Current Trends on Repurposing and Pharmacological Enhancement of Andrographolide

Page: [2346 - 2368] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Andrographolide, the main bioactive component separated from Andrographis paniculata in 1951, has been scrutinized with a modern drug discovery approach for anti-inflammatory properties since 1984. Identification of new uses of existing drugs can be facilitated by searching for evidence linking them to known or yet undiscovered drug targets and human disease states to develop new therapeutic indications.Furthermore, a wide spectrum of biological properties of andrographolide such as anticancer, antibacterial, antiviral, hepatoprotective, antioxidant, anti-malarial, anti-atherosclerosis are also reported. However, poor water solubility and instability limit its clinical application. It becomes crucial to enhance its pharmacological function and find a new treatment option for more diseases. Therefore, this article reviews the major recent developments in andrographolide, including repurposing applications in different diseases and underlying mechanisms, particularly focusing on pharmacological enhancement of andrographolide such as derivatives, chemical modifications with potent biological activity and drug delivery. The repurposing and pharmacological enhancement of andrographolide would not only have exciting therapeutic potential to different diseases to facilitate drug marketing, but also decrease the economic burden on healthcare worldwide.

Keywords: Andrographolide, anti-cancer, hepatoprotective, anti-microorganism, antioxidation, bioavailability, drug delivery, drug repurposing.

[1]
Chao, W.W.; Kuo, Y.H.; Hsieh, S.L.; Lin, B.F. Inhibitory Effects of Ethyl Acetate Extract of Andrographis paniculata on NF-kappaB trans-activation activity and LPS-induced acute inflammation in mice. Evid. Based Complement. Alternat. Med., 2011, 2011, 254531.
[http://dx.doi.org/10.1093/ecam/nep120] [PMID: 19745004]
[2]
Michelsen, K.S.; Wong, M.H.; Ko, B.; Thomas, L.S.; Dhall, D.; Targan, S.R. HMPL-004 (Andrographis paniculata extract) prevents development of murine colitis by inhibiting T-cell proliferation and TH1/TH17 responses. Inflamm. Bowel Dis., 2013, 19(1), 151-164.
[http://dx.doi.org/10.1002/ibd.22983] [PMID: 23292349]
[3]
Li, M.; Zhang, T.; Zhu, L.; Wang, R.; Jin, Y. Liposomal andrographolide dry powder inhalers for treatment of bacterial pneumonia via anti-inflammatory pathway. Int. J. Pharm., 2017, 528(1-2), 163-171.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.005] [PMID: 28583330]
[4]
Luo, S.; Li, H.; Liu, J.; Xie, X.; Wan, Z.; Wang, Y.; Zhao, Z.; Wu, X.; Li, X.; Yang, M.; Li, X. Andrographolide ameliorates oxidative stress, inflammation and histological outcome in complete Freund’s adjuvant-induced arthritis. Chem. Biol. Interact., 2020, 319, 108984.
[http://dx.doi.org/10.1016/j.cbi.2020.108984] [PMID: 32061742]
[5]
Zhang, Q.; Hu, L.Q.; Li, H.Q.; Wu, J.; Bian, N.N.; Yan, G. Beneficial effects of andrographolide in a rat model of autoimmune myocarditis and its effects on PI3K/Akt pathway. Korean J. Physiol. Pharmacol., 2019, 23(2), 103-111.
[http://dx.doi.org/10.4196/kjpp.2019.23.2.103] [PMID: 30820154]
[6]
Ambili R, ; Janam, P.; Saneesh Babu, P.S.; Prasad, M.; Vinod, D.; Anil Kumar, P.R.; Kumary, T.V.; Asha Nair, S.; Radhakrishna Pillai, M. An ex vivo evaluation of the efficacy of andrographolide in modulating differential expression of transcription factors and target genes in periodontal cells and its potential role in treating periodontal diseases. J. Ethnopharmacol., 2017, 196, 160-167.
[http://dx.doi.org/10.1016/j.jep.2016.12.029] [PMID: 27993634]
[7]
Tan, W.S.D.; Liao, W.; Zhou, S.; Wong, W.S.F. Is there a future for andrographolide to be an anti-inflammatory drug? Deciphering its major mechanisms of action. Biochem. Pharmacol., 2017, 139, 71-81.
[http://dx.doi.org/10.1016/j.bcp.2017.03.024] [PMID: 28377280]
[8]
Li, Y.; He, S.; Tang, J.; Ding, N.; Chu, X.; Cheng, L.; Ding, X.; Liang, T.; Feng, S.; Rahman, S.U.; Wang, X.; Wu, J. Andrographolide inhibits inflammatory cytokines secretion in LPS-stimulated RAW264.7 cells through suppression of NF-kappaB/MAPK signaling pathway. Evid. Based Complement. Alternat. Med., 2017, 2017, 8248142.
[http://dx.doi.org/10.1155/2017/8248142] [PMID: 28676833]
[9]
Chiou, W-F.; Chen, C.F.; Lin, J.J. Mechanisms of suppression of inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells by andrographolide. Br. J. Pharmacol., 2000, 129(8), 1553-1560.
[http://dx.doi.org/10.1038/sj.bjp.0703191] [PMID: 10780958]
[10]
Tan, W.S.; Peh, H.Y.; Liao, W.; Pang, C.H.; Chan, T.K.; Lau, S.H.; Chow, V.T.; Wong, W.S. Cigarette smoke-induced Lung disease predisposes to more severe infection with nontypeable haemophilus influenzae: Protective Effects of Andrographolide. J. Nat. Prod., 2016, 79(5), 1308-1315.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01006] [PMID: 27104764]
[11]
Liao, W.; Tan, W.S.; Wong, W.S. Andrographolide restores steroid sensitivity to block lipopolysaccharide/IFN-gamma-Induced IL-27 and airway hyperresponsiveness in mice. J. Immunol., 2016, 196(11), 4706-4712.
[http://dx.doi.org/10.4049/jimmunol.1502114] [PMID: 27183596]
[12]
Nabirotchkin, S.; Peluffo, A.E.; Rinaudo, P.; Yu, J.; Hajj, R.; Cohen, D. Next-generation drug repurposing using human genetics and network biology. Curr. Opin. Pharmacol., 2020, 51, 78-92.
[http://dx.doi.org/10.1016/j.coph.2019.12.004] [PMID: 31982325]
[13]
Soo, H.L.; Quah, S.Y.; Sulaiman, I.; Sagineedu, S.R.; Lim, J.C.W.; Stanslas, J. Advances and challenges in developing andrographolide and its analogues as cancer therapeutic agents. Drug Discov. Today, 2019, 24(9), 1890-1898.
[http://dx.doi.org/10.1016/j.drudis.2019.05.017] [PMID: 31154065]
[14]
Zhang, L.; Bao, M.; Liu, B.; Zhao, H.; Zhang, Y.; Ji, X.; Zhao, N.; Zhang, C.; He, X.; Yi, J.; Tan, Y.; Li, L.; Lu, C. Effect of andrographolide and its analogs on bacterial infection: A Review. Pharmacology, 2020, 105(3-4), 123-134.
[http://dx.doi.org/10.1159/000503410] [PMID: 31694037]
[15]
Wintachai, P.; Kaur, P.; Lee, R.C.; Ramphan, S.; Kuadkitkan, A.; Wikan, N.; Ubol, S.; Roytrakul, S.; Chu, J.J.; Smith, D.R. Activity of andrographolide against chikungunya virus infection. Sci. Rep., 2015, 5, 14179.
[http://dx.doi.org/10.1038/srep14179] [PMID: 26384169]
[16]
Trivedi, N.P.; Rawal, U.M.; Patel, B.P. Hepatoprotective effect of andrographolide against hexachlorocyclohexane-induced oxidative injury. Integr. Cancer Ther., 2007, 6(3), 271-280.
[http://dx.doi.org/10.1177/1534735407305985] [PMID: 17761640]
[17]
Mussard, E.; Cesaro, A.; Lespessailles, E.; Legrain, B.; Berteina-Raboin, S.; Toumi, H. Andrographolide, a natural antioxidant: an update. Antioxidants (Basel), 2019, 8(12), E571.
[http://dx.doi.org/10.3390/antiox8120571] [PMID: 31756965]
[18]
Ibraheem, Z.O.; Majid, R.A.; Sidek, H.M.; Noor, S.M.; Yam, M.F.; Abd Rachman Isnadi, M.F.; Basir, R. In vitro antiplasmodium and chloroquine resistance reversal effects of andrographolide. Evid. Based Complement. Alternat. Med., 2019, 2019, 7967980.
[http://dx.doi.org/10.1155/2019/7967980] [PMID: 31915453]
[19]
Wu, T.; Chen, X.; Wang, Y.; Xiao, H.; Peng, Y.; Lin, L.; Xia, W.; Long, M.; Tao, J.; Shuai, X. Aortic plaque-targeted andrographolide delivery with oxidation-sensitive micelle effectively treats atherosclerosis via simultaneous ROS capture and anti-inflammation. Nanomedicine (Lond.), 2018, 14(7), 2215-2226.
[http://dx.doi.org/10.1016/j.nano.2018.06.010] [PMID: 29964220]
[20]
Kumar, G.; Singh, D.; Tali, J.A.; Dheer, D.; Shankar, R. Andrographolide: Chemical modification and its effect on biological activities. Bioorg. Chem., 2020, 95, 103511.
[http://dx.doi.org/10.1016/j.bioorg.2019.103511] [PMID: 31884143]
[21]
Sinha, J.; Mukhopadhyay, S.; Das, N.; Basu, M.K. Targeting of liposomal andrographolide to L. donovani-infected macrophages in vivo. Drug Deliv., 2000, 7(4), 209-213.
[http://dx.doi.org/10.1080/107175400455137] [PMID: 11195427]
[22]
Zhao, G.; Zeng, Q.; Zhang, S.; Zhong, Y.; Wang, C.; Chen, Y.; Ou, L.; Liao, Z. Effect of carrier lipophilicity and preparation method on the properties of andrographolide-solid dispersion. Pharmaceutics, 2019, 11(2), E74.
[http://dx.doi.org/10.3390/pharmaceutics11020074] [PMID: 30744157]
[23]
Roy, P.; Das, S.; Bera, T.; Mondol, S.; Mukherjee, A. Andrographolide nanoparticles in leishmaniasis: characterization and in vitro evaluations. Int. J. Nanomedicine, 2010, 5, 1113-1121.
[http://dx.doi.org/10.2147/ijn.s14787] [PMID: 21270962]
[24]
Jiang, Y.; Wang, F.; Xu, H.; Liu, H.; Meng, Q.; Liu, W. Development of andrographolide loaded PLGA microspheres: optimization, characterization and in vitro-in vivo correlation. Int. J. Pharm., 2014, 475(1-2), 475-484.
[http://dx.doi.org/10.1016/j.ijpharm.2014.09.016] [PMID: 25219858]
[25]
Dai, Y.; Chen, S.R.; Chai, L.; Zhao, J.; Wang, Y.; Wang, Y. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide Crit Rev Food Sci Nutr, 2019, 59(sup 1), S17-29.
[http://dx.doi.org/10.1080/10408398.2018.1501657] [PMID: 30040451 ]
[26]
Wang, W.; Wu, Y.; Chen, X.; Zhang, P.; Li, H.; Chen, L. Synthesis of new ent-labdane diterpene derivatives from andrographolide and evaluation of their anti-inflammatory activities. Eur. J. Med. Chem., 2019, 162, 70-79.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.002] [PMID: 30419492]
[27]
Lu, J.; Ma, Y.; Wu, J.; Huang, H.; Wang, X.; Chen, Z.; Chen, J.; He, H.; Huang, C. A review for the neuroprotective effects of andrographolide in the central nervous system. Biomed. Pharmacother., 2019, 117, 109078.
[http://dx.doi.org/10.1016/j.biopha.2019.109078] [PMID: 31181444]
[28]
Gupta, S.; Mishra, K.P.; Ganju, L. Broad-spectrum antiviral properties of andrographolide. Arch. Virol., 2017, 162(3), 611-623.
[http://dx.doi.org/10.1007/s00705-016-3166-3] [PMID: 27896563]
[29]
Islam, M.T.; Ali, E.S.; Mubarak, M.S. Anti-obesity effect of plant diterpenes and their derivatives: A review. Phytother. Res., 2020, 34(6), 1216-1225.
[http://dx.doi.org/10.1002/ptr.6602] [PMID: 31977122]
[30]
Kim, N.; Lertnimitphun, P.; Jiang, Y.; Tan, H.; Zhou, H.; Lu, Y.; Xu, H. Andrographolide inhibits inflammatory responses in LPS-stimulated macrophages and murine acute colitis through activating AMPK. Biochem. Pharmacol., 2019, 170, 113646.
[http://dx.doi.org/10.1016/j.bcp.2019.113646] [PMID: 31545974]
[31]
Wang, W.; Wu, Y.; Yang, K.; Wu, C.; Tang, R.; Li, H.; Chen, L. Synthesis of novel andrographolide beckmann rearrangement derivatives and evaluation of their HK2-related anti-inflammatory activities. Eur. J. Med. Chem., 2019, 173, 282-293.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.022] [PMID: 31009914]
[32]
Zhang, L.; Cao, N.; Wang, Y.; Wang, Y.; Wu, C.; Cheng, X.; Wang, C. Improvement of oxazolone-induced ulcerative colitis in rats using andrographolide. Molecules, 2019, 25(1), E76.
[http://dx.doi.org/10.3390/molecules25010076] [PMID: 31878303]
[33]
Yang, D.; Zhang, W.; Song, L.; Guo, F. Andrographolide protects against cigarette smoke-induced lung inflammation through activation of heme oxygenase-1. J. Biochem. Mol. Toxicol., 2013, 27(5), 259-265.
[http://dx.doi.org/10.1002/jbt.21483] [PMID: 23629921]
[34]
Xia, H.; Xue, J.; Xu, H.; Lin, M.; Shi, M.; Sun, Q.; Xiao, T.; Dai, X.; Wu, L.; Li, J.; Xiang, Q.; Tang, H.; Bian, Q.; Liu, Q. Andrographolide antagonizes the cigarette smoke-induced epithelial-mesenchymal transition and pulmonary dysfunction through anti-inflammatory inhibiting HOTAIR. Toxicology, 2019, 422, 84-94.
[http://dx.doi.org/10.1016/j.tox.2019.05.009] [PMID: 31128153]
[35]
Wang, J.J.; Lei, K.F.; Han, F. Tumor microenvironment: recent advances in various cancer treatments. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(12), 3855-3864.
[http://dx.doi.org/10.26355/eurrev_201806_15270] [PMID: 29949179]
[36]
Rajagopal, S.; Kumar, R.A.; Deevi, D.S.; Satyanarayana, C.; Rajagopalan, R. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata. J. Exp. Ther. Oncol., 2003, 3(3), 147-158.
[http://dx.doi.org/10.1046/j.1359-4117.2003.01090.x] [PMID: 14641821]
[37]
Sripa, B.; Pairojkul, C. Cholangiocarcinoma: lessons from Thailand. Curr. Opin. Gastroenterol., 2008, 24(3), 349-356.
[http://dx.doi.org/10.1097/MOG.0b013e3282fbf9b3] [PMID: 18408464]
[38]
Pearngam, P.; Kumkate, S.; Okada, S.; Janvilisri, T. Andrographolide inhibits cholangiocarcinoma cell migration by down-regulation of claudin-1 via the p-38 signaling pathway. Front. Pharmacol., 2019, 10, 827.
[http://dx.doi.org/10.3389/fphar.2019.00827] [PMID: 31404237]
[39]
Loh, S.H.; Tsai, Y.T.; Huang, S.F.; Yu, T.C.; Kuo, P.C.; Chao, S.C.; Chou, M.F.; Tsai, C.S.; Lee, S.P. Effects of andrographolide on intracellular pH regulation, cellular migration, and apoptosis in human cervical cancer cells dagger. Cancers (Basel), 2020, 12(2), E387.
[http://dx.doi.org/10.3390/cancers12020387] [PMID: 32046125]
[40]
Deng, Y.; Bi, R.; Guo, H.; Yang, J.; Du, Y.; Wang, C.; Wei, W. Andrographolide enhances TRAIL-induced apoptosis via p53-mediated death receptors up-regulation and suppression of the NF-small ka, cyrillicB pathway in bladder cancer Cells. Int. J. Biol. Sci., 2019, 15(3), 688-700.
[http://dx.doi.org/10.7150/ijbs.30847] [PMID: 30745855]
[41]
Chiu, S.P.; Batsaikhan, B.; Huang, H.M.; Wang, J.Y. Application of electric cell-substrate impedance sensing to investigate the cytotoxic effects of andrographolide on U-87 MG glioblastoma cell migration and apoptosis. Sensors (Basel), 2019, 19(10), E2275.
[http://dx.doi.org/10.3390/s19102275] [PMID: 31100944]
[42]
Apperley, J.F. Chronic myeloid leukaemia. Lancet, 2015, 385(9976), 1447-1459.
[http://dx.doi.org/10.1016/S0140-6736(13)62120-0] [PMID: 25484026]
[43]
Liao, H.C.; Chou, Y.J.; Lin, C.C.; Liu, S.H.; Oswita, A.; Huang, Y.L.; Wang, Y.L.; Syu, J.L.; Sun, C.M.; Leu, C.M.; Lin, C.H.; Fu, S.L. Andrographolide and its potent derivative exhibit anticancer effects against imatinib-resistant chronic myeloid leukemia cells by downregulating the Bcr-Abl oncoprotein. Biochem. Pharmacol., 2019, 163, 308-320.
[http://dx.doi.org/10.1016/j.bcp.2019.02.028] [PMID: 30822403]
[44]
Kajal, K.; Panda, A.K.; Bhat, J.; Chakraborty, D.; Bose, S.; Bhattacharjee, P.; Sarkar, T.; Chatterjee, S.; Kar, S.K.; Sa, G. Andrographolide binds to ATP-binding pocket of VEGFR2 to impede VEGFA-mediated tumor-angiogenesis. Sci. Rep., 2019, 9(1), 4073.
[http://dx.doi.org/10.1038/s41598-019-40626-2] [PMID: 30858542]
[45]
Li, J.; Li, F.; Tang, F.; Zhang, J.; Li, R.; Sheng, D.; Lee, S.M.-Y.; Zhou, G.C.; Leung, G.P.-H AGS-30, an andrographolide derivative, suppresses tumor angiogenesis and growth in vitro and in vivo. Biochem. Pharmacol., 2020, 171, 113694.
[http://dx.doi.org/10.1016/j.bcp.2019.113694] [PMID: 31706845]
[46]
Xie, S.; Deng, W.; Chen, J.; Wu, Q.Q.; Li, H.; Wang, J.; Wei, L.; Liu, C.; Duan, M.; Cai, Z.; Xie, Q.; Hu, T.; Zeng, X.; Tang, Q. Andrographolide protects against adverse cardiac remodeling after myocardial infarction through enhancing Nrf2 signaling pathway. Int. J. Biol. Sci., 2020, 16(1), 12-26.
[http://dx.doi.org/10.7150/ijbs.37269] [PMID: 31892842]
[47]
Ojha, S.K.; Bharti, S.; Joshi, S.; Kumari, S.; Arya, D.S. Protective effect of hydroalcoholic extract of Andrographis paniculata on ischaemia-reperfusion induced myocardial injury in rats. Indian J. Med. Res., 2012, 135(3), 414-421.
[PMID: 22561631]
[48]
Lin, K.H.; Marthandam Asokan, S.; Kuo, W.W.; Hsieh, Y.L.; Lii, C.K.; Viswanadha, V.; Lin, Y.L.; Wang, S.; Yang, C.; Huang, C.Y. Andrographolide mitigates cardiac apoptosis to provide cardio-protection in high-fat-diet-induced obese mice. Environ. Toxicol., 2020, 35(6), 707-713.
[http://dx.doi.org/10.1002/tox.22906] [PMID: 32023008]
[49]
Cisternas, P.; Zolezzi, J.M.; Martinez, M.; Torres, V.I.; Wong, G.W.; Inestrosa, N.C. Wnt-induced activation of glucose metabolism mediates the in vivo neuroprotective roles of Wnt signaling in Alzheimer disease. J. Neurochem., 2019, 149(1), 54-72.
[http://dx.doi.org/10.1111/jnc.14608] [PMID: 30300917]
[50]
Cisternas, P.; Oliva, C.A.; Torres, V.I.; Barrera, D.P.; Inestrosa, N.C. Presymptomatic treatment with andrographolide improves brain metabolic markers and cognitive behavior in a model of early-onset Alzheimer’s disease. Front. Cell. Neurosci., 2019, 13, 295.
[http://dx.doi.org/10.3389/fncel.2019.00295] [PMID: 31379502]
[51]
Lindsay, C.B.; Zolezzi, J.M.; Rivera, D.S.; Cisternas, P.; Bozinovic, F.; Inestrosa, N.C. Andrographolide reduces neuroinflammation and oxidative stress in aged octodon degus. Mol. Neurobiol., 2020, 57(2), 1131-1145.
[http://dx.doi.org/10.1007/s12035-019-01784-6] [PMID: 31701436]
[52]
Wang, D.P.; Chen, S.H.; Wang, D.; Kang, K.; Wu, Y.F.; Su, S.H.; Zhang, Y.Y.; Hai, J. Neuroprotective effects of andrographolide on chronic cerebral hypoperfusion-induced hippocampal neuronal damage in rats possibly via PTEN/AKT signaling pathway. Acta Histochem., 2020, 122(3), 151514.
[http://dx.doi.org/10.1016/j.acthis.2020.151514] [PMID: 32019701]
[53]
Geng, J.; Liu, W.; Gao, J.; Jiang, C.; Fan, T.; Sun, Y.; Qin, Z.H.; Xu, Q.; Guo, W.; Gao, J. Andrographolide alleviates Parkinsonism in MPTP-PD mice via targeting mitochondrial fission mediated by dynamin-related protein 1. Br. J. Pharmacol., 2019, 176(23), 4574-4591.
[http://dx.doi.org/10.1111/bph.14823] [PMID: 31389613]
[54]
Zhang, J.J.; Gao, T.T.; Wang, Y.; Wang, J.L.; Guan, W.; Wang, Y.J.; Wang, C.N.; Liu, J.F.; Jiang, B. Andrographolide exerts significant antidepressant-like effects involving the hippocampal BDNF system in mice. Int. J. Neuropsychopharmacol., 2019, 22(9), 585-600.
[http://dx.doi.org/10.1093/ijnp/pyz032] [PMID: 31181145]
[55]
Geng, J.; Liu, J.; Yuan, X.; Liu, W.; Guo, W. Andrographolide triggers autophagy-mediated inflammation inhibition and attenuates chronic unpredictable mild stress (CUMS)-induced depressive-like behavior in mice. Toxicol. Appl. Pharmacol., 2019, 379, 114688.
[http://dx.doi.org/10.1016/j.taap.2019.114688] [PMID: 31340160]
[56]
Khole, S.; Mittal, S.; Jagadish, N.; Ghosh, D.; Gadgil, V.; Sinkar, V.; Ghaskadbi, S. Andrographolide enhances redox status of liver cells by regulating microRNA expression. Free Radic. Biol. Med., 2019, 130, 397-407.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.11.004] [PMID: 30414976]
[57]
Choudhury, B.R.; Haque, S.J.; Poddar, M.K. In vivo and in vitro effects of kalmegh (Andrographis paniculata) extract and andrographolide on hepatic microsomal drug metabolizing enzymes. Planta Med., 1987, 53(2), 135-140.
[http://dx.doi.org/10.1055/s-2006-962655] [PMID: 3602136]
[58]
Lee, J.C.; Tseng, C.K.; Young, K.C.; Sun, H.Y.; Wang, S.W.; Chen, W.C.; Lin, C.K.; Wu, Y.H. Andrographolide exerts anti-hepatitis C virus activity by up-regulating haeme oxygenase-1 via the p38 MAPK/Nrf2 pathway in human hepatoma cells. Br. J. Pharmacol., 2014, 171(1), 237-252.
[http://dx.doi.org/10.1111/bph.12440] [PMID: 24117426]
[59]
Song, Y.; Wu, X.; Yang, D.; Fang, F.; Meng, L.; Liu, Y.; Cui, W. Protective effect of andrographolide on alleviating chronic alcoholic liver disease in mice by inhibiting nuclear factor Kappa B and tumor necrosis factor alpha activation. J. Med. Food, 2020, 23(4), 409-415.
[http://dx.doi.org/10.1089/jmf.2019.4471] [PMID: 32119798]
[60]
Yongyun, C.; Jingwei, Z.; Zhiqing, L.; Wenxiang, C.; Huiwu, L. Andrographolide stimulates osteoblastogenesis and bone formation by inhibiting nuclear factor kappa-Β signaling both in vivo and in vitro. J. Orthop. Translat., 2019, 19, 47-57.
[http://dx.doi.org/10.1016/j.jot.2019.02.001] [PMID: 31844613]
[61]
Chen, S.; Luo, Z.; Chen, X. Andrographolide mitigates cartilage damage via miR-27-3p-modulated matrix metalloproteinase13 repression. J. Gene Med., 2020, 22(8), e3187.
[http://dx.doi.org/10.1002/jgm.3187] [PMID: 32196852]
[62]
Zhu, T.; Zhang, W.; Xiao, M.; Chen, H.; Jin, H. Protective role of andrographolide in bleomycin-induced pulmonary fibrosis in mice. Int. J. Mol. Sci., 2013, 14(12), 23581-23596.
[http://dx.doi.org/10.3390/ijms141223581] [PMID: 24300094]
[63]
Yin, J.N.; Li, Y.N.; Gao, Y.; Li, S.B.; Li, J.D. Andrographolide plays an important role in bleomycin-induced pulmonary fibrosis treatment. Int. J. Clin. Exp. Med., 2015, 8(8), 12374-12381.
[PMID: 26550147]
[64]
Li, J.; Feng, M.; Sun, R.; Li, Z.; Hu, L.; Peng, G.; Xu, X.; Wang, W.; Cui, F.; Yue, W.; He, J.; Liu, J. Andrographolide ameliorates bleomycin-induced pulmonary fibrosis by suppressing cell proliferation and myofibroblast differentiation of fibroblasts via the TGF-β1-mediated Smad-dependent and -independent pathways. Toxicol. Lett., 2020, 321, 103-113.
[http://dx.doi.org/10.1016/j.toxlet.2019.11.003] [PMID: 31706003]
[65]
Intakhan, N.; Chanmol, W.; Somboon, P.; Bates, M.D.; Yardley, V.; Bates, P.A.; Jariyapan, N. Antileishmanial activity and synergistic effects of amphotericin B deoxycholate with allicin and andrographolide against Leishmania martiniquensis in vitro. Pathogens, 2020, 9(1), E49.
[http://dx.doi.org/10.3390/pathogens9010049] [PMID: 31936536]
[66]
Panraksa, P.; Ramphan, S.; Khongwichit, S.; Smith, D.R. Activity of andrographolide against dengue virus. Antiviral Res., 2017, 139, 69-78.
[http://dx.doi.org/10.1016/j.antiviral.2016.12.014] [PMID: 28034742]
[67]
Paemanee, A.; Hitakarun, A.; Wintachai, P.; Roytrakul, S.; Smith, D.R. A proteomic analysis of the anti-dengue virus activity of andrographolide. Biomed. Pharmacother., 2019, 109, 322-332.
[http://dx.doi.org/10.1016/j.biopha.2018.10.054] [PMID: 30396090]
[68]
Yang, M.Y.; Yu, Q.L.; Huang, Y.S.; Yang, G. Neuroprotective effects of andrographolide derivative CX-10 in transient focal ischemia in rat: Involvement of Nrf2/AE and TLR/NF-κB signaling. Pharmacol. Res., 2019, 144, 227-234.
[http://dx.doi.org/10.1016/j.phrs.2019.04.023] [PMID: 31028905]
[69]
Xu, Y.; Wei, H.; Wang, J.; Wang, W.; Gao, J. Synthesis of andrographolide analogues and their neuroprotection and neurite outgrowth-promoting activities. Bioorg. Med. Chem., 2019, 27(11), 2209-2219.
[http://dx.doi.org/10.1016/j.bmc.2019.04.025] [PMID: 31014564]
[70]
Mokenapelli, S.; Yerrabelli, J.R.; Das, N.; Roy, P.; Chitneni, P.R. Synthesis and cytotoxicity of novel 14α-O-(andrographolide-3-subsitutedisoxazole-5-carboxylate) derivatives. Nat. Prod. Res., 2020. [Online ahead of print].
[http://dx.doi.org/10.1080/14786419.2020.1736060] [PMID: 32146848]
[71]
Li, F.; Lee, E.M.; Sun, X.; Wang, D.; Tang, H.; Zhou, G.C. Design, synthesis and discovery of andrographolide derivatives against Zika virus infection. Eur. J. Med. Chem., 2020, 187, 111925.
[http://dx.doi.org/10.1016/j.ejmech.2019.111925] [PMID: 31838328]
[72]
Wang, M.L.; Zhong, Q.Y.; Lin, B.Q.; Liu, Y.H.; Huang, Y.F.; Chen, Y.; Yuan, J.; Su, Z.R.; Zhan, J.Y. Andrographolide sodium bisulfate attenuates UV‑induced photo‑damage by activating the keap1/Nrf2 pathway and downregulating the NF‑κB pathway in HaCaT keratinocytes. Int. J. Mol. Med., 2020, 45(2), 343-352.
[http://dx.doi.org/10.3892/ijmm.2019.4415] [PMID: 31789424]
[73]
Jing, M.; Wang, Y.; Xu, L. Andrographolide derivative AL-1 ameliorates dextran sodium sulfate-induced murine colitis by inhibiting NF-kappaB and MAPK signaling pathways. Oxid. Med. Cell. Longev., 2019, 2019, 6138723.
[http://dx.doi.org/10.1155/2019/6138723] [PMID: 31687082]
[74]
Jiang, N.; Wei, Y.; Cen, Y.; Shan, L.; Zhang, Z.; Yu, P.; Wang, Y.; Xu, L. Andrographolide derivative AL-1 reduces intestinal permeability in dextran sulfate sodium (DSS)-induced mice colitis model. Life Sci., 2020, 241, 117164.
[http://dx.doi.org/10.1016/j.lfs.2019.117164] [PMID: 31838135]
[75]
Zhang, G.; Jiang, C.; Xie, N.; Xu, Y.; Liu, L.; Liu, N. Treatment with andrographolide sulfonate provides additional benefits to imipenem in a mouse model of Klebsiella pneumoniae pneumonia. Biomed. Pharmacother., 2019, 117, 109065.
[http://dx.doi.org/10.1016/j.biopha.2019.109065] [PMID: 31220744]
[76]
Torchilin, V.P. Micellar nanocarriers: pharmaceutical perspectives. Pharm. Res., 2007, 24(1), 1-16.
[http://dx.doi.org/10.1007/s11095-006-9132-0] [PMID: 17109211]
[77]
Zhang, J.M. Y.L.; Gao, W.; Repka, M.; Wang, YT.; Chen, MW., Andrographolide-loaded PLGA-PEG-PLGA micelles toimprove its bioavailability andanticancer efficacy. Expert Opin. Drug Deliv., 2014, 11(9), 1367-1380.
[http://dx.doi.org/10.1517/17425247.2014.924503] [PMID: 24935153]
[78]
Puntawee, S.; Theerasilp, M.; Reabroi, S.; Saeeng, R.; Piyachaturawat, P.; Chairoungdua, A.; Nasongkla, N. Solubility enhancement and in vitro evaluation of PEG-b-PLA micelles as nanocarrier of semi-synthetic andrographolide analogue for cholangiocarcinoma chemotherapy. Pharm. Dev. Technol., 2016, 21(4), 437-444.
[http://dx.doi.org/10.3109/10837450.2015.1016619] [PMID: 25738423]
[79]
Patil, Y.P.; Jadhav, S. Novel methods for liposome preparation. Chem. Phys. Lipids, 2014, 177, 8-18.
[http://dx.doi.org/10.1016/j.chemphyslip.2013.10.011] [PMID: 24220497]
[80]
Lin, K.H.; Hong, S.T.; Wang, H.T.; Lo, Y.L.; Lin, A.M.; Yang, J.C. Enhancing anticancer effect of gefitinib across the blood-brain barrier model using liposomes modified with one alpha-helical cell-penetrating peptide or glutathione and Tween 80. Int. J. Mol. Sci., 2016, 17(12), E1998.
[http://dx.doi.org/10.3390/ijms17121998] [PMID: 27916828]
[81]
Wong, H.L.; Wu, X.Y.; Bendayan, R. Nanotechnological advances for the delivery of CNS therapeutics. Adv. Drug Deliv. Rev., 2012, 64(7), 686-700.
[http://dx.doi.org/10.1016/j.addr.2011.10.007] [PMID: 22100125]
[82]
Ju, L.; Cailin, F.; Wenlan, W.; Pinghua, Y.; Jiayu, G.; Junbo, L. Preparation and properties evaluation of a novel pH-sensitive liposomes based on imidazole-modified cholesterol derivatives. Int. J. Pharm., 2017, 518(1-2), 213-219.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.044] [PMID: 27889588]
[83]
Piazzini, V.; Landucci, E.; Graverini, G.; Pellegrini-Giampietro, D.E.; Bilia, A.R.; Bergonzi, M.C. Stealth and cationic nanoliposomes as drug delivery systems to increase andrographolide BBB permeability. Pharmaceutics, 2018, 10(3), E128.
[http://dx.doi.org/10.3390/pharmaceutics10030128] [PMID: 30104484]
[84]
Kang, X.; Zheng, Z.; Liu, Z.; Wang, H.; Zhao, Y.; Zhang, W.; Shi, M.; He, Y.; Cao, Y.; Xu, Q.; Peng, C.; Huang, Y. Liposomal codelivery of doxorubicin and andrographolide inhibits breast cancer growth and metastasis. Mol. Pharm., 2018, 15(4), 1618-1626.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b01164] [PMID: 29498868]
[85]
Verkleij, A.J.; de Kruyff, B.; Ververgaert, P.H.J.T.; Tocanne, J.F.; van Deenen, L.L.M. The influence of pH, Ca2+ and protein on the thermotropic behaviour of the negatively charged phospholipid, phosphatidylglycerol. Biochim. Biophys. Acta, 1974, 339(3), 432-437.
[http://dx.doi.org/10.1016/0005-2736(74)90171-0] [PMID: 4834678]
[86]
Shende, P.; Khair, R.; Gaud, R.S. Nanostructured cochleates: a multi-layered platform for cellular transportation of therapeutics. Drug Dev. Ind. Pharm., 2019, 45(6), 869-881.
[http://dx.doi.org/10.1080/03639045.2019.1583757] [PMID: 30767577]
[87]
Asprea, M.; Tatini, F.; Piazzini, V.; Rossi, F.; Bergonzi, M.C.; Bilia, A.R. Stable, Monodisperse, and Highly Cell-Permeating Nanocochleates from Natural Soy Lecithin Liposomes. Pharmaceutics, 2019, 11(1), E34.
[http://dx.doi.org/10.3390/pharmaceutics11010034] [PMID: 30654435]
[88]
Wissing, S.A.; Kayser, O.; Müller, R.H. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev., 2004, 56(9), 1257-1272.
[http://dx.doi.org/10.1016/j.addr.2003.12.002] [PMID: 15109768]
[89]
Parveen, R.; Ahmad, F.J.; Iqbal, Z.; Samim, M.; Ahmad, S. Solid lipid nanoparticles of anticancer drug andrographolide: formulation, in vitro and in vivo studies. Drug Dev. Ind. Pharm., 2014, 40(9), 1206-1212.
[http://dx.doi.org/10.3109/03639045.2013.810636] [PMID: 23826860]
[90]
Yang, T.; Sheng, H.H.; Feng, N.P.; Wei, H.; Wang, Z.T.; Wang, C.H. Preparation of andrographolide-loaded solid lipid nanoparticles and their in vitro and in vivo evaluations: characteristics, release, absorption, transports, pharmacokinetics, and antihyperlipidemic activity. J. Pharm. Sci., 2013, 102(12), 4414-4425.
[http://dx.doi.org/10.1002/jps.23758] [PMID: 24166599]
[91]
Graverini, G.; Piazzini, V.; Landucci, E.; Pantano, D.; Nardiello, P.; Casamenti, F.; Pellegrini-Giampietro, D.E.; Bilia, A.R.; Bergonzi, M.C. Solid lipid nanoparticles for delivery of andrographolide across the blood-brain barrier: in vitro and in vivo evaluation. Colloids Surf. B Biointerfaces, 2018, 161, 302-313.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.062] [PMID: 29096375]
[92]
Sofi, H.S.; Abdal-Hay, A.; Ivanovski, S.; Zhang, Y.S.; Sheikh, F.A. Electrospun nanofibers for the delivery of active drugs through nasal, oral and vaginal mucosa: Current status and future perspectives. Mater. Sci. Eng. C, 2020, 111, 110756.
[http://dx.doi.org/10.1016/j.msec.2020.110756] [PMID: 32279775]
[93]
Chen, Y.P.; Liu, Y.W.; Lee, D.; Qiu, J.T.; Lee, T.Y.; Liu, S.J. Biodegradable andrographolide-eluting nanofibrous membranes for the treatment of cervical cancer. Int. J. Nanomedicine, 2019, 14, 421-429.
[http://dx.doi.org/10.2147/IJN.S186714] [PMID: 30666104]
[94]
Chen, L.; Zhou, X.; He, C. Mesoporous silica nanoparticles for tissue-engineering applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 11(6), e1573.
[http://dx.doi.org/10.1002/wnan.1573] [PMID: 31294533]
[95]
Zhu, Y.; Shi, J.; Shen, W.; Dong, X.; Feng, J.; Ruan, M.; Li, Y. Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. Angew. Chem. Int. Ed. Engl., 2005, 44(32), 5083-5087.
[http://dx.doi.org/10.1002/anie.200501500] [PMID: 16015668]
[96]
Li, K.; Sun, H.; Sui, H.; Zhang, Y.; Liang, H.; Wu, X.; Zhao, Q. Composite mesoporous silica nanoparticle/chitosan nanofibers for bone tissue engineering. RSC Advances, 2015, 5(23), 17541-17549.
[http://dx.doi.org/10.1039/C4RA15232H]
[97]
Jia, Y.; Zhang, H.; Yang, S.; Xi, Z.; Tang, T.; Yin, R.; Zhang, W. Electrospun PLGA membrane incorporatedwith andrographolide-loaded mesoporoussilica nanoparticles for sustainedantibacterial wound dressing. Nanomedicine (Lond.), 2018, 13(22), 2881-2899.
[http://dx.doi.org/10.2217/nnm-2018-0099] [PMID: 30427768]
[98]
Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release, 2017, 252, 28-49.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.008] [PMID: 28279798]
[99]
Sermkaew, N.; Ketjinda, W.; Boonme, P.; Phadoongsombut, N.; Wiwattanapatapee, R. Liquid and solid self-microemulsifying drug delivery systems for improving the oral bioavailability of andrographolide from a crude extract of Andrographis paniculata. Eur. J. Pharm. Sci., 2013, 50(3-4), 459-466.
[http://dx.doi.org/10.1016/j.ejps.2013.08.006] [PMID: 23973887]
[100]
Liu, X-Y.; Niu, X.; Feng, Q-J.; Yang, X-Z.; Wang, D-W.; Zhao, T.; Li, L.; Du, H. A new biocompatible microemulsion increases extraction yield and bioavailability of Andrographis paniculata. Chin. J. Nat. Med., 2016, 14(9), 683-691.
[http://dx.doi.org/10.1016/S1875-5364(16)30081-4] [PMID: 27667514]
[101]
Yen, C.C.; Chen, Y.C.; Wu, M.T.; Wang, C.C.; Wu, Y.T. Nanoemulsion as a strategy for improving the oral bioavailability and anti-inflammatory activity of andrographolide. Int. J. Nanomedicine, 2018, 13, 669-680.
[http://dx.doi.org/10.2147/IJN.S154824] [PMID: 29440893]
[102]
Ramasamy, T.; Tran, T.H.; Choi, J.Y.; Cho, H.J.; Kim, J.H.; Yong, C.S.; Choi, H.G.; Kim, J.O. Layer-by-layer coated lipid-polymer hybrid nanoparticles designed for use in anticancer drug delivery. Carbohydr. Polym., 2014, 102, 653-661.
[http://dx.doi.org/10.1016/j.carbpol.2013.11.009] [PMID: 24507332]
[103]
Mishra, N.; Yadav, K.S.; Rai, V.K.; Yadav, N.P. Polysaccharide encrusted multilayered nano-colloidal system of andrographolide for improved hepatoprotection. AAPS PharmSciTech, 2017, 18(2), 381-392.
[http://dx.doi.org/10.1208/s12249-016-0512-4] [PMID: 27007741]
[104]
Kolosnjaj-Tabi, J.; Javed, Y.; Lartigue, L.; Volatron, J.; Elgrabli, D.; Marangon, I.; Pugliese, G.; Caron, B.; Figuerola, A.; Luciani, N.; Pellegrino, T.; Alloyeau, D.; Gazeau, F. The One Year Fate of Iron Oxide Coated Gold Nanoparticles in Mice. ACS Nano, 2015, 9(8), 7925-7939.
[http://dx.doi.org/10.1021/acsnano.5b00042] [PMID: 26168364]
[105]
Balfourier, A.; Luciani, N.; Wang, G.; Lelong, G.; Ersen, O.; Khelfa, A.; Alloyeau, D.; Gazeau, F.; Carn, F. Unexpected intracellular biodegradation and recrystallization of gold nanoparticles. Proc. Natl. Acad. Sci. USA, 2020, 117(1), 103-113.
[http://dx.doi.org/10.1073/pnas.1911734116] [PMID: 31852822]
[106]
Dreaden, E.C.; Austin, L.A.; Mackey, M.A.; El-Sayed, M.A. Size matters: gold nanoparticles in targeted cancer drug delivery. Ther. Deliv., 2012, 3(4), 457-478.
[http://dx.doi.org/10.4155/tde.12.21] [PMID: 22834077]
[107]
Chen, W.; Zhang, S.; Yu, Y.; Zhang, H.; He, Q. Structural-engineering rationales of gold nanoparticles for cancer theranostics. Adv. Mater., 2016, 28(39), 8567-8585.
[http://dx.doi.org/10.1002/adma.201602080] [PMID: 27461909]
[108]
Das, S.; Halder, A.; Mandal, S.; Mazumder, M.A.J.; Bera, T.; Mukherjee, A.; Roy, P. Andrographolide engineered gold nanoparticle to overcome drug resistant visceral leishmaniasis Artif Cells Nanomed Biotechnol, 2018, 46(sup. 1), 751-762.
[http://dx.doi.org/10.1080/21691401.2018.1435549] [PMID: 29421940]
[109]
Ghosh, S.; Dasgupta, S.C.; Dasgupta, A.K.; Gomes, A.; Gomes, A. Gold nanoparticles (AuNPs) conjugated with andrographolide ameliorated viper (Daboia russellii russellii) venom-induced toxicities in animal model. J. Nanosci. Nanotechnol., 2020, 20(6), 3404-3414.
[http://dx.doi.org/10.1166/jnn.2020.17421] [PMID: 31748033]
[110]
Kaushik, A.; Jayant, R.D.; Sagar, V.; Nair, M. The potential of magneto-electric nanocarriers for drug delivery. Expert Opin. Drug Deliv., 2014, 11(10), 1635-1646.
[http://dx.doi.org/10.1517/17425247.2014.933803] [PMID: 24986772]
[111]
Pilakka-Kanthikeel, S.; Atluri, V.S.; Sagar, V.; Saxena, S.K.; Nair, M. Targeted brain derived neurotropic factors (BDNF) delivery across the blood-brain barrier for neuro-protection using magnetic nano carriers: an in-vitro study. PLoS One, 2013, 8(4), e62241.
[http://dx.doi.org/10.1371/journal.pone.0062241] [PMID: 23653680]
[112]
Govindan, B.; Swarna Latha, B.; Nagamony, P.; Ahmed, F.; Saifi, M.A.; Harrath, A.H.; Alwasel, S.; Mansour, L.; Alsharaeh, E.H. Designed synthesis of nanostructured magnetic hydroxyapatite based drug nanocarrier for anti-cancer drug delivery toward the treatment of human epidermoid carcinoma. Nanomaterials (Basel), 2017, 7(6), E138.
[http://dx.doi.org/10.3390/nano7060138] [PMID: 28587317]
[113]
Zhang, D.; Lin, J.; Zhang, F.; Han, X.; Han, L.; Yang, M.; Zou, W. Preparation and evaluation of andrographolide solid dispersion vectored by silicon dioxide. Pharmacogn. Mag., 2016, 12(Suppl. 2), S245-S252.
[http://dx.doi.org/10.4103/0973-1296.182156] [PMID: 27279715]
[114]
Ma, Y.; Yang, Y.; Xie, J.; Xu, J.; Yue, P.; Yang, M. Novel nanocrystal-based solid dispersion with high drug loading, enhanced dissolution, and bioavailability of andrographolide. Int. J. Nanomedicine, 2018, 13, 3763-3779.
[http://dx.doi.org/10.2147/IJN.S164228] [PMID: 29988798]
[115]
Yen, C.C.; Liang, Y.K.; Cheng, C.P.; Hsu, M.C.; Wu, Y.T. Oral bioavailability enhancement and anti-fatigue assessment of the andrographolide loaded solid dispersion. Int. J. Mol. Sci., 2020, 21(7), E2506.
[http://dx.doi.org/10.3390/ijms21072506] [PMID: 32260319]
[116]
Xie, Y.; Ma, Y.; Xu, J.; Dan, J.; Yue, P.; Wu, Z.; Yang, M.; Zheng, Q. Roles of cryo/thermal strength for redispersibility of drug nanocrystals: a representative study with andrographolide. Arch. Pharm. Res., 2016, 39(10), 1404-1417.
[http://dx.doi.org/10.1007/s12272-016-0732-x] [PMID: 27008192]
[117]
Keck, C.M.; Müller, R.H. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur. J. Pharm. Biopharm., 2006, 62(1), 3-16.
[http://dx.doi.org/10.1016/j.ejpb.2005.05.009] [PMID: 16129588]
[118]
Chellampillai, B.; Pawar, A.P. Improved bioavailability of orally administered andrographolide from pH-sensitive nanoparticles. Eur. J. Drug Metab. Pharmacokinet., 2011, 35(3-4), 123-129.
[http://dx.doi.org/10.1007/s13318-010-0016-7] [PMID: 21302039]
[119]
Xu, J.; Ma, Y.; Xie, Y.; Chen, Y.; Liu, Y.; Yue, P.; Yang, M. Design and evaluation of novel solid self-Nanodispersion delivery system for andrographolide. AAPS PharmSciTech, 2017, 18(5), 1572-1584.
[http://dx.doi.org/10.1208/s12249-016-0627-7] [PMID: 27620195]
[120]
Guo, L.; Kang, L.; Liu, X.; Lin, X.; Di, D.; Wu, Y.; Kong, D.; Deng, Y.; Song, Y. A novel nanosuspension of andrographolide: Preparation, characterization and passive liver target evaluation in rats. Eur. J. Pharm. Sci., 2017, 104, 13-22.
[http://dx.doi.org/10.1016/j.ejps.2017.03.017] [PMID: 28315464]
[121]
Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release, 2012, 157(2), 168-182.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.031] [PMID: 21839127]
[122]
Godugu, D.; Rupula, K.; Sashidhar, R.B. Binding studies of andrographolide with human serum albumin: molecular docking, chromatographic and spectroscopic studies. Protein Pept. Lett., 2018, 25(4), 330-338.
[http://dx.doi.org/10.2174/0929866525666180212103319] [PMID: 29436988]
[123]
Guccione, C.; Oufir, M.; Piazzini, V.; Eigenmann, D.E.; Jähne, E.A.; Zabela, V.; Faleschini, M.T.; Bergonzi, M.C.; Smiesko, M.; Hamburger, M.; Bilia, A.R. Andrographolide-loaded nanoparticles for brain delivery: Formulation, characterisation and in vitro permeability using hCMEC/D3 cell line. Eur. J. Pharm. Biopharm., 2017, 119, 253-263.
[http://dx.doi.org/10.1016/j.ejpb.2017.06.018] [PMID: 28652141]
[124]
Bilia, A.R.; Nardiello, P.; Piazzini, V.; Leri, M.; Bergonzi, M.C.; Bucciantini, M.; Casamenti, F. successful brain delivery of andrographolide loaded in human albumin nanoparticles to TgCRND8 mice, an Alzheimer’s disease mouse model. Front. Pharmacol., 2019, 10, 910.
[http://dx.doi.org/10.3389/fphar.2019.00910] [PMID: 31507412]
[125]
Calabrese, C.; Berman, S.H.; Babish, J.G.; Ma, X.; Shinto, L.; Dorr, M.; Wells, K.; Wenner, C.A.; Standish, L.J. A phase I trial of andrographolide in HIV positive patients and normal volunteers. Phytother. Res., 2000, 14(5), 333-338.
[http://dx.doi.org/10.1002/1099-1573(200008)14:5<333::AID-PTR584>3.0.CO;2-D] [PMID: 10925397]
[126]
Wen, T.; Xu, W.; Liang, L.; Li, J.; Ding, X.; Chen, X.; Hu, J.; Lv, A.; Li, X. Clinical efficacy of andrographolide sulfonate in the treatment of severe hand, foot, and mouth disease (HFMD) is dependent upon inhibition of neutrophil activation. Phytother. Res., 2015, 29(8), 1161-1167.
[http://dx.doi.org/10.1002/ptr.5361] [PMID: 25960284]
[127]
Gabrielian, E.S.; Shukarian, A.K.; Goukasova, G.I.; Chandanian, G.L.; Panossian, A.G.; Wikman, G.; Wagner, H. A double blind, placebo-controlled study of Andrographis paniculata fixed combination Kan Jang in the treatment of acute upper respiratory tract infections including sinusitis. Phytomedicine, 2002, 9(7), 589-597.
[http://dx.doi.org/10.1078/094471102321616391] [PMID: 12487322]
[128]
Phunikhom, K.; Khampitak, K.; Aromdee, C.; Arkaravichien, T.; Sattayasai, J. K.K., Aromdee C, Arkaravichien T, Sattayasai J., Effect of Andrographis paniculata extract on triglyceride levels of the patients with hypertriglyceridemia: a randomized controlled trial. J. Med. Assoc. Thai., 2015, 98(Suppl. 6), S41-S47.
[PMID: 26434249]
[129]
Burgos, R.A.; Hancke, J.L.; Bertoglio, J.C.; Aguirre, V.; Arriagada, S.; Calvo, M.; Cáceres, D.D. Efficacy of an Andrographis paniculata composition for the relief of rheumatoid arthritis symptoms: a prospective randomized placebo-controlled trial. Clin. Rheumatol., 2009, 28(8), 931-946.
[http://dx.doi.org/10.1007/s10067-009-1180-5] [PMID: 19408036]
[130]
Hancke, J.L.; Srivastav, S.; Cáceres, D.D.; Burgos, R.A. A double-blind, randomized, placebo-controlled study to assess the efficacy of Andrographis paniculata standardized extract (ParActin®) on pain reduction in subjects with knee osteoarthritis. Phytother. Res., 2019, 33(5), 1469-1479.
[http://dx.doi.org/10.1002/ptr.6339] [PMID: 30968986]
[131]
Singhal, T. A review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr., 2020, 87(4), 281-286.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[132]
Velavan, T.P.; Meyer, C.G. The COVID-19 epidemic. Trop. Med. Int. Health, 2020, 25(3), 278-280.
[http://dx.doi.org/10.1111/tmi.13383] [PMID: 32052514]
[133]
Adhikari, S.P.; Meng, S.; Wu, Y.J.; Mao, Y.P.; Ye, R.X.; Wang, Q.Z.; Sun, C.; Sylvia, S.; Rozelle, S.; Raat, H.; Zhou, H. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infect. Dis. Poverty, 2020, 9(1), 29.
[http://dx.doi.org/10.1186/s40249-020-00646-x] [PMID: 32183901]
[134]
Li, X.; Yu, J.; Zhang, Z.; Ren, J.; Peluffo, A.E.; Zhang, W.; Zhao, Y.; Yan, K.; Cohen, D.; Wang, W. Network bioinformatics analysis provides insight into drug repurposing for COVID-2019. Preprints, 2020, 2020030286.
[http://dx.doi.org/10.20944/preprints202003.0286.v1]
[135]
Yan, Y.; Shen, X.; Cao, Y.; Zhang, J.; Wang, Y.; Cheng, Y. Discovery of anti-2019-nCoV agents from 38 Chinese patent drugs toward respiratory diseases via docking screening Preprints, 2020, 2020020254.
[http://dx.doi.org/10.20944/preprints202002.0254.v2]
[136]
Thailand: 59 returnees from S. Korea isolated as two new COVID-19 confirmed Asia News Monitor, 2020. Available at: https://search.proquest.com/docview/2364098146/EC2591FE8C3D4AA2PQ/1 accessed on: March 18, 2021.