Chronic Inflammatory-Modulating Potential of Cassia auriculata with Proinflammatory Cytokine IL-1beta and Its Anticancer Effect on Lung Cancer Cell Line

Page: [343 - 354] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Inflammation is a key element in tumor progression, over time, persistent inflammation causes damage to DNA and leads to cancer. The relationship between chronic inflammation and tumor development is well established, blocking of which can help in cancer prevention and treatment in the future.

Objective: Hence, with this background, the present study aims to evaluate the anti-inflammatory and anticancer potential of Cassia auriculata (CA) solvent fractions through in silico and in vitro means, respectively.

Methods: Generally, inflammatory mediators play a key task in chronic inflammation, following its inflection was chosen for their interactions with nine structurally varied phytoconstituents of CA identified through GCMS. The ethanolic extract of CA was assessed for its apoptotic effects on A549 lung cancer cells by 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, JC-10 staining, DNA fragmentation assay and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR).

Results: The interactions between bioactive components and target protein revealed that important molecules like 5,7-dihydroxy-2-[2-nethoxyphenyl]- 4H-1-Benzopyran-4-one, a flavonoid, and three other components can bind target interleukin 1-beta associated with lung cancer. In vitro data also confirmed that the diverse active components of CA extract might follow the intrinsic mitochondrial pathway to provoke cancer cell death.

Conclusion: Hence, these findings strongly propose that Cassia auriculata (CA) solvent fractions could be exploited in the future to design ligands for obtaining novel leads for treating chronic inflammation linked with lung cancer, and also the extracts of CA can be recommended as a potential agent for lung cancer chemotherapy.

Keywords: Chronic inflammation, Cassia auriculata, GC-MS, molecular docking, IL-1 beta, MTT, QRT-PCR.

Graphical Abstract

[1]
Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet, 2001, 357(9255), 539-545.
[http://dx.doi.org/10.1016/S0140-6736(00)04046-0]] [PMID: 11229684]
[2]
Norling, L.V.; Serhan, C.N. Profiling in resolving inflammatory exudates identifies novel anti-inflammatory and pro-resolving mediators and signals for termination. J. Intern. Med., 2010, 268(1), 15-24.
[http://dx.doi.org/10.1111/j.1365-2796.2010.02235.x]] [PMID: 20497301]
[3]
Karin, M.; Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature, 2016, 529(7586), 307-315.
[http://dx.doi.org/10.1038/nature17039]] [PMID: 26791721]
[4]
Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2017, 9(6), 7204-7218.
[http://dx.doi.org/10.18632/oncotarget.23208]] [PMID: 29467962]
[5]
Golemis, E.A.; Scheet, P.; Beck, T.N.; Scolnick, E.M.; Hunter, D.J.; Hawk, E.; Hopkins, N. Molecular mechanisms of the preventable causes of cancer in the United States. Genes Dev., 2018, 32(13-14), 868-902.
[http://dx.doi.org/10.1101/gad.314849.118]] [PMID: 29945886]
[6]
Todoric, J.; Antonucci, L.; Karin, M. Targeting inflammation in cancer prevention and therapy. Cancer Prev. Res. (Phila.), 2016, 9(12), 895-905.
[http://dx.doi.org/10.1158/1940-6207.CAPR-16-0209]] [PMID: 27913448]
[7]
Herowati, R.; Widodo, G.P. Molecular docking analysis: interaction studies of natural compounds to anti-inflammatory targets; Quantitative Structure-activity Relationship. Intechopen: London, 2017.
[8]
Halim, S.A.; Jawad, M. Attempt to explore the binding mechanism of IL-1β Inhibitors via molecular docking studies. Med. Chem., 2015, 5(10), 452-457.
[9]
Boutet, M.A.; Nerviani, A.; Pitzalis, C. IL-36, IL-37, and IL-38 cytokines in skin and joint inflammation: A comprehensive review of their therapeutic potential. Int. J. Mol. Sci., 2019, 20(6), 1257-1275.
[http://dx.doi.org/10.3390/ijms20061257]] [PMID: 30871134]
[10]
Semino, C.; Carta, S.; Gattorno, M.; Sitia, R.; Rubartelli, A. Progressive waves of IL-1β release by primary human monocytes via sequential activation of vesicular and gasdermin D-mediated secretory pathways. Cell Death Dis., 2018, 9(11), 1088-1102.
[http://dx.doi.org/10.1038/s41419-018-1121-9]] [PMID: 30352992]
[11]
Dinarello, C.A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev., 2018, 281(1), 8-27.
[http://dx.doi.org/10.1111/imr.12621]] [PMID: 29247995]
[12]
Krelin, Y.; Voronov, E.; Dotan, S.; Elkabets, M.; Reich, E.; Fogel, M.; Huszar, M.; Iwakura, Y.; Segal, S.; Dinarello, C.A.; Apte, R.N. Interleukin-1beta-driven inflammation promotes the development and invasiveness of chemical carcinogen-induced tumors. Cancer Res., 2007, 67(3), 1062-1071.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2956]] [PMID: 17283139]
[13]
So, A.; Dumusc, A.; Nasi, S. The role of IL-1 in gout: From bench to bedside. Rheumatology (Oxford), 2018, 57(1)(Suppl. 1), i12-i19.
[PMID: 29272514]
[14]
Garon, E.B.; Yang, J.C.H.; Dubinett, S.M. The role of interleukin 1 b in the pathogenesis of lung cancer. JTO Clin. Res. Rep., 2020, 1(1), 1-11.
[15]
Li, R.; Ong, S.L.; Tran, L.M.; Jing, Z.; Liu, B.; Park, S.J.; Huang, Z.L.; Walser, T.C.; Heinrich, E.L.; Lee, G.; Rad, R.S.; Crosson, W.P.; Pagano, P.C.; Paul, M.K.; Xu, S.; Herschman, H.; Krysan, K.; Dubinett, S. Chronic IL-1β-induced inflammation regulates epithelial to-mesenchymal transition memory phenotypes via epigenetic modifications in non-small cell lung cancer. Sci. Rep., 2020, 10(377), 1-15.
[http://dx.doi.org/10.1038/s41598-019-57285-y]
[16]
Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in inflammatory disease. Int. J. Mol. Sci., 2019, 20(23), 1-31.
[http://dx.doi.org/10.3390/ijms20236008]] [PMID: 31795299]
[17]
Chen, J.; Sun, W.; Zhang, H.; Ma, J.; Xu, P.; Yu, Y.; Fang, H.; Zhou, L.; Lv, J.; Xie, J.; Liu, Y.; Tang, K.; Huang, B. Macrophages reprogrammed by lung cancer microparticles promote tumor development via release of IL-1β. Cell. Mol. Immunol., 2020, 17, 1233-1244.
[http://dx.doi.org/10.1038/s41423-019-0313-2]] [PMID: 31649305]
[18]
Baker, K.J.; Houston, A.; Brint, E. IL-1 family members in cancer; two sides to every story. Front. Immunol., 2019, 10(1197), 1197.
[http://dx.doi.org/10.3389/fimmu.2019.01197]] [PMID: 31231372]
[19]
Rajendran, V.; Krishnegowda, A.; Nachiappan, V. Antihyperlipidemic activity of Cassia auriculata flower extract in oleic acid induced hyperlipidemia in Saccharomyces cerevisiae. J. Food Sci. Technol., 2017, 54(9), 2965-2972.
[http://dx.doi.org/10.1007/s13197-017-2735-0]] [PMID: 28928537]
[20]
Jayawardena, N.; Watawana, M.I.; Waisundara, V.Y. Evaluation of the total antioxidant capacity, polyphenol contents and starch hydrolase inhibitory activity of ten edible plants in an in vitro model of digestion. Plant Foods Hum. Nutr., 2015, 70(1), 71-76.
[http://dx.doi.org/10.1007/s11130-014-0463-4]] [PMID: 25575486]
[21]
Vijayakumar, R.; Nachiappan, V. Cassia auriculata flower extract attenuates hyperlipidemia in male Wistar rats by regulating the hepatic cholesterol metabolism. Biomed. Pharmacother., 2017, 95, 394-401.
[http://dx.doi.org/10.1016/j.biopha.2017.08.075]] [PMID: 28863379]
[22]
Gupta, S.; Sharma, S.B.; Singh, U.R.; Bansal, S.K.; Prabhu, K.M. Elucidation of mechanism of action of Cassia auriculata leaf extract for its antidiabetic activity in streptozotocin-induced diabetic rats. J. Med. Food, 2010, 13(3), 528-534.
[http://dx.doi.org/10.1089/jmf.2009.1253]] [PMID: 20521978]
[23]
Kainsa, S.; Kumar, P.; Rani, P. Pharmacological potentials of Cassia auriculata and Cassia fistula plants: A review. Pak. J. Biol. Sci., 2012, 15(9), 408-417.
[http://dx.doi.org/10.3923/pjbs.2012.408.417]] [PMID: 24163950]
[24]
Padmalochana, K. Anticancer (liver cancer cell lines) and antioxidant activity of Cassia auriculata flower extract from acetone and methanol solvents. J. Drug Deliv. Ther., 2018, 8(6), 274-278.
[http://dx.doi.org/10.22270/jddt.v8i6-s.2130]
[25]
Gao, W.; Tang, K.; Liu, M.; Zhang, J.; Yu, J.; Huang, S. Fuzzy-precise positioning: A pre-search algorithm based on feature peaks of mass spectra for acceleration of chemical compound recognition. Int. J. Mass Spectrom., 2019, 2019(439), 53-59.
[http://dx.doi.org/10.1016/j.ijms.2019.01.011]
[26]
Kanginejad, A.; Varnosfaderani, A.M. Chemometrics advances on the challenges of the gas chromatography-mass spectrometry metabolomics data: A review. J. Iran. Chem. Soc., 2018, 15(12), 2733-2745.
[http://dx.doi.org/10.1007/s13738-018-1461-5]
[27]
Golestani Eimani, B.; Sanati, M.H.; Houshmand, M.; Ataei, M.; Akbarian, F.; Shakhssalim, N. Expression and prognostic significance of bcl-2 and bax in the progression and clinical outcome of transitional bladder cell carcinoma. Cell J., 2014, 15(4), 356-363.
[PMID: 24381861]
[28]
Koirala, P.; Seong, S.H.; Jung, H.A.; Choi, J.S. Comparative molecular docking studies of lupeol and lupenone isolated from Pueraria lobata that inhibits BACE1: Probable remedies for Alzheimer’s disease. Asian Pac. J. Trop. Med., 2017, 10(12), 1117-1122.
[http://dx.doi.org/10.1016/j.apjtm.2017.10.018]] [PMID: 29268966]
[29]
Pierce, S.; Roberson, A.E.; Hyatt, K.; Singleton, K.; Deschamps, D.; Myers, D.A. Interaction between progesterone and interleukin-1β in modulating progesterone receptor expression and the inflammatory phenotype in human cervical fibroblasts. Reprod. Sci., 2018, 25(4), 598-608.
[http://dx.doi.org/10.1177/1933719117725826]] [PMID: 28820025]
[30]
Legiawati, L.; Fadilah, F.; Bramono, K.; Indriatmi, W. In silico study of Centella asiatica active compounds as anti-inflammatory agent by decreasing Il-1 and Il-6 activity, promoting Il-4 activity. J. Pharm. Sci. Res., 2018, 10(9), 2142-2147.
[31]
Rathinavel, T.; Ammashi, S.; Shanmugam, G. Molecular docking study for the identification and validation of anti-inflammatory phytocompounds from Crateva adansonii DC leaf extracts. Int. J. Adv. Inter. Dis. Res., 2017, 4(1), 6-14.
[32]
Liu, Z.; Zhao, J.; Li, W.; Wang, X.; Xu, J.; Xie, J.; Tao, K.; Shen, L.; Zhang, R. Molecular docking of potential inhibitors for influenza H7N9. Comput. Math. Methods Med., 2015, 2015480764
[http://dx.doi.org/10.1155/2015/480764] [PMID: 25861376]
[33]
Uppin, J.B.; Chandrasekhar, V.M.; Naik, G.R. Evaluation of in vitro antioxidant and anti-inflammatory activities of Cassia auriculata Linn. extracts. IJPSR, 2018, 9(2), 575-581.
[34]
Mali, A.A.; Hivrale, M.G.; Bandawane, D.D.; Chaudhari, P.D. Study of anti-inflammatory activity of Cassia auriculata Linn. leaves in wistar rats. Indian drugs, 2012, 49(11), 44-47.
[35]
Sandhiutami, N.M.D.; Moordiani, M.; Laksmitawati, D.R.; Fauziah, N.; Maesaroh, M.; Widowati, W. In vitro assessment of anti-inflammatory activities of coumarin and Indonesian cassia extract in RAW264.7 murine macrophage cell line. Iran. J. Basic Med. Sci., 2017, 20(1), 1-8.
[36]
Prasanna, R.; Harish, C.C.; Pichai, R.; Sakthisekaran, D.; Gunasekaran, P. Anti-cancer effect of Cassia auriculata leaf extract in vitro through cell cycle arrest and induction of apoptosis in human breast and larynx cancer cell lines. Cell Biol. Int., 2009, 33(2), 127-134.
[37]
Bahadori, M.; Baharara, J.; Amini, E. Anticancer properties of chrysin on colon cancer cells, in vitro and in vivo with modulation of Caspase-3, -9, Bax and Sall4. Iran J. Biotech., 2016, 14(3), 177-184.
[38]
Shen, S.G.; Zhang, D.; Hu, H.T.; Li, J.H.; Wang, Z.; Ma, Q.Y. Effects of α-adrenoreceptor antagonists on apoptosis and proliferation of pancreatic cancer cells in vitro. World J. Gastroenterol., 2008, 14(15), 2358-2363.
[39]
Tanase, C.; Coșarca, S.; Muntean, D.L. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules, 2019, 24(1182), 1-18.
[40]
Altemimi, A.; Lakhssassi, L.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants (Basel), 2017, 6(4), 1-54.
[41]
Yildirim, I.; Kutlu, T. Anticancer agents: Saponin and tannin. Int. J. Biol. Chem., 2015, 9(6), 332-340.
[42]
Sivakumar, V.; Ilanhtiraiyan, S.; Ilayaraja, K.; Ashly, A.; Hariharan, S. Influence of ultrasound on Avaram bark (Cassia auriculata) tannin extraction and tanning. Chem. Eng. Res., 2014, 92, 1827-1833.
[43]
Uscanga-Palomeque, A.C.; Zapata-Benavides, P.; Saavedra-Alonso, S.; Zamora-Ávila, D.E.; Franco-Molina, M.A.; Arellano-Rodríguez, M.; Manilla-Muñoz, E.; Martínez-Torres, A.C.; Trejo-Ávila, L.M.; Rodríguez-Padilla, C. Inhibitory effect of Cuphea aequipetala extracts on murine B16F10 melanoma in vitro and in vivo. BioMed Res. Int., 2019, 20198560527
[http://dx.doi.org/10.1155/2019/8560527] [PMID: 31275985]
[44]
Campos, J.F.; Espindola, P.P.T.; Torquato, H.F.V.; Vital, W.D.; Justo, G.Z.; Silva, D.B.; Carollo, C.A.; Souza, K.D.P.; Gamero, E.J.P.; Santos, E.L.D. Leaf and root extracts from Campomanesia adamantium (Myrtaceae) promote apoptotic death of leukemic cells via activation of intracellular calcium and caspase-3. Front. Pharmacol., 2017, 8(466), 1-14.
[45]
Mansour, M.; Mohamed, M.F.; Elhalwagi, A.; El-Itriby, H.A.; Shawki, H.H.; Abdelhamid, I.A. Moringa peregrina leaves extracts induce apoptosis and cell cycle arrest of hepatocellular carcinoma. BioMed Res. Int., 2019, 20192698570
[http://dx.doi.org/10.1155/2019/2698570] [PMID: 30713850]