http://dx.doi.org/10.1080/00397911.2014.949775]
[3]
Akula, M.; Yogeeswari, P.; Sriram, D.; Jha, M.; Bhattacharya, A. RSC Advances, 2016, 6, 46073.
[http://dx.doi.org/10.1039/C6RA03187K]
[4]
Myers, A.G.; Tom, N.J.; Fraley, M.E.; Cohen, S.B.; Madar, D.J. J. Am. Chem. Soc., 1997, 119, 6072-6094.
[http://dx.doi.org/10.1021/ja9703741]
[5]
Chen, Y.L.; Fang, K.C.; Sheu, J.Y.; Hsu, S.L.; Tzeng, C.C. J. Med. Chem., 2001, 44(14), 2374-2377.
[http://dx.doi.org/10.1021/jm0100335] [PMID: 11428933]
[6]
Tanwar, B.; Kumar, A.; Yogeeswari, P.; Sriram, D.; Chakraborti, A.K. Bioorg. Med. Chem. Lett., 2016, 26(24), 5960-5966.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.082] [PMID: 27839684]
[7]
Ramesh, M.; Mohan, P.S.; Shanmugam, P. Tetrahedron, 1984, 40, 4041-4049.
[http://dx.doi.org/10.1016/0040-4020(84)85084-X]
[8]
Grundon, M.F. The Alkaloids; Brossi, A., Ed.; Academic Press: London, 1988, Vol. 32, pp. 341-439.
[9]
Carling, R.W.; Leeson, P.D.; Moseley, A.M.; Baker, R.; Forster, A.C.; Grimwood, S.; Kemp, J.A.; Marshall, G.R. J. Med. Chem., 1992, 35, 1942-1953.
[http://dx.doi.org/10.1021/jm00089a003] [PMID: 1534583]
[10]
Puricelli, L.; Innocenti, G.; Delle Monache, G.; Caniato, R.; Filippini, R.; Cappelletti, E.M. Nat. Prod. Lett., 2002, 16(2), 95-100.
[http://dx.doi.org/10.1080/10575630290019985] [PMID: 11990434]
[11]
Amutha, P.; Lavanya, G.; Venkatapathy, K.; Magesh, C.J. Lett. Org. Chem., 2019, 16, 865-873.
[http://dx.doi.org/10.2174/1570178616666190118152927]
[12]
Mirjafary, Z.; Saidian, H.; Sahandi, M.; Shojaei, L. J. Braz. Chem. Soc., 2014, 25, 1253-1260.
[http://dx.doi.org/10.5935/0103-5053.20140103]
[13]
Nepolraja, A.; Pitchaib, P.; Manic, P. Org. Chem. Res., 2019, 5, 167-173.
[14]
Chen, J.J.; Chen, P.H.; Liao, C.H.; Huang, S.Y.; Chen, I.S. J. Nat. Prod., 2007, 70(9), 1444-1448.
[http://dx.doi.org/10.1021/np070186g] [PMID: 17822293]
[15]
Magedov, I.V.; Manpadi, M.; Ogasawara, M.A.; Dhawan, A.S.; Rogelj, S.; Van Slambrouck, S.; Steelant, W.F.A.; Evdokimov, N.M.; Uglinskii, P.Y.; Elias, E.M.; Knee, E.J.; Tongwa, P.; Antipin, M.Y.; Kornienko, A. J. Med. Chem., 2008, 51(8), 2561-2570.
[http://dx.doi.org/10.1021/jm701499n] [PMID: 18361483]
[16]
Küçükbay, F.Z.; Küçükbay, H.; Tanc, M.; Supuran, C.T. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1198-1202.
[http://dx.doi.org/10.3109/14756366.2015.1113173 ] [PMID: 26586254]
[17]
Küçükbay, H.; Gönül, Z.; Küçükbay, F.Z.; Angeli, A.; Bartolucci, G.; Supuran, C.T. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1021-1026.
[http://dx.doi.org/10.1080/14756366.2020.1751620 ] [PMID: 32297533]
[18]
Kumari, P.; Narayana, C.; Dubey, S.; Gupta, A.; Sagar, R. Org. Biomol. Chem., 2018, 16(12), 2049-2059.
[http://dx.doi.org/10.1039/C7OB03186F] [PMID: 29411817]
[19]
Asghari, S.; Ramezani, S.; Mohseni, M. Chin. Chem. Lett., 2014, 25, 431-434.
[http://dx.doi.org/10.1016/j.cclet.2013.12.010]
[20]
Fujita, Y.; Oguri, H.; Oikawa, H. J. Antibiot. (Tokyo), 2005, 58(6), 425-427.
[http://dx.doi.org/10.1038/ja.2005.56] [PMID: 16156522]
[21]
Hammoudaa, M.A.A. Res. J. Pharm. Biol. Chem. Sci., 2015, 6, 200-208.
[22]
Cantrell, C.L.; Schrader, K.K.; Mamonov, L.K.; Sitpaeva, G.T.; Kustova, T.S.; Dunbar, C.; Wedge, D.E. J. Agric. Food Chem., 2005, 53(20), 7741-7748.
[http://dx.doi.org/10.1021/jf051478v] [PMID: 16190626]
[23]
Varma, R.S. Pure Appl. Chem., 2001, 73, 193-198.
[http://dx.doi.org/10.1351/pac200173010193]
[24]
Caddick, S. Tetrahedron, 1995, 51, 10403-10432.
[http://dx.doi.org/10.1016/0040-4020(95)00662-R]
[25]
Nadaraj, V.; Abirami, M.; Thamarai Selvi, S. Rasayan J. Chem., 2015, 8, 203-206.
[26]
Yavuz, K.; Kucukbay, H. Appl. Organomet. Chem., 2018, 32(e3897), 1-8.
[http://dx.doi.org/10.1002/aoc.3897]
[27]
Kucukbay, H.; Sireci, N.; Yilmaz, U.; Akkurt, M.; Yalcin, S.P. Appl. Organomet. Chem., 2011, 25, 255-261.
[http://dx.doi.org/10.1002/aoc.1751]
[28]
Senthil Kumar, G.; Kaminsky, W.; Rajendra Prasad, K.J. Synth. Commun., 2015, 45, 1751-1760.
[http://dx.doi.org/10.1080/00397911.2015.1041608]
[29]
Clisir, U.; Cicek, B. J. Mol. Struct., 2017, 1148, 505-511.
[http://dx.doi.org/10.1016/j.molstruc.2017.07.081]
[30]
Althagafi, I.I.; Shaaban, M.R. J. Mol. Struct., 2017, 1142, 122-129.
[http://dx.doi.org/10.1016/j.molstruc.2017.04.047]
[31]
Nadaraj, V.; Thamarai Selvi, S. Res. J. Chem. Environ., 2013, 17, 46-48.
[32]
Acosta, P.; Insuasty, B.; Ortiz, A.; Abonia, R.; Sortinob, M.; Zacchino, S.A.; Quiroga, J. Arab. J. Chem., 2016, 9, 481-492.
[http://dx.doi.org/10.1016/j.arabjc.2015.03.002]
[33]
Nadaraj, V.; Thamarai Selvi, S.; Mohan, S.; Daniel Thangadurai, T. Med. Chem. Res., 2012, 21, 2911-2919.
[http://dx.doi.org/10.1007/s00044-011-9811-1]
[34]
Nadaraj, V.; Thamarai Selvi, S.; Mohan, S.; Daniel Thangadurai, T. Med. Chem. Res., 2012, 21, 2902-2910.
[http://dx.doi.org/10.1007/s00044-011-9810-2]