Anti-Cancer Agents in Medicinal Chemistry

Author(s): Ambika Pal, Poulami Tapadar and Ranjana Pal*

DOI: 10.2174/1871520620666200807222248

Exploring the Molecular Mechanism of Cinnamic Acid-Mediated Cytotoxicity in Triple Negative MDA-MB-231 Breast Cancer Cells

Page: [1141 - 1150] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Cinnamic Acid (CA), also known as 3-phenyl-2-propenoic acid, is a naturally occurring aromatic fatty acid found commonly in cinnamon, grapes, tea, cocoa, spinach and celery. Various studies have identified CA to have anti-proliferative action on glioblastoma, melanoma, prostate and lung carcinoma cells.

Objective: Our objective was to investigate the molecular mechanism underlying the cytotoxic effect of CA in killing MDA-MB-231 triple negative breast cancer cells.

Methods: We performed MTT assay and trypan blue assay to determine cell viability and cell death, respectively. Comet analysis was carried out to investigate DNA damage of individual cells. Furthermore, AO/EtBr assay and sub-G1 analysis using flow cytometry were used to study apoptosis. Protein isolation followed by immunoblotting was used to observe protein abundance in treated and untreated cancer cells.

Results: Using MTT assay, we have determined CA to reduce cell viability in MDA-MB-231 breast cancer cells and tumorigenic HEK 293 cells but not in normal NIH3T3 fibroblast cells. Subsequently, trypan blue assay and comet assay showed CA to cause cell death and DNA damage, respectively, in the MDA-MB-231 cells. Using AO/EtBr staining and sub-G1 analysis, we further established CA to increase apoptosis. Additionally, immunoblotting showed the abundance of TNFA, TNF Receptor 1 (TNFR1) and cleaved caspase-8/-3 proapoptotic proteins to increase with CA treatment. Subsequently, blocking of TNFA-TNFR1 signalling by small molecule inhibitor, R-7050, reduced the expression of cleaved caspase-8 and caspase-3 at the protein level.

Conclusion: Thus, from the above observations, we can conclude that CA is an effective anticancer agent that can induce apoptosis in breast cancer cells via TNFA-TNFR1 mediated extrinsic apoptotic pathway.

Keywords: Cinnamic acid, MDA-MB-231, triple negative breast cancer, TNFA, TNFR1, R-7050, caspase, apoptosis.

Graphical Abstract

[1]
Smith, R.D.; Mallath, M.K. History of the growing burden of cancer in India: From antiquity to the 21st century. J. Glob. Oncol., 2019, 5, 1-15.
[http://dx.doi.org/10.1200/JGO.19.00048] [PMID: 31373840]
[2]
Walsh, E.M.; Keane, M.M.; Wink, D.A.; Callagy, G.; Glynn, S.A. Review of triple negative breast cancer and the impact of inducible nitric oxide synthase on tumor biology and patient outcomes. Crit. Rev. Oncog., 2016, 21(5-6), 333-351.
[http://dx.doi.org/10.1615/CritRevOncog.2017021307] [PMID: 29431082]
[3]
Donaldson, M.S. Nutrition and cancer: A review of the evidence for an anti-cancer diet. Nutr. J., 2004, 3, 19.
[http://dx.doi.org/10.1186/1475-2891-3-19] [PMID: 15496224]
[4]
Paramanantham, A.; Kim, M.J.; Jung, E.J.; Nagappan, A.; Yun, J.W.; Kim, H.J.; Shin, S.C.; Kim, G.S.; Lee, W.S. Pretreatment of anthocyanin from the fruit of Vitis coignetiae Pulliat acts as a potent inhibitor of TNF-α effect by inhibiting NF-κB-regulated genes in human breast cancer cells. Molecules, 2020, 25(10), E2396.
[http://dx.doi.org/10.3390/molecules25102396] [PMID: 32455624]
[5]
Ondee, S.; Sithisarn, P.; Mangmool, S.; Rojsanga, P. Chemical standardization and anti-proliferative activity of Ardisia elliptica fruit against the HCT116 human colon cancer cell line. Molecules, 2020, 25(5), E1023.
[http://dx.doi.org/10.3390/molecules25051023] [PMID: 32106546]
[6]
Jochems, S.H.J.; Reulen, R.C.; van Osch, F.H.M.; Witlox, W.J.A.; Goossens, M.E.; Brinkman, M.; Giles, G.G.; Milne, R.L.; van den Brandt, P.A.; White, E.; Weiderpass, E.; Huybrechts, I.; Hémon, B.; Agudo, A.; Bueno-de-Mesquita, B.; Cheng, K.K.; van Schooten, F.J.; Bryan, R.T.; Wesselius, A.; Zeegers, M.P. Fruit consumption and the risk of bladder cancer: A pooled analysis by the bladder cancer epidemiology and nutritional determinants study. Int. J. Cancer, 2020, 147(8), 2091-2100.
[http://dx.doi.org/10.1002/ijc.33008] [PMID: 32285440]
[7]
Farvid, M.S.; Chen, W.Y.; Rosner, B.A.; Tamimi, R.M.; Willett, W.C.; Eliassen, A.H. Fruit and vegetable consumption and breast cancer incidence: Repeated measures over 30 years of follow-up. Int. J. Cancer, 2019, 144(7), 1496-1510.
[http://dx.doi.org/10.1002/ijc.31653] [PMID: 29978479]
[8]
Yamagiwa, Y.; Sawada, N.; Shimazu, T.; Yamaji, T.; Goto, A.; Takachi, R.; Ishihara, J.; Iwasaki, M.; Inoue, M.; Tsugane, S. Fruit and vegetable intake and pancreatic cancer risk in a population-based cohort study in Japan. Int. J. Cancer, 2019, 144(8), 1858-1866.
[http://dx.doi.org/10.1002/ijc.31894] [PMID: 30255932]
[9]
Guzman, J.D. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules, 2014, 19(12), 19292-19349.
[http://dx.doi.org/10.3390/molecules191219292] [PMID: 25429559]
[10]
Liu, L.; Hudgins, W.R.; Shack, S.; Yin, M.Q.; Samid, D. Cinnamic acid: A natural product with potential use in cancer intervention. Int. J. Cancer, 1995, 62(3), 345-350.
[http://dx.doi.org/10.1002/ijc.2910620319] [PMID: 7628877]
[11]
Rao, P.V.; Gan, S.H. Cinnamon: A multifaceted medicinal plant. Evid. Based Complement. Alternat. Med., 2014, 2014, 642942.
[http://dx.doi.org/10.1155/2014/642942] [PMID: 24817901]
[12]
Ling, F.; Jiang, C.; Liu, G.; Li, M.; Wang, G. Anthelmintic efficacy of cinnamaldehyde and cinnamic acid from cortex cinnamon essential oil against Dactylogyrus intermedius. Parasitology, 2015, 142(14), 1744-1750.
[http://dx.doi.org/10.1017/S0031182015001031] [PMID: 26442478]
[13]
Garbe, D. Cinnamic acid; John Wiley & Sons: USA, 2000.
[http://dx.doi.org/10.1002/14356007.a07_099]
[14]
De, P.; Baltas, M.; Bedos-Belval, F. Cinnamic acid derivatives as anticancer agents-a review. Curr. Med. Chem., 2011, 18(11), 1672-1703.
[http://dx.doi.org/10.2174/092986711795471347] [PMID: 21434850]
[15]
Adisakwattana, S. Cinnamic acid and its derivatives: Mechanisms for prevention and management of diabetes and its complications. Nutrients, 2017, 9(2), E163.
[http://dx.doi.org/10.3390/nu9020163] [PMID: 28230764]
[16]
Huang, D.W.; Shen, S.C.; Wu, J.S. Effects of caffeic acid and cinnamic acid on glucose uptake in insulin-resistant mouse hepatocytes. J. Agric. Food Chem., 2009, 57(17), 7687-7692.
[http://dx.doi.org/10.1021/jf901376x] [PMID: 19685889]
[17]
Hafizur, R.M.; Hameed, A.; Shukrana, M.; Raza, S.A.; Chishti, S.; Kabir, N.; Siddiqui, R.A. Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro. Phytomedicine, 2015, 22(2), 297-300.
[http://dx.doi.org/10.1016/j.phymed.2015.01.003] [PMID: 25765836]
[18]
Sova, M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev. Med. Chem., 2012, 12(8), 749-767.
[http://dx.doi.org/10.2174/138955712801264792] [PMID: 22512578]
[19]
Rastogi, N.; Goh, K.S.; Horgen, L.; Barrow, W.W. Synergistic activities of antituberculous drugs with cerulenin and trans-cinnamic acid against Mycobacterium tuberculosis. FEMS Immunol. Med. Microbiol., 1998, 21(2), 149-157.
[http://dx.doi.org/10.1111/j.1574-695X.1998.tb01161.x] [PMID: 9685005]
[20]
Silva, A.T.; Bento, C.M.; Pena, A.C.; Figueiredo, L.M.; Prudêncio, C.; Aguiar, L.; Silva, T.; Ferraz, R.; Gomes, M.S.; Teixeira, C.; Gomes, P. Cinnamic acid conjugates in the rescuing and repurposing of classical antimalarial drugs. Molecules, 2019, 25(1), E66.
[http://dx.doi.org/10.3390/molecules25010066] [PMID: 31878190]
[21]
Song, F.; Li, H.; Sun, J.; Wang, S. Protective effects of cinnamic acid and cinnamic aldehyde on isoproterenol-induced acute myocardial ischemia in rats. J. Ethnopharmacol., 2013, 150(1), 125-130.
[http://dx.doi.org/10.1016/j.jep.2013.08.019] [PMID: 24001892]
[22]
Zhu, B.; Shang, B.; Li, Y.; Zhen, Y. Inhibition of histone deacetylases by trans-cinnamic acid and its antitumor effect against colon cancer xenografts in athymic mice. Mol. Med. Rep., 2016, 13(5), 4159-4166.
[http://dx.doi.org/10.3892/mmr.2016.5041] [PMID: 27035417]
[23]
Anantharaju, P.G.; Reddy, D.B.; Padukudru, M.A.; Chitturi, C.M.K.; Vimalambike, M.G.; Madhunapantula, S.V. Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of Histone Deacetylases (HDAC). PLoS One, 2017, 12(11), e0186208.
[http://dx.doi.org/10.1371/journal.pone.0186208] [PMID: 29190639]
[24]
Hunke, M.; Martinez, W.; Kashyap, A.; Bokoskie, T.; Pattabiraman, M.; Chandra, S. Antineoplastic actions of cinnamic acids and their dimers in breast cancer cells: A comparative study. Anticancer Res., 2018, 38(8), 4469-4474.
[http://dx.doi.org/10.21873/anticanres.12749] [PMID: 30061211]
[25]
Imai, M.; Yokoe, H.; Tsubuki, M.; Takahashi, N. Growth inhibition of human breast and prostate cancer cells by cinnamic acid derivatives and their mechanism of action. Biol. Pharm. Bull., 2019, 42(7), 1134-1139.
[http://dx.doi.org/10.1248/bpb.b18-01002] [PMID: 30982786]
[26]
Qi, G.; Chen, J.; Shi, C.; Wang, Y.; Mi, S.; Shao, W.; Yu, X.; Ma, Y.; Ling, J.; Huang, J. Cinnamic Acid (CINN) induces apoptosis and proliferation in human nasopharyngeal carcinoma cells. Cell. Physiol. Biochem., 2016, 40(3-4), 589-596.
[http://dx.doi.org/10.1159/000452572] [PMID: 27889776]
[27]
Yen, G.C.; Chen, Y.L.; Sun, F.M.; Chiang, Y.L.; Lu, S.H.; Weng, C.J. A comparative study on the effectiveness of cis- and trans-form of cinnamic acid treatments for inhibiting invasive activity of human lung adenocarcinoma cells. Eur. J. Pharm. Sci., 2011, 44(3), 281-287.
[http://dx.doi.org/10.1016/j.ejps.2011.08.006] [PMID: 21871959]
[28]
Tsai, C.M.; Sun, F.M.; Chen, Y.L.; Hsu, C.L.; Yen, G.C.; Weng, C.J. Molecular mechanism depressing PMA-induced invasive behaviors in human lung adenocarcinoma cells by cis- and trans-cinnamic acid. Eur. J. Pharm. Sci., 2013, 48(3), 494-501.
[http://dx.doi.org/10.1016/j.ejps.2012.11.013] [PMID: 23228413]
[29]
Niero, E.L.; Machado-Santelli, G.M. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells. J. Exp. Clin. Cancer Res., 2013, 32, 31.
[http://dx.doi.org/10.1186/1756-9966-32-31] [PMID: 23701745]
[30]
Soltanian, S.; Riahirad, H.; Pabarja, A.; Jafari, E.; Khandani, B.K. Effect of Cinnamic acid and FOLFOX in diminishing side population and downregulating cancer stem cell markers in colon cancer cell line HT-29. Daru J. Pharmceut. Sci., 2018, 26, 19-29.
[http://dx.doi.org/10.1007/s40199-018-0210-8] [PMID: 30209760]
[31]
Sova, M.; Žižak, Ž.; Stanković, J.A.; Prijatelj, M.; Turk, S.; Juranić, Z.D.; Mlinarič-Raščan, I.; Gobec, S. Cinnamic acid derivatives induce cell cycle arrest in carcinoma cell lines. Med. Chem., 2013, 9(5), 633-641.
[http://dx.doi.org/10.2174/1573406411309050002] [PMID: 23140579]
[32]
Mabeta, P.; Pavić, K.; Zorc, B. Insights into the mechanism of antiproliferative effects of primaquine-cinnamic acid conjugates on MCF-7 cells. Acta Pharm., 2018, 68(3), 337-348.
[http://dx.doi.org/10.2478/acph-2018-0021] [PMID: 31259699]
[33]
Fraser, S.P.; Hemsley, F.; Djamgoz, M.B.A. Caffeic acid phenethyl ester: Inhibition of metastatic cell behaviours via voltage-gated sodium channel in human breast cancer in vitro. Int. J. Biochem. Cell Biol., 2016, 71, 111-118.
[http://dx.doi.org/10.1016/j.biocel.2015.12.012] [PMID: 26724521]
[34]
Song, Z.; Bi, K.; Luo, X. An HPLC method for the determination and pharmacokinetic study of cinnamic acid in the plasma of rats having taken the traditional Chinese medicinal preparation Ling-Gui-Zhu-Gan decoction. J. Chromatogr. Sci., 2002, 40(4), 198-200.
[http://dx.doi.org/10.1093/chromsci/40.4.198] [PMID: 12004938]
[35]
Dai, R.; Li, K.; Li, Q.; Bi, K. Determination of mangiferin, jateorrhizine, palmatine, berberine, cinnamic acid, and cinnamaldehyde in the traditional Chinese medicinal preparation Zi-Shen pill by high-performance liquid chromatography. J. Chromatogr. Sci., 2004, 42(4), 207-210.
[http://dx.doi.org/10.1093/chromsci/42.4.207] [PMID: 15154983]
[36]
Liu, R.; Li, A.; Sun, A. Preparative isolation and purification of hydroxyanthraquinones and cinnamic acid from the Chinese medicinal herb Rheum officinale Baill. by high-speed counter-current chromatography. J. Chromatogr. A, 2004, 1052(1-2), 217-221.
[http://dx.doi.org/10.1016/j.chroma.2004.08.101] [PMID: 15527141]
[37]
Drage, L. Cinnamic salts in the treatment of cancer: An address delivered before the Beckenham and Penge Medical Society. BMJ, 1905, 1(2313), 927-928.
[http://dx.doi.org/10.1136/bmj.1.2313.927] [PMID: 20762073]
[38]
Campbell, P.; Thomas, C.M. Belinostat for the treatment of relapsed or refractory peripheral T-cell lymphoma. J. Oncol. Pharm. Pract., 2017, 23(2), 143-147.
[http://dx.doi.org/10.1177/1078155216634178] [PMID: 26921086]
[39]
Garnock-Jones, K.P. Panobinostat: First global approval. Drugs, 2015, 75(6), 695-704.
[http://dx.doi.org/10.1007/s40265-015-0388-8] [PMID: 25837990]
[40]
Eleutherakis-Papaiakovou, E.; Kanellias, N.; Kastritis, E.; Gavriatopoulou, M.; Terpos, E.; Dimopoulos, M.A. Efficacy of panobinostat for the treatment of multiple myeloma. J. Oncol., 2020, 2020, 7131802.
[http://dx.doi.org/10.1155/2020/7131802] [PMID: 32411240]
[41]
Lee, H.Z.; Kwitkowski, V.E.; Del Valle, P.L.; Ricci, M.S.; Saber, H.; Habtemariam, B.A.; Bullock, J.; Bloomquist, E.; Shen, L. Y.; Chen, X.H.; Brown, J.; Mehrotra, N.; Dorff, S.; Charlab, R.; Kane, R.C.; Kaminskas, E.; Justice, R.; Farrell, A.T.; Pazdur, R. FDA approval: Belinostat for the treatment of patients with relapsed or refractory peripheral T-cell lymphoma. Clin. Cancer Res., 2015, 21(12), 2666-2670.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3119] [PMID: 25802282]
[42]
Foss, F.; Advani, R.; Duvic, M.; Hymes, K.B.; Intragumtornchai, T.; Lekhakula, A.; Shpilberg, O.; Lerner, A.; Belt, R.J.; Jacobsen, E.D.; Laurent, G.; Ben-Yehuda, D.; Beylot-Barry, M.; Hillen, U.; Knoblauch, P.; Bhat, G.; Chawla, S.; Allen, L.F.; Pohlman, B. A Phase II trial of Belinostat (PXD101) in patients with relapsed or refractory peripheral or cutaneous T-cell lymphoma. Br. J. Haematol., 2015, 168(6), 811-819.
[http://dx.doi.org/10.1111/bjh.13222] [PMID: 25404094]
[43]
Puvvada, S.D.; Guillén-Rodríguez, J.M.; Rivera, X.I.; Heard, K.; Inclan, L.; Schmelz, M.; Schatz, J.H.; Persky, D.O. A Phase II exploratory study of PXD-101 (Belinostat) followed by Zevalin in patients with relapsed aggressive high-risk lymphoma. Oncology, 2017, 93(6), 401-405.
[http://dx.doi.org/10.1159/000479230] [PMID: 28869931]
[44]
Mackay, H.J.; Hirte, H.; Colgan, T.; Covens, A.; MacAlpine, K.; Grenci, P.; Wang, L.; Mason, J.; Pham, P.A.; Tsao, M.S.; Pan, J.; Zwiebel, J.; Oza, A.M. Phase II trial of the histone deacetylase inhibitor belinostat in women with platinum resistant epithelial ovarian cancer and micropapillary (LMP) ovarian tumours. Eur. J. Cancer, 2010, 46(9), 1573-1579.
[http://dx.doi.org/10.1016/j.ejca.2010.02.047] [PMID: 20304628]
[45]
Dizon, D.S.; Damstrup, L.; Finkler, N.J.; Lassen, U.; Celano, P.; Glasspool, R.; Crowley, E.; Lichenstein, H.S.; Knoblach, P.; Penson, R.T. Phase II activity of belinostat (PXD-101), carboplatin, and paclitaxel in women with previously treated ovarian cancer. Int. J. Gynecol. Cancer, 2012, 22(6), 979-986.
[http://dx.doi.org/10.1097/IGC.0b013e31825736fd] [PMID: 22694911]
[46]
Kirschbaum, M.H.; Foon, K.A.; Frankel, P.; Ruel, C.; Pulone, B.; Tuscano, J.M.; Newman, E.M. A phase 2 study of belinostat (PXD101) in patients with relapsed or refractory acute myeloid leukemia or patients over the age of 60 with newly diagnosed acute myeloid leukemia: A California cancer consortium study. Leuk. Lymphoma, 2014, 55(10), 2301-2304.
[http://dx.doi.org/10.3109/10428194.2013.877134] [PMID: 24369094]
[47]
Luu, T.; Frankel, P.; Beumer, J.H.; Lim, D.; Cristea, M.; Appleman, L.J.; Lenz, H.J.; Gandara, D.R.; Kiesel, B.F.; Piekarz, R.L.; Newman, E.M. Phase I trial of belinostat in combination with 13-cis-retinoic acid in advanced solid tumor malignancies: A California cancer consortium NCI/CTEP sponsored trial. Cancer Chemother. Pharmacol., 2019, 84(6), 1201-1208.
[http://dx.doi.org/10.1007/s00280-019-03955-7] [PMID: 31522242]
[48]
Wang, H.; Cao, Q.; Dudek, A.Z. Phase II study of panobinostat and bortezomib in patients with pancreatic cancer progressing on gemcitabine-based therapy. Anticancer Res., 2012, 32(3), 1027-1031.
[PMID: 22399627]
[49]
Tarhini, A.A.; Zahoor, H.; McLaughlin, B.; Gooding, W.E.; Schmitz, J.C.; Siegfried, J.M.; Socinski, M.A.; Argiris, A. Phase I trial of carboplatin and etoposide in combination with panobinostat in patients with lung cancer. Anticancer Res., 2013, 33(10), 4475-4481.
[PMID: 24123018]
[50]
Takhar, H.S.; Singhal, N.; Gowda, R.; Penniment, M.; Takhar, P.; Brown, M.P. Phase I study evaluating the safety and efficacy of oral panobinostat in combination with radiotherapy or chemoradiotherapy in patients with inoperable stage III non-small-cell lung cancer. Anticancer Drugs, 2015, 26(10), 1069-1077.
[http://dx.doi.org/10.1097/CAD.0000000000000282] [PMID: 26317683]
[51]
Rathkopf, D.E.; Picus, J.; Hussain, A.; Ellard, S.; Chi, K.N.; Nydam, T.; Allen-Freda, E.; Mishra, K.K.; Porro, M.G.; Scher, H.I.; Wilding, G. A phase 2 study of intravenous panobinostat in patients with castration-resistant prostate cancer. Cancer Chemother. Pharmacol., 2013, 72(3), 537-544.
[http://dx.doi.org/10.1007/s00280-013-2224-8] [PMID: 23820963]
[52]
Rathkopf, D.; Wong, B.Y.; Ross, R.W.; Anand, A.; Tanaka, E.; Woo, M.M.; Hu, J.; Dzik-Jurasz, A.; Yang, W.; Scher, H.I. A phase I study of oral panobinostat alone and in combination with docetaxel in patients with castration-resistant prostate cancer. Cancer Chemother. Pharmacol., 2010, 66(1), 181-189.
[http://dx.doi.org/10.1007/s00280-010-1289-x] [PMID: 20217089]
[53]
de Marinis, F.; Atmaca, A.; Tiseo, M.; Giuffreda, L.; Rossi, A.; Gebbia, V.; D’Antonio, C.; Dal Zotto, L.; Al-Batran, S.E.; Marsoni, S.; Wolf, M. A phase II study of the histone deacetylase inhibitor panobinostat (LBH589) in pretreated patients with small-cell lung cancer. J. Thorac. Oncol., 2013, 8(8), 1091-1094.
[http://dx.doi.org/10.1097/JTO.0b013e318293d88c] [PMID: 23857399]
[54]
Tate, C.R.; Rhodes, L.V.; Segar, H.C.; Driver, J.L.; Pounder, F.N.; Burow, M.E.; Collins-Burow, B.M. Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res., 2012, 14(3), R79.
[http://dx.doi.org/10.1186/bcr3192] [PMID: 22613095]
[55]
Fortunati, N.; Marano, F.; Bandino, A.; Frairia, R.; Catalano, M.G.; Boccuzzi, G. The pan-histone deacetylase inhibitor LBH589 (panobinostat) alters the invasive breast cancer cell phenotype. Int. J. Oncol., 2014, 44(3), 700-708.
[http://dx.doi.org/10.3892/ijo.2013.2218] [PMID: 24366407]
[56]
Tan, W.W.; Allred, J.B.; Moreno-Aspitia, A.; Northfelt, D.W.; Ingle, J.N.; Goetz, M.P.; Perez, E.A. Phase I study of panobinostat (LBH589) and letrozole in postmenopausal metastatic breast cancer patients. Clin. Breast Cancer, 2016, 16(2), 82-86.
[http://dx.doi.org/10.1016/j.clbc.2015.11.003] [PMID: 26774555]
[57]
Wahba, H.A.; El-Hadaad, H.A. Current approaches in treatment of triple-negative breast cancer. Cancer Biol. Med., 2015, 12(2), 106-116.
[PMID: 26175926]
[58]
Koppikar, S.J.; Choudhari, A.S.; Suryavanshi, S.A.; Kumari, S.; Chattopadhyay, S.; Kaul-Ghanekar, R. Aqueous Cinnamon Extract (ACE-c) from the bark of Cinnamomum cassia causes apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential. BMC Cancer, 2010, 10, 210.
[http://dx.doi.org/10.1186/1471-2407-10-210] [PMID: 20482751]
[59]
Kim, J.E.; Son, J.E.; Jeong, H.; Joon Kim, D.; Seo, S.K.; Lee, E.; Lim, T.G.; Kim, J.R.; Chen, H.; Bode, A.M.; Lee, K.W.; Dong, Z. A novel cinnamon-related natural product with Pim-1 inhibitory activity inhibits leukemia and skin cancer. Cancer Res., 2015, 75(13), 2716-2728.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3655] [PMID: 25948588]
[60]
Sadeghi, S.; Davoodvandi, A.; Pourhanifeh, M.H.; Sharifi, N. ArefNezhad, R.; Sahebnasagh, R.; Moghadam, S.A.; Sahebkar, A.; Mirzaei, H. Anti-cancer effects of cinnamon: Insights into its apoptosis effects. Eur. J. Med. Chem., 2019, 178, 131-140.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.067] [PMID: 31195168]
[61]
Karthika Subramanian, K.P. Gold nanoparticles tethered cinnamic acid: preparation, characterization, and cytotoxic effects on MCF-7 breast cancer cell lines. Appl. Nanosci., 2018, 2018(8), 1133-1138.
[http://dx.doi.org/10.1007/s13204-018-0764-2]
[62]
Blagosklonny, M.V. Carcinogenesis, cancer therapy and chemoprevention. Cell Death Differ., 2005, 12(6), 592-602.
[http://dx.doi.org/10.1038/sj.cdd.4401610] [PMID: 15818400]
[63]
Cheung-Ong, K.; Giaever, G.; Nislow, C. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem. Biol., 2013, 20(5), 648-659.
[http://dx.doi.org/10.1016/j.chembiol.2013.04.007] [PMID: 23706631]
[64]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[65]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[66]
Kuznetsov, G.; Towle, M.J.; Cheng, H.; Kawamura, T.; TenDyke, K.; Liu, D.; Kishi, Y.; Yu, M.J.; Littlefield, B.A. Induction of morphological and biochemical apoptosis following prolonged mitotic blockage by halichondrin B macrocyclic ketone analog E7389. Cancer Res., 2004, 64(16), 5760-5766.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1169] [PMID: 15313917]
[67]
Wei, Y.Q.; Zhao, X.; Kariya, Y.; Fukata, H.; Teshigawara, K.; Uchida, A. Induction of apoptosis by quercetin: Involvement of heat shock protein. Cancer Res., 1994, 54(18), 4952-4957.
[PMID: 8069862]
[68]
Gillissen, B.; Richter, A.; Richter, A.; Preissner, R.; Schulze-Osthoff, K.; Essmann, F.; Daniel, P.T. Bax/Bak-independent mitochondrial depolarization and reactive oxygen species induction by sorafenib overcome resistance to apoptosis in renal cell carcinoma. J. Biol. Chem., 2017, 292(16), 6478-6492.
[http://dx.doi.org/10.1074/jbc.M116.754184] [PMID: 28154184]
[69]
Micheau, O.; Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell, 2003, 114(2), 181-190.
[http://dx.doi.org/10.1016/S0092-8674(03)00521-X] [PMID: 12887920]
[70]
Pobezinskaya, Y.L.; Liu, Z. The role of TRADD in death receptor signaling. Cell Cycle, 2012, 11(5), 871-876.
[http://dx.doi.org/10.4161/cc.11.5.19300] [PMID: 22333735]
[71]
Eum, H.A.; Vallabhaneni, R.; Wang, Y.; Loughran, P.A.; Stolz, D.B.; Billiar, T.R. Characterization of DISC formation and TNFR1 translocation to mitochondria in TNF-α-treated hepatocytes. Am. J. Pathol., 2011, 179(3), 1221-1229.
[http://dx.doi.org/10.1016/j.ajpath.2011.05.046] [PMID: 21741934]
[72]
Sedger, L.M.; McDermott, M.F. TNF and TNF-receptors: From mediators of cell death and inflammation to therapeutic giants - past, present and future. Cytokine Growth Factor Rev., 2014, 25(4), 453-472.
[http://dx.doi.org/10.1016/j.cytogfr.2014.07.016] [PMID: 25169849]
[73]
Van Opdenbosch, N.; Lamkanfi, M. Caspases in cell death, inflammation, and disease. Immunity, 2019, 50(6), 1352-1364.
[http://dx.doi.org/10.1016/j.immuni.2019.05.020] [PMID: 31216460]
[74]
King, M.D.; Alleyne, C.H., Jr; Dhandapani, K.M. TNF-alpha receptor antagonist, R-7050, improves neurological outcomes following intracerebral hemorrhage in mice. Neurosci. Lett., 2013, 542, 92-96.
[http://dx.doi.org/10.1016/j.neulet.2013.02.051] [PMID: 23499961]
[75]
Gururaja, T.L.; Yung, S.; Ding, R.; Huang, J.; Zhou, X.; McLaughlin, J.; Daniel-Issakani, S.; Singh, R.; Cooper, R.D.; Payan, D.G.; Masuda, E.S.; Kinoshita, T. A class of small molecules that inhibit TNFalpha-induced survival and death pathways via prevention of interactions between TNFalphaRI, TRADD, and RIP1. Chem. Biol., 2007, 14(10), 1105-1118.
[http://dx.doi.org/10.1016/j.chembiol.2007.08.012] [PMID: 17961823]
[76]
Naime, A.C.A.; Bonfitto, P.H.L.; Solon, C.; Lopes-Pires, M.E.; Anhê, G.F.; Antunes, E.; Marcondes, S. Tumor necrosis factor alpha has a crucial role in increased reactive oxygen species production in platelets of mice injected with lipopolysaccharide. Platelets, 2019, 30(8), 1047-1052.
[http://dx.doi.org/10.1080/09537104.2019.1588241] [PMID: 31076004]