The Use of Natural Products Against Fusarium oxysporum: A Review

Article ID: e160921184776 Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Currently, numerous researchers have focused their attention on the use of natural products from plants and microorganisms, or compounds derived from these organisms to protect crops from various diseases, thus reducing the negative effects on human health and environmental safety. Fungal diseases cause a considerable loss of crop yields in agricultural industries worldwide. Fusarium oxysporum comprises a multitude of formae speciales that cause vascular wilt diseases of economically important crops. This review presents an overview of researches realized on natural products tested against Fusarium oxysporum formae speciales phytopathogens for the period (2017-2020). This review aimed to collect major research works of the antifungal compounds against these fungi and updates information on their developments and approaches that have been rapidly taking place in recent years so that further novel researches can be envisaged. This review discussed these studies by analyzing different sources for antifusariosis treatment, evaluation of testing methods, and information on their advantages and limitations and determined those with real efficacy. Despite the important number of natural products with remarkable in vitro efficiency, the limiting point is their in vivo application for soil microorganisms (in this case: Fusarium oxysporum). Therefore, more advanced researches are needed to solve this problem.

Keywords: Antifungal activity, Fusarium oxysporum), natural products, bioactive compounds, antifungal techniques, plant disease, crops.

Graphical Abstract

[1]
Davari, M.; Ezazi, R. Chemical composition and antifungal activity of the essential oil of Zhumeria majdae, Heracleum persicum and Eucalyptus sp. against some important phytopathogenic fungi. J. Mycol. Med., 2017, 27(4), 463-468.
[http://dx.doi.org/10.1016/j.mycmed.2017.06.001] [PMID: 28757068]
[2]
Mahlo, S.M.; Chauke, H.R.; McGaw, L.; Eloff, J. Antioxidant and antifungal activity of selected medicinal plant extracts against phytopathogenic fungi. Afr. J. Tradit. Complement. Altern. Med., 2016, 13(4), 216-222.
[http://dx.doi.org/10.21010/ajtcam.v13i4.28] [PMID: 28852739]
[3]
Al-Asmari, F.; Mereddy, R.; Sultanbawa, Y. A novel photosensitization treatment for the inactivation of fungal spores and cells mediated by curcumin. J. Photochem. Photobiol. B, 2017, 173, 301-306.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.06.009] [PMID: 28623822]
[4]
Zhao, Y-M.; Cheng, Y-X.; Ma, Y-N.; Chen, C-J.; Xu, F-R.; Dong, X. Role of phenolic acids from the rhizosphere soils of Panax notoginseng as a double-edge sword in the occurrence of root-rot disease. Molecules, 2018, 23(4), 819.
[http://dx.doi.org/10.3390/molecules23040819] [PMID: 29614031]
[5]
Prieto, J. A.; Patiño, O. J.; Plazas, E. A.; Pabón, L. C.; Ávila, M. C.; Guzmán, J. D.; Delgado, W. A.; Cuca, L. E. Natural products from plants as potential source agents for controlling Fusarium. Fungicides-Showcases of Integrated Plant Disease Management from Around the World. Croacia: Intech, 2013, 233-278.
[6]
Confortin, T.C.; Todero, I.; Soares, J.F.; Luft, L.; Brun, T.; Rabuske, J.E.; Nogueira, C.U.; Mazutti, M.A.; Zabot, G.L.; Tres, M.V. Extracts from Lupinus albescens : antioxidant power and antifungal activity in vitro against phytopathogenic fungi. Environ. Technol., 2019, 40(13), 1668-1675.
[http://dx.doi.org/10.1080/09593330.2018.1427800] [PMID: 29336227]
[7]
Bartmańska, A.; Wałecka-Zacharska, E.; Tronina, T.; Popłoński, J.; Sordon, S.; Brzezowska, E.; Bania, J.; Huszcza, E. Antimicrobial properties of Spent Hops extracts, flavonoids isolated therefrom, and their derivatives. Molecules, 2018, 23(8), 2059.
[http://dx.doi.org/10.3390/molecules23082059] [PMID: 30126093]
[8]
Singh, M.K.; Pandey, A.; Sawarkar, H.; Gupta, A.; Gidwani, B.; Dhongade, H.; Tripathi, D.K. Methanolic extract of Plumbago Zeylanica- a remarkable antibacterial agent against many human and agricultural pathogens. J. Pharmacopuncture, 2017, 20(1), 18-22.
[http://dx.doi.org/10.3831/KPI.2017.20.004] [PMID: 28392958]
[9]
Galletti, J.; Tobaldini-Valerio, F.K.; Silva, S.; Kioshima, É.S.; Trierveiler-Pereira, L.; Bruschi, M.; Negri, M.; Estivalet Svidzinski, T.I. Antibiofilm activity of propolis extract on Fusarium species from onychomycosis. Future Microbiol., 2017, 12(14), 1311-1321.
[http://dx.doi.org/10.2217/fmb-2017-0052] [PMID: 28975806]
[10]
Edel-Hermann, V.; Lecomte, C. Current status of Fusarium oxysporum formae speciales and races. Phytopathology, 2019, 109(4), 512-530.
[http://dx.doi.org/10.1094/PHYTO-08-18-0320-RVW] [PMID: 30461350]
[11]
Adnan, M.; Alshammari, E.; Ashraf, S.A.; Patel, K.; Lad, K.; Patel, M. Physiological and molecular characterization of biosurfactant producing endophytic fungi Xylaria regalis from the cones of Thuja plicata as a potent plant growth promoter with its potential application. BioMed Res. Int., 2018, 20187362148
[http://dx.doi.org/10.1155/2018/7362148] [PMID: 29862287]
[12]
Agarwal, M.; Dheeman, S.; Dubey, R.C.; Kumar, P.; Maheshwari, D.K.; Bajpai, V.K. Differential antagonistic responses of Bacillus pumilus MSUA3 against Rhizoctonia solani and Fusarium oxysporum causing fungal diseases in Fagopyrum esculentum Moench. Microbiol. Res., 2017, 205, 40-47.
[http://dx.doi.org/10.1016/j.micres.2017.08.012] [PMID: 28942843]
[13]
Ahmad, Z.; Wu, J.; Chen, L.; Dong, W. Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Sci. Rep., 2017, 7(1), 1777.
[http://dx.doi.org/10.1038/s41598-017-01940-9] [PMID: 28496135]
[14]
Al-Asmari, A.K.; Alamri, M.A.; Almasoudi, A.S.; Abbasmanthiri, R.; Mahfoud, M. Evaluation of the in vitro antimicrobial activity of selected Saudi scorpion venoms tested against multidrug-resistant micro-organisms. J. Glob. Antimicrob. Resist., 2017, 10, 14-18.
[http://dx.doi.org/10.1016/j.jgar.2017.03.008] [PMID: 28587870]
[15]
Carvalho, C.R.; Ferreira-D’Silva, A.; Wedge, D.E.; Cantrell, C.L.; Rosa, L.H. Antifungal activities of Cytochalasins produced by Diaporthe miriciae, An endophytic fungus associated with tropical medicinal plants. Can. J. Microbiol., 2018, 64(11), 835-843.
[http://dx.doi.org/10.1139/cjm-2018-0131] [PMID: 29874477]
[16]
Kälvö, D.; Menkis, A.; Broberg, A. Secondary metabolites from the root rot biocontrol fungus Phlebiopsis gigantea. Molecules, 2018, 23(6), 1417.
[http://dx.doi.org/10.3390/molecules23061417] [PMID: 29895730]
[17]
Ramos, M.V.; Brito, D.; Freitas, C.D.T.; Gonçalves, J.F.C.; Porfirio, C.T.M.N.; Lobo, M.D.P.; Monteiro-Moreira, A.C.O.; Souza, L.A.C.; Fernandes, A.V. Proteomic identification and purification of seed proteins from native Amazonian species displaying antifungal activity. Planta, 2018, 248(1), 197-209.
[http://dx.doi.org/10.1007/s00425-018-2893-y] [PMID: 29675765]
[18]
Sarwar, A.; Hassan, M.N.; Imran, M.; Iqbal, M.; Majeed, S.; Brader, G.; Sessitsch, A.; Hafeez, F.Y. Biocontrol activity of surfactin A purified from Bacillus NH-100 and NH-217 against rice bakanae disease. Microbiol. Res., 2018, 209, 1-13.
[http://dx.doi.org/10.1016/j.micres.2018.01.006] [PMID: 29580617]
[19]
Sarwar, A.; Brader, G.; Corretto, E.; Aleti, G.; Ullah, M.A.; Sessitsch, A.; Hafeez, F.Y. Qualitative analysis of biosurfactants from Bacillus species exhibiting antifungal activity. PLoS One, 2018, 13(6)e0198107
[http://dx.doi.org/10.1371/journal.pone.0198107] [PMID: 29864153]
[20]
Schalchli, H.; Hormazábal, E.; Rubilar, O.; Briceño, G.; Mutis, A.; Zocolo, G.J.; Diez, M.C. Production of ligninolytic enzymes and some diffusible antifungal compounds by white-rot fungi using potato solid wastes as the sole nutrient source. J. Appl. Microbiol., 2017, 123(4), 886-895.
[http://dx.doi.org/10.1111/jam.13542] [PMID: 28718996]
[21]
Silva, M.S.; Ribeiro, S.F.; Taveira, G.B.; Rodrigues, R.; Fernandes, K.V.; Carvalho, A.O.; Vasconcelos, I.M.; Mello, E.O.; Gomes, V.M. Application and bioactive properties of CaTI, a trypsin inhibitor from Capsicum annuum seeds: membrane permeabilization, oxidative stress and intracellular target in phytopathogenic fungi cells. J. Sci. Food Agric., 2017, 97(11), 3790-3801.
[http://dx.doi.org/10.1002/jsfa.8243] [PMID: 28139827]
[22]
Wu, H.; Liu, T.; Lian, Y.; Wang, W. Two new eremophilenolides from the roots of Ligulariopsis shichuana and their anti-phytopathogenic fungal and antifeedant activities. Nat. Prod. Res., 2019, 33(10), 1442-1448.
[http://dx.doi.org/10.1080/14786419.2017.1419240] [PMID: 29281920]
[23]
Wu, X.; Pang, X-J.; Xu, L-L.; Zhao, T.; Long, X-Y.; Zhang, Q-Y.; Qin, H-L.; Yang, D-F.; Yang, X-L. Two new alkylated furan derivatives with antifungal and antibacterial activities from the plant endophytic fungus Emericella sp. XL029. Nat. Prod. Res., 2018, 32(22), 2625-2631.
[http://dx.doi.org/10.1080/14786419.2017.1374269] [PMID: 28927292]
[24]
Wu, Z.; Xie, Z.; Wu, M.; Li, X.; Li, W.; Ding, W.; She, Z.; Li, C. New antimicrobial cyclopentenones from Nigrospora sphaerica Zmt05, a fungus derived from Oxya chinensis thunber. J. Agric. Food Chem., 2018, 66(21), 5368-5372.
[http://dx.doi.org/10.1021/acs.jafc.8b01376] [PMID: 29746771]
[25]
Xiong, C.; Li, Q.; Li, S.; Chen, C.; Chen, Z.; Huang, W. In vitro antimicrobial activities and mechanism of 1-octen-3-ol against food-related bacteria and pathogenic fungi. J. Oleo Sci., 2017, 66(9), 1041-1049.
[http://dx.doi.org/10.5650/jos.ess16196] [PMID: 28794307]
[26]
Yuan, C.; Ding, G.; Wang, H-Y.; Guo, Y-H.; Shang, H.; Ma, X-J.; Zou, Z-M. Polyketide-terpene hybrid metabolites from an endolichenic Fungus pestalotiopsissp. BioMed Res. Int., 2017, 20176961928
[http://dx.doi.org/10.1155/2017/6961928] [PMID: 28593175]
[27]
Zandvakili, N.; Zamani, M.; Motallebi, M.; Moghaddassi Jahromi, Z. Cloning, overexpression and in vitro antifungal activity of zea mays pr10 protein. Iran. J. Biotechnol., 2017, 15(1), 42-49.
[http://dx.doi.org/10.15171/ijb.1357] [PMID: 28959351]
[28]
Zheng, Y-K.; Miao, C-P.; Chen, H-H.; Huang, F-F.; Xia, Y-M.; Chen, Y-W.; Zhao, L-X. Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease. J. Ginseng Res., 2017, 41(3), 353-360.
[http://dx.doi.org/10.1016/j.jgr.2016.07.005] [PMID: 28701877]
[29]
Chen, X.; Hu, L-F.; Huang, X-S.; Zhao, L-X.; Miao, C-P.; Chen, Y-W.; Xu, L-H.; Han, L.; Li, Y-Q. Isolation and characterization of new phenazine metabolites with antifungal activity against root-rot pathogens of Panax notoginseng from Streptomyces. J. Agric. Food Chem., 2019, 67(41), 11403-11407.
[http://dx.doi.org/10.1021/acs.jafc.9b04191] [PMID: 31509401]
[30]
Kamel, N.M.; Abdel-Motaal, F.F.; El-Zayat, S.A. Endophytic fungi from the medicinal herb Euphorbia geniculata as a potential source for bioactive metabolites. Arch. Microbiol., 2020, 202(2), 247-255.
[http://dx.doi.org/10.1007/s00203-019-01740-x] [PMID: 31602502]
[31]
Srivastava, A.K.; Pandey, L.K. synthesis of chalcones and nucleosides incorporating [1, 3, 4] oxadiazolenone core and evaluation of their antifungal and antibacterial activities. Curr. Bioact. Compd., 2019, 15(6), 665-679.
[http://dx.doi.org/10.2174/1573407214666180911130110]
[32]
Tao, P.; Wu, C.; Hao, J.; Gao, Y.; He, X.; Li, J.; Shang, S.; Song, Z.; Song, J. Antifungal application of rosin derivatives from renewable pine resin in crop protection. J. Agric. Food Chem., 2020, 68(14), 4144-4154.
[http://dx.doi.org/10.1021/acs.jafc.0c00562] [PMID: 32191457]
[33]
Tarhriz, V.; Eyvazi, S.; Shakeri, E.; Hejazi, M.S.; Dilmaghani, A. Antibacterial and antifungal activity of novel freshwater bacterium Tabrizicola aquatica as a prominent natural antibiotic available in qurugol lake. Pharm. Sci., 2020, 26(1), 88-92.
[http://dx.doi.org/10.34172/PS.2019.56]
[34]
Yoo, S-J.; Weon, H-Y.; Song, J.; Sang, M.K. Effects of Chryseobacterium soldanellicola T16E-39 and Bacillus siamensis T20e-257 on biocontrol against phytophthora blight and bacterial wilt and growth promotion in tomato plants. Int. J. Agric. Biol., 2020, 23(3), 534-540.
[35]
Bentrad, N.; Gaceb-Terrak, R.; Benmalek, Y.; Rahmania, F. Studies on chemical composition and antimicrobial activities of bioactive molecules from date palm (Phoenix dactylifera L.) pollens and seeds. Afr. J. Tradit. Complement. Altern. Med., 2017, 14(3), 242-256.
[http://dx.doi.org/10.21010/ajtcam.v14i3.26] [PMID: 28480436]
[36]
Ghazi, R.; Boulenouar, N.; Cheriti, A.; Reddy, K.; Govender, P. Bioguided fractionation of citrullus colocynthis extracts and antifungal activity against Fusarium oxysporum f.sp. albedinis. Curr. Bioact. Compd., 2020, 16(3), 302-307.
[http://dx.doi.org/10.2174/1573407214666181001124737]
[37]
Belhi, Z.; Boulenouar, N.; Cheriti, A.; Marouf, A. Antifungal and anti-cellulases activity of Limoniastrum feei extracts to promote Bayoud disease treatment using bioautography. Cogent. Food Agric., 2020, 6(1), 1726083.
[http://dx.doi.org/10.1080/23311932.2020.1726083]
[38]
Bouayad Alam, S.; Dib, M.E.A.; Djabou, N.; Tabti, B.; Gaouar Benyelles, N.; Costa, J.; Muselli, A. Essential oils as biocides for the control of fungal infections and devastating pest (Tuta absoluta) of tomato (Lycopersicon esculentum Mill.). Chem. Biodivers., 2017, 14(7)e1700065
[http://dx.doi.org/10.1002/cbdv.201700065] [PMID: 28422413]
[39]
Hsu, L-H.; Wang, H-F.; Sun, P-L.; Hu, F-R.; Chen, Y-L. The antibiotic polymyxin B exhibits novel antifungal activity against Fusarium species. Int. J. Antimicrob. Agents, 2017, 49(6), 740-748.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.01.029] [PMID: 28433743]
[40]
Lahmar, I.; Belghith, H.; Ben Abdallah, F.; Belghith, K. Nutritional composition and phytochemical, antioxidative, and antifungal activities of Pergularia tomentosa L. BioMed Res. Int., 2017, 20176903817
[http://dx.doi.org/10.1155/2017/6903817] [PMID: 28409159]
[41]
Li, W.; Xiong, P.; Zheng, W.; Zhu, X.; She, Z.; Ding, W.; Li, C. Identification and antifungal activity of compounds from the mangrove endophytic fungus Aspergillus clavatus R7. Mar. Drugs, 2017, 15(8), 259.
[http://dx.doi.org/10.3390/md15080259] [PMID: 28825634]
[42]
Medina-Romero, Y.M.; Roque-Flores, G.; Macías-Rubalcava, M.L. Volatile organic compounds from endophytic fungi as innovative postharvest control of Fusarium oxysporum in cherry tomato fruits. Appl. Microbiol. Biotechnol., 2017, 101(22), 8209-8222.
[http://dx.doi.org/10.1007/s00253-017-8542-8] [PMID: 28965217]
[43]
Montenegro, I.; Madrid, A.; Cuellar, M.; Seeger, M.; Alfaro, J.F.; Besoain, X.; Martínez, J.P.; Ramirez, I.; Olguín, Y.; Valenzuela, M. Biopesticide activity from drimanic compounds to control tomato pathogens. Molecules, 2018, 23(8), 2053.
[http://dx.doi.org/10.3390/molecules23082053] [PMID: 30115841]
[44]
Mohamed, M.S.M.; Saleh, A.M.; Abdel-Farid, I.B.; El-Naggar, S.A. Growth, hydrolases and ultrastructure of Fusarium oxysporum as affected by phenolic rich extracts from several xerophytic plants. Pestic. Biochem. Physiol., 2017, 141, 57-64.
[http://dx.doi.org/10.1016/j.pestbp.2016.11.007] [PMID: 28911741]
[45]
Yu, S.; Teng, C.; Liang, J.; Song, T.; Dong, L.; Bai, X.; Jin, Y.; Qu, J. Characterization of siderophore produced by Pseudomonas syringae BAF.1 and its inhibitory effects on spore germination and mycelium morphology of Fusarium oxysporum . J. Microbiol., 2017, 55(11), 877-884.
[http://dx.doi.org/10.1007/s12275-017-7191-z] [PMID: 29076072]
[46]
Zehra, A.; Meena, M.; Dubey, M.K.; Aamir, M.; Upadhyay, R.S. Synergistic effects of plant defense elicitors and Trichoderma harzianum on enhanced induction of antioxidant defense system in tomato against Fusarium wilt disease. Bot. Stud. (Taipei, Taiwan), 2017, 58(1), 44.
[http://dx.doi.org/10.1186/s40529-017-0198-2] [PMID: 29098503]
[47]
Zhu, X.; Zhong, Y.; Xie, Z.; Wu, M.; Hu, Z.; Ding, W.; Li, C. Zhong, Y.; Xie, Z.; Wu, M.; Hu, Z.; Ding, W.; Li, C., Fusarihexins A and B: Novel cyclic hexadepsipeptides from the mangrove endophytic fungus Fusarium sp. R5 with antifungal activities. Planta Med., 2018, 84(18), 1355-1362.
[http://dx.doi.org/10.1055/a-0647-7048] [PMID: 29954027]
[48]
López-Seijas, J.; García-Fraga, B.; da Silva, A.F.; Sieiro, C. Wine lactic acid bacteria with antimicrobial activity as potential biocontrol agents against Fusarium oxysporum f. sp. lycopersici. Agronomy (Basel), 2020, 10(1), 31.
[http://dx.doi.org/10.3390/agronomy10010031]
[49]
Kalleli, F.; Ghassen, A.; Ben Salem, I.; Boughalleb-M’hamdi, N.M. hamdi, M. Essential oil from fennel seeds ( Foeniculum vulgare ) reduces Fusarium wilt of tomato ( Solanum lycopersicon ). Phytopathol. Mediterr., 2020, 59(1), 63-76.
[50]
Gao, L.; Han, J.; Liu, H.; Qu, X.; Lu, Z.; Bie, X. Plipastatin and surfactin coproduction by Bacillus subtilis pB2-L and their effects on microorganisms. Antonie van Leeuwenhoek, 2017, 110(8), 1007-1018.
[http://dx.doi.org/10.1007/s10482-017-0874-y] [PMID: 28477175]
[51]
Han, Y.; Zhao, J.; Zhang, B.; Shen, Q.; Shang, Q.; Li, P. Effect of a novel antifungal peptide P852 on cell morphology and membrane permeability of Fusarium oxysporum. Biochim. Biophys. Acta Biomembr., 2019, 1861(2), 532-539.
[http://dx.doi.org/10.1016/j.bbamem.2018.10.018] [PMID: 30391317]
[52]
Huang, N.; Wang, W.; Yao, Y.; Zhu, F.; Wang, W.; Chang, X. The influence of different concentrations of bio-organic fertilizer on cucumber Fusarium wilt and soil microflora alterations. PLoS One, 2017, 12(2)e0171490
[http://dx.doi.org/10.1371/journal.pone.0171490] [PMID: 28166302]
[53]
Limbadri, S.; Luo, X.; Lin, X.; Liao, S.; Wang, J.; Zhou, X.; Yang, B.; Liu, Y. Bioactive novel indole alkaloids and steroids from deep sea-derived fungus Aspergillus fumigatus SCSIO 41012. Molecules, 2018, 23(9), 2379.
[http://dx.doi.org/10.3390/molecules23092379] [PMID: 30231470]
[54]
Wang, Y.; Zhang, J.; Sun, Y.; Feng, J.; Zhang, X. Evaluating the potential value of natural product cuminic acid against plant pathogenic fungi in cucumber. Molecules, 2017, 22(11), 1914.
[http://dx.doi.org/10.3390/molecules22111914] [PMID: 29113138]
[55]
Zhang, J.; Tan, W.; Zhang, Z.; Song, Y.; Li, Q.; Dong, F.; Guo, Z. Synthesis, characterization, and the antifungal activity of chitosan derivatives containing urea groups. Int. J. Biol. Macromol., 2018, 109, 1061-1067.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.092] [PMID: 29155157]
[56]
Kim, D-R.; Jeon, C-W.; Shin, J-H.; Weller, D.M.; Thomashow, L.; Kwak, Y-S. Function and distribution of a lantipeptide in strawberry fusarium wilt disease-suppressive soils. Mol. Plant Microbe Interact., 2019, 32(3), 306-312.
[http://dx.doi.org/10.1094/MPMI-05-18-0129-R] [PMID: 30256170]
[57]
Park, J.Y.; Kim, S.H.; Kim, N.H.; Lee, S.W.; Jeun, Y-C.; Hong, J.K. Differential inhibitory activities of four plant essential oils on in vitro growth of Fusarium oxysporum f. sp. fragariae causing Fusarium wilt in strawberry plants. Plant Pathol. J., 2017, 33(6), 582-588.
[http://dx.doi.org/10.5423/PPJ.OA.06.2017.0133] [PMID: 29238281]
[58]
Mihalache, G.; Balaes, T.; Gostin, I.; Stefan, M.; Coutte, F.; Krier, F. Lipopeptides produced by Bacillus subtilis as new biocontrol products against fusariosis in ornamental plants. Environ. Sci. Pollut. Res. Int., 2018, 25(30), 29784-29793.
[http://dx.doi.org/10.1007/s11356-017-9162-7] [PMID: 28528498]
[59]
Patiño, B.; Vázquez, C.; Manning, J.M.; Roncero, M.I.G.; Córdoba-Cañero, D.; Di Pietro, A.; Martínez-Del-Pozo, Á. Characterization of a novel cysteine-rich antifungal protein from Fusarium graminearum with activity against maize fungal pathogens. Int. J. Food Microbiol., 2018, 283, 45-51.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2018.06.017] [PMID: 30099994]
[60]
S, X.; L, K.; F, N. S, X.; L, K.; F, N. Effects of different hydroponic substrate combinations and watering regimes on physiological and anti-fungal properties of Siphonochilus aethiopicus. Afr. J. Tradit. Complement. Altern. Med., 2017, 14(3), 89-104.
[http://dx.doi.org/10.21010/ajtcam.v14i3.10] [PMID: 28480420]
[61]
Roşca-Casian, O.; Mircea, C.; Vlase, L.; Gheldiu, A-M.; Teuca, D.T.; Pârvu, M. Chemical composition and antifungal activity of Hedera helix leaf ethanolic extract. Acta Biol. Hung., 2017, 68(2), 196-207.
[http://dx.doi.org/10.1556/018.68.2017.2.7] [PMID: 28605982]
[62]
Sen, S.; Borah, S.N.; Bora, A.; Deka, S. Production, characterization, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3. Microb. Cell Fact., 2017, 16(1), 95.
[http://dx.doi.org/10.1186/s12934-017-0711-z] [PMID: 28558761]
[63]
Chen, Y.; Tan, W.; Li, Q.; Dong, F.; Gu, G.; Guo, Z. Synthesis of inulin derivatives with quaternary phosphonium salts and their antifungal activity. Int. J. Biol. Macromol., 2018, 113, 1273-1278.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.055] [PMID: 29548915]
[64]
Sun, Y.; Wang, Y.; Han, L.R.; Zhang, X.; Feng, J.T. Antifungal activity and action mode of cuminic acid from the seeds of Cuminum cyminum L. against Fusarium oxysporum f. sp. Niveum (FON) causing Fusarium Wilt on watermelon. Molecules, 2017, 22(12), 2053.
[http://dx.doi.org/10.3390/molecules22122053] [PMID: 29189726]
[65]
Tan, W.; Zhang, J.; Luan, F.; Wei, L.; Chen, Y.; Dong, F.; Li, Q.; Guo, Z. Design, synthesis of novel chitosan derivatives bearing quaternary phosphonium salts and evaluation of antifungal activity. Int. J. Biol. Macromol., 2017, 102, 704-711.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.073] [PMID: 28445700]
[66]
Tan, W.; Li, Q.; Dong, F.; Chen, Q.; Guo, Z. Preparation and characterization of novel cationic chitosan derivatives bearing quaternary ammonium and phosphonium salts and assessment of their antifungal properties. Molecules, 2017, 22(9), 1438.
[http://dx.doi.org/10.3390/molecules22091438] [PMID: 28858241]
[67]
Tan, W.; Zhang, J.; Mi, Y.; Dong, F.; Li, Q.; Guo, Z. Synthesis, characterization, and evaluation of antifungal and antioxidant properties of cationic chitosan derivative via azide-alkyne click reaction. Int. J. Biol. Macromol., 2018, 120(Pt A), 318-324.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.111] [PMID: 30144549]
[68]
Zhang, M.; Ge, J.; Yu, X. Transcriptome analysis reveals the mechanism of fungicidal of thymol against Fusarium oxysporum f. sp. niveum. Curr. Microbiol., 2018, 75(4), 410-419.
[http://dx.doi.org/10.1007/s00284-017-1396-6] [PMID: 29150703]
[69]
Zheng, G.; Luo, S.; Li, S.; Hua, J.; Li, W.; Li, S. Specialized metabolites from Ageratina adenophora and their inhibitory activities against pathogenic fungi. Phytochemistry, 2018, 148, 57-62.
[http://dx.doi.org/10.1016/j.phytochem.2018.01.013] [PMID: 29421511]
[70]
Xu, X.; Han, L.; Zhao, L.; Chen, X.; Miao, C.; Hu, L.; Huang, X.; Chen, Y.; Li, Y. Echinosporin antibiotics isolated from Amycolatopsis strain and their antifungal activity against root-rot pathogens of the Panax notoginseng. Folia Microbiol. (Praha), 2019, 64(2), 171-175.
[http://dx.doi.org/10.1007/s12223-018-0642-z] [PMID: 30117099]
[71]
Zhao, Q.; Chen, L.; Dong, K.; Dong, Y.; Xiao, J. Cinnamic acid inhibited growth of faba bean and promoted the incidence of Fusarium wilt . Plants, 2018, 7(4), 84.
[http://dx.doi.org/10.3390/plants7040084] [PMID: 30314266]
[72]
Bashir, M.R.; Atiq, M.; Sajid, M.; Mohsan, M.; Abbas, W.; Alam, M.W.; Bashair, M. Antifungal exploitation of fungicides against Fusarium oxysporum f. sp. capsici causing Fusarium wilt of chilli pepper in Pakistan. Environ. Sci. Pollut. Res. Int., 2018, 25(7), 6797-6801.
[http://dx.doi.org/10.1007/s11356-017-1032-9] [PMID: 29264855]
[73]
Bouzoumita, A.; Metoui, M.; Jemni, M.; Kabaeir, N.; Belhouchette, K.; Ferchichi, A. The efficacy of various bacterial organisms for biocontrol of Fusarium root rot of olive in tunisia. Pol. J. Environ. Stud., 2020, 29(1), 11-16.
[http://dx.doi.org/10.15244/pjoes/89988]
[74]
Lastochkina, O.; Baymiev, A.; Shayahmetova, A.; Garshina, D.; Koryakov, I.; Shpirnaya, I.; Pusenkova, L.; Mardanshin, I.; Kasnak, C.; Palamutoglu, R. Effects of endophytic bacillus subtilis and salicylic acid on postharvest diseases (Phytophthora infestans, Fusarium oxysporum) development in stored potato tubers. Plants, 2020, 9(1), 76.
[http://dx.doi.org/10.3390/plants9010076] [PMID: 31936027]
[75]
Akhtar, R.; Javaid, A.; Qureshi, M. Bioactive constituents of shoot extracts of Sisymbrium irio L. against Fusarium oxysporum f. sp. cepae. Planta Daninha, 2020, 38
[http://dx.doi.org/10.1590/s0100-83582020380100008]
[76]
Rodríguez-Ortiz, R.; Michielse, C.; Rep, M.; Limón, M.C.; Avalos, J. Genetic basis of carotenoid overproduction in Fusarium oxysporum. Fungal Genet. Biol., 2012, 49(9), 684-696.
[http://dx.doi.org/10.1016/j.fgb.2012.06.007] [PMID: 22750191]
[77]
El Hadrami, I.; El Bellaj, M.; El Idrissi, A. Biotechnologies végétales et amélioration du palmier dattier (Phoenix dactylifera L.), pivot de l’agriculture oasienne marocaine. Cah. Agric., 1998, 7(6), 463-468.
[78]
Agrios, G.N. Plant Pathology, 5th ed; Elsevier Academia Press: San Diego Calf. USA, 2005.
[79]
Armstrong, G.; Armstrong, J.K. Another approach to race classification of Fusarium oxysporum f. sp. pisi. Phytopathology, 1981, 71, 474-478.
[http://dx.doi.org/10.1094/Phyto-71-474]
[80]
Armitage, A.D.; Taylor, A.; Sobczyk, M.K.; Baxter, L.; Greenfield, B.P.J.; Bates, H.J.; Wilson, F.; Jackson, A.C.; Ott, S.; Harrison, R.J.; Clarkson, J.P. Characterisation of pathogen-specific regions and novel effector candidates in Fusarium oxysporum f. sp. cepae. Sci. Rep., 2018, 8(1), 13530.
[http://dx.doi.org/10.1038/s41598-018-30335-7] [PMID: 30202022]
[81]
Nirmaladevi, D.; Venkataramana, M.; Srivastava, R.K.; Uppalapati, S.R.; Gupta, V.K.; Yli-Mattila, T.; Clement Tsui, K.M.; Srinivas, C.; Niranjana, S.R.; Chandra, N.S. Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici. Sci. Rep., 2016, 6, 21367.
[http://dx.doi.org/10.1038/srep21367] [PMID: 26883288]
[82]
Ortiz, E.; Gurrola, G.B.; Schwartz, E.F.; Possani, L.D. Scorpion venom components as potential candidates for drug development. Toxicon, 2015, 93, 125-135.
[http://dx.doi.org/10.1016/j.toxicon.2014.11.233] [PMID: 25432067]
[83]
Alajmi, R.; Al-ghamdi, S.; Barakat, I.; Mahmoud, A.; Abdon, N.; Al-Ahidib, M.; Abdel-Gaber, R. Antimicrobial Activity of Two Novel Venoms from Saudi Arabian Scorpions (Leiurus quinquestriatus and Androctonus crassicauda). Int. J. Pept. Res. Ther., 2019.
[84]
Bending, G. The Rhizopshere and its microorganisms. App. Encyclo. Plant Sci., 2017, 2017, 1123-1129.
[85]
Alabouvette, C.; Olivain, C.; Migheli, Q.; Steinberg, C. Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol., 2009, 184(3), 529-544.
[http://dx.doi.org/10.1111/j.1469-8137.2009.03014.x] [PMID: 19761494]
[86]
Caesar, L.K.; Cech, N.B. Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2. Nat. Prod. Rep., 2019, 36(6), 869-888.
[http://dx.doi.org/10.1039/C9NP00011A] [PMID: 31187844]
[87]
Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 2016, 6(2), 71-79.
[http://dx.doi.org/10.1016/j.jpha.2015.11.005] [PMID: 29403965]
[88]
Van Dijck, P.; Sjollema, J.; Cammue, B.P.; Lagrou, K.; Berman, J.; d’Enfert, C.; Andes, D.R.; Arendrup, M.C.; Brakhage, A.A.; Calderone, R.; Cantón, E.; Coenye, T.; Cos, P.; Cowen, L.E.; Edgerton, M.; Espinel-Ingroff, A.; Filler, S.G.; Ghannoum, M.; Gow, N.A.R.; Haas, H.; Jabra-Rizk, M.A.; Johnson, E.M.; Lockhart, S.R.; Lopez-Ribot, J.L.; Maertens, J.; Munro, C.A.; Nett, J.E.; Nobile, C.J.; Pfaller, M.A.; Ramage, G.; Sanglard, D.; Sanguinetti, M.; Spriet, I.; Verweij, P.E.; Warris, A.; Wauters, J.; Yeaman, M.R.; Zaat, S.A.J.; Thevissen, K. Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. Microb. Cell, 2018, 5(7), 300-326.
[http://dx.doi.org/10.15698/mic2018.07.638] [PMID: 29992128]
[89]
Mani Chandrika, K.V.S.; Sharma, S. Promising antifungal agents: A minireview. Bioorg. Med. Chem., 2020, 28(7)115398
[http://dx.doi.org/10.1016/j.bmc.2020.115398] [PMID: 32115335]