Mini-Reviews in Medicinal Chemistry

Author(s): Panagiotis Theodosis-Nobelos, Georgios Papagiouvannis and Eleni A. Rekka*

DOI: 10.2174/1389557520666200807132617

DownloadDownload PDF Flyer Cite As
A Review on Vitamin E Natural Analogues and on the Design of Synthetic Vitamin E Derivatives as Cytoprotective Agents

Page: [10 - 22] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Vitamin E, essential for human health, is widely used worldwide for therapeutic or dietary reasons. The differences in the metabolism and excretion of the multiple vitamin E forms are presented in this review. The important steps that influence the kinetics of each form and the distribution and processing of vitamin E forms by the liver are considered. The antioxidant as well as non-antioxidant properties of vitamin E forms are discussed. Finally, synthetic tocopherol and trolox derivatives, based on the design of multitarget directed compounds, are reviewed. It is demonstrated that selected derivatization of vitamin E or trolox structures can produce improved antioxidants, agents against cancer, cardiovascular and neurodegenerative disorders.

Keywords: Vitamin E, tocopherols, tocotrienols, metabolism, transport, antioxidants, trolox, synthetic analogues.

Graphical Abstract

[1]
Evans, H.M.; Bishop, K.S. On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science, 1922, 56(1458), 650-651.
[http://dx.doi.org/10.1126/science.56.1458.650] [PMID: 17838496]
[2]
Packer, L. Vitamin E is nature’s master antioxidant. Sci. Am. Sci. Med., 1994, 1, 54-63.
[3]
Mustacich, D.J.; Leonard, S.W.; Devereaux, M.W.; Sokol, R.J.; Traber, M.G. α-tocopherol regulation of hepatic cytochrome P450s and ABC transporters in rats. Free Radic. Biol. Med., 2006, 41(7), 1069-1078.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.06.022 ] [PMID: 16962932]
[4]
Miller, E.R., III; Pastor-Barriuso, R.; Dalal, D.; Riemersma, R.A.; Appel, L.J.; Guallar, E. Meta-analysis: High-dosage vitamin E supplementation may increase all-cause mortality. Ann. Intern. Med., 2005, 142(1), 37-46.
[http://dx.doi.org/10.7326/0003-4819-142-1-200501040-00110] [PMID: 15537682]
[5]
Cardenas, E.; Ghosh, R. Vitamin E: a dark horse at the crossroad of cancer management. Biochem. Pharmacol., 2013, 86(7), 845-852.
[http://dx.doi.org/10.1016/j.bcp.2013.07.018] [PMID: 23919929]
[6]
Sen, C.K.; Khanna, S.; Roy, S. Tocotrienols in health and disease: the other half of the natural vitamin E family. Mol. Aspects Med., 2007, 28(5-6), 692-728.
[http://dx.doi.org/10.1016/j.mam.2007.03.001] [PMID: 17507086]
[7]
Shils, M.E.; Shike, M.; Ross, A.C.; Caballero, B.; Cousins, R.J. Modern Nutrition in Health and Disease, 11th ed; Lippincott Williams and Wilkins: Philadelphia, USA, 2012.
[8]
Schmölz, L.; Birringer, M.; Lorkowski, S.; Wallert, M. Complexity of vitamin E metabolism. World J. Biol. Chem., 2016, 7(1), 14-43.
[http://dx.doi.org/10.4331/wjbc.v7.i1.14] [PMID: 26981194]
[9]
Rigotti, A. Absorption, transport, and tissue delivery of vitamin E. Mol. Aspects Med., 2007, 28(5-6), 423-436.
[http://dx.doi.org/10.1016/j.mam.2007.01.002] [PMID: 17320165]
[10]
Traber, M.G. Mechanisms for the prevention of vitamin E excess. J. Lipid Res., 2013, 54(9), 2295-2306.
[http://dx.doi.org/10.1194/jlr.R032946] [PMID: 23505319]
[11]
Bruno, R.S.; Leonard, S.W.; Park, S-I.; Zhao, Y.; Traber, M.G. Human vitamin E requirements assessed with the use of apples fortified with deuterium-labeled α-tocopheryl acetate. Am. J. Clin. Nutr., 2006, 83(2), 299-304.
[http://dx.doi.org/10.1093/ajcn/83.2.299] [PMID: 16469987]
[12]
Winklhofer-Roob, B.M.; Tuchschmid, P.E.; Molinari, L.; Shmerling, D.H. Response to a single oral dose of all-rac-alpha-tocopheryl acetate in patients with cystic fibrosis and in healthy individuals. Am. J. Clin. Nutr., 1996, 63(5), 717-721.
[http://dx.doi.org/10.1093/ajcn/63.5.717] [PMID: 8615354]
[13]
Muller, D.P.; Lloyd, J.K.; Wolff, O.H. Vitamin E and neurological function. Lancet, 1983, 1(8318), 225-228.
[http://dx.doi.org/10.1016/S0140-6736(83)92598-9] [PMID: 6130255]
[14]
Rader, D.J.; Brewer, H.B., Jr A beta lipoproteinemia: New insights into lipoprotein assembly and vitamin E metabolism from a rare genetic disease. JAMA, 1993, 270(7), 865-869.
[http://dx.doi.org/10.1001/jama.1993.03510070087042 ] [PMID: 8340987]
[15]
Narushima, K.; Takada, T.; Yamanashi, Y.; Suzuki, H. Niemann-pick C1-like 1 mediates alpha-tocopherol transport. Mol. Pharmacol., 2008, 74(1), 42-49.
[http://dx.doi.org/10.1124/mol.107.043034] [PMID: 18403720]
[16]
Hacquebard, M.; Carpentier, Y.A.; Vitamin, E. Absorption, plasma transport and cell uptake. Curr. Opin. Clin. Nutr. Metab. Care, 2005, 8(2), 133-138.
[http://dx.doi.org/10.1097/00075197-200503000-00005 PMID: 15716790]
[17]
Jiang, X.C.; Jin, W.; Hussain, M.M. The impact of Phospholipid Transfer Protein (PLTP) on lipoprotein metabolism. Nutr. Metab. (Lond.), 2012, 9(1), 75.
[http://dx.doi.org/10.1186/1743-7075-9-75] [PMID: 22897926]
[18]
Jiang, X.C.; Tall, A.R.; Qin, S.; Lin, M.; Schneider, M.; Lalanne, F.; Deckert, V.; Desrumaux, C.; Athias, A.; Witztum, J.L.; Lagrost, L. Phospholipid transfer protein deficiency protects circulating lipoproteins from oxidation due to the enhanced accumulation of vitamin E. J. Biol. Chem., 2002, 277(35), 31850-31856.
[http://dx.doi.org/10.1074/jbc.M205077200] [PMID: 12105225]
[19]
Traber, M.G.; Sokol, R.J.; Burton, G.W.; Ingold, K.U.; Papas, A.M.; Huffaker, J.E.; Kayden, H.J. Impaired ability of patients with familial isolated vitamin E deficiency to incorporate alpha-tocopherol into lipoproteins secreted by the liver. J. Clin. Invest., 1990, 85(2), 397-407.
[http://dx.doi.org/10.1172/JCI114452] [PMID: 2298915]
[20]
IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Nomenclature of tocopherols and related compounds. Recommendations 1981. Mol. Cell. Biochem., 1982, 49(3), 183-185.
[PMID: 7162509]
[21]
Hosomi, A.; Arita, M.; Sato, Y.; Kiyose, C.; Ueda, T.; Igarashi, O.; Arai, H.; Inoue, K. Affinity for alpha-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett., 1997, 409(1), 105-108.
[http://dx.doi.org/10.1016/S0014-5793(97)00499-7] [PMID: 9199513]
[22]
Panagabko, C.; Morley, S.; Hernandez, M.; Cassolato, P.; Gordon, H.; Parsons, R.; Manor, D.; Atkinson, J. Ligand specificity in the CRAL-TRIO protein family. Biochemistry, 2003, 42(21), 6467-6474.
[http://dx.doi.org/10.1021/bi034086v] [PMID: 12767229]
[23]
Traber, M.G.; Atkinson, J. Vitamin E, antioxidant and nothing more. Free Radic. Biol. Med., 2007, 43(1), 4-15.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.03.024 ] [PMID: 17561088]
[24]
Traber, M.G.; Sokol, R.J.; Kohlschütter, A.; Yokota, T.; Muller, D.P.; Dufour, R.; Kayden, H.J. Impaired discrimination between stereoisomers of α-tocopherol in patients with familial isolated vitamin E deficiency. J. Lipid Res., 1993, 34(2), 201-210.
[PMID: 8429255]
[25]
Sato, Y.; Arai, H.; Miyata, A.; Tokita, S.; Yamamoto, K.; Tanabe, T.; Inoue, K. Primary structure of alpha-tocopherol transfer protein from rat liver. Homology with cellular retinaldehyde-binding protein. J. Biol. Chem., 1993, 268(24), 17705-17710.
[PMID: 8349655]
[26]
Qian, J.; Morley, S.; Wilson, K.; Nava, P.; Atkinson, J.; Manor, D. Intracellular trafficking of vitamin E in hepatocytes: The role of tocopherol transfer protein. J. Lipid Res., 2005, 46(10), 2072-2082.
[http://dx.doi.org/10.1194/jlr.M500143-JLR200] [PMID: 16024914]
[27]
Bjørneboe, A.; Bjørneboe, G.E.; Bodd, E.; Hagen, B.F.; Kveseth, N.; Drevon, C.A. Transport and distribution of alpha-tocopherol in lymph, serum and liver cells in rats. Biochim. Biophys. Acta, 1986, 889(3), 310-315.
[http://dx.doi.org/10.1016/0167-4889(86)90193-X] [PMID: 3790578]
[28]
Thurnham, D.I.; Davies, J.A.; Crump, B.J.; Situnayake, R.D.; Davis, M. The use of different lipids to express serum tocopherol: Lipid ratios for the measurement of vitamin E status. Ann. Clin. Biochem., 1986, 23(Pt 5), 514-520.
[http://dx.doi.org/10.1177/000456328602300505] [PMID: 3767286]
[29]
Kayden, H.J. Tocopherol content of adipose tissue from vitamin E deficient humans, in Porter, R. Whelan, J. (Eds.), Biology of Vitamin E; Pittman Books London, 1983, 70-91.
[30]
Sokol, R.J.; Heubi, J.E.; Iannaccone, S.T.; Bove, K.E.; Balistreri, W.F. Vitamin E deficiency with normal serum vitamin E concentrations in children with chronic cholestasis. N. Engl. J. Med., 1984, 310(19), 1209-1212.
[http://dx.doi.org/10.1056/NEJM198405103101901 ] [PMID: 6709026]
[31]
Rosenson, R.S.; Brewer, H.B., Jr; Davidson, W.S.; Fayad, Z.A.; Fuster, V.; Goldstein, J.; Hellerstein, M.; Jiang, X.C.; Phillips, M.C.; Rader, D.J.; Remaley, A.T.; Rothblat, G.H.; Tall, A.R.; Yvan-Charvet, L. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation, 2012, 125(15), 1905-1919.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.066589] [PMID: 22508840]
[32]
Bjornson, L.K.; Gniewkowski, C.; Kayden, H.J. Comparison of exchange of alpha-tocopherol and free cholesterol between rat plasma lipoproteins and erythrocytes. J. Lipid Res., 1975, 16(1), 39-53.
[PMID: 162930]
[33]
Parks, E.J.; Dare, D.; Frazier, K.B.; Hellerstein, M.K.; Neese, R.A.; Hughes, E.; Traber, M.G. Dependence of plasma α-tocopherol flux on very low-density triglyceride clearance in humans. Free Radic. Biol. Med., 2000, 29(11), 1151-1159.
[http://dx.doi.org/10.1016/S0891-5849(00)00426-3 ] [PMID: 11121723]
[34]
Eisengart, A.; Milhorat, A.T.; Simon, E.J.; Sundheim, L. The metabolism of vitamin E. II. Purification and characterization of urinary metabolites of alpha-tocopherol. J. Biol. Chem., 1956, 221(2), 807-817.
[PMID: 13357475]
[35]
Gross, C.S.; Milhorat, A.T.; Simon, E.J. The metabolism of vitamin E. I. The absorption and excretion of d-α-tocopheryl-5-methyl-C14-succinate. J. Biol. Chem., 1956, 221(2), 797-805.
[PMID: 13357474]
[36]
Eisengart, A.; Milhorat, A.T.; Simon, E.J.; Sundheim, L. The metabolism of vitamin E. II. Purification and characterization of urinary metabolites of α-tocopherol. J. Biol. Chem., 1956, 221(2), 807-817.
[PMID: 13357475]
[37]
Sharma, G.; Muller, D.; O’Riordan, S.; Bryan, S.; Hindmarsh, P.; Dattani, M.; Mills, K. A novel method for the direct measurement of urinary conjugated metabolites of alpha-tocopherol and its use in diabetes. Mol. Nutr. Food Res., 2010, 54(5), 599-600.
[http://dx.doi.org/10.1002/mnfr.200900378] [PMID: 20169581]
[38]
Mustacich, D.J.; Leonard, S.W.; Patel, N.K.; Traber, M.G. α-tocopherol β-oxidation localized to rat liver mitochondria. Free Radic. Biol. Med., 2010, 48(1), 73-81.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.10.024 ] [PMID: 19819327]
[39]
Birringer, M.; Pfluger, P.; Kluth, D.; Landes, N.; Brigelius-Flohé, R. Identities and differences in the metabolism of tocotrienols and tocopherols in HepG2 cells. J. Nutr., 2002, 132(10), 3113-3118.
[http://dx.doi.org/10.1093/jn/131.10.3113] [PMID: 12368403]
[40]
Diepeveen, S.H.; Verhoeven, G.W.; Van Der Palen, J.; Dikkeschei, L.D.; Van Tits, L.J.; Kolsters, G.; Offerman, J.J.; Bilo, H.J.; Stalenhoef, A.F. Effects of atorvastatin and vitamin E on lipoproteins and oxidative stress in dialysis patients: A randomised-controlled trial. J. Intern. Med., 2005, 257(5), 438-445.
[http://dx.doi.org/10.1111/j.1365-2796.2005.01484.x ] [PMID: 15836660]
[41]
Werba, J.P.; Cavalca, V.; Veglia, F.; Massironi, P.; De Franceschi, M.; Zingaro, L.; Tremoli, E. A new compound-specific pleiotropic effect of statins: Modification of plasma gamma-tocopherol levels. Atherosclerosis, 2007, 193(1), 229-233.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.06.020 ] [PMID: 16860808]
[42]
McDonald, M.G.; Rieder, M.J.; Nakano, M.; Hsia, C.K.; Rettie, A.E. CYP4F2 is a vitamin K1 oxidase: An explanation for altered warfarin dose in carriers of the V433M variant. Mol. Pharmacol., 2009, 75(6), 1337-1346.
[http://dx.doi.org/10.1124/mol.109.054833] [PMID: 19297519]
[43]
Shearer, M.J.; Newman, P. Recent trends in the metabolism and cell biology of vitamin K with special reference to vitamin K cycling and MK-4 biosynthesis. J. Lipid Res., 2014, 55(3), 345-362.
[http://dx.doi.org/10.1194/jlr.R045559] [PMID: 24489112]
[44]
Card, D.J.; Gorska, R.; Cutler, J.; Harrington, D.J. Vitamin K metabolism: Current knowledge and future research. Mol. Nutr. Food Res., 2014, 58(8), 1590-1600.
[http://dx.doi.org/10.1002/mnfr.201300683] [PMID: 24376012]
[45]
Jiang, Q.; Christen, S.; Shigenaga, M.K.; Ames, B.N. gamma-tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am. J. Clin. Nutr., 2001, 74(6), 714-722.
[http://dx.doi.org/10.1093/ajcn/74.6.714] [PMID: 11722951]
[46]
Jiang, Q. Natural forms of vitamin E: Metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic. Biol. Med., 2014, 72, 76-90.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.03.035 ] [PMID: 24704972]
[47]
Yue, Y.; Novianti, M.L.; Tessensohn, M.E.; Hirao, H.; Webster, R.D.; Webster, R.D. Optimizing the lifetimes of phenoxonium cations derived from vitamin E via structural modifications. Org. Biomol. Chem., 2015, 13(48), 11732-11739.
[http://dx.doi.org/10.1039/C5OB01868D] [PMID: 26480893]
[48]
Kamal-Eldin, A.; Appelqvist, L.A. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids, 1996, 31(7), 671-701.
[http://dx.doi.org/10.1007/BF02522884] [PMID: 8827691]
[49]
Förstermann, U.; Sessa, W.C. Nitric oxide synthases: regulation and function. Eur. Heart J., 2012, 33(7), 829-837-837a-837d.
[http://dx.doi.org/10.1093/eurheartj/ehr304] [PMID: 21890489]
[50]
Marcourakis, T.; Camarini, R.; Kawamoto, E.M.; Scorsi, L.R.; Scavone, C. Peripheral biomarkers of oxidative stress in aging and Alzheimer’s disease. Dement. Neuropsychol., 2008, 2(1), 2-8.
[http://dx.doi.org/10.1590/S1980-57642009DN20100002 ] [PMID: 29213532]
[51]
Bartosz, G. Reactive oxygen species: Destroyers or messengers? Biochem. Pharmacol., 2009, 77(8), 1303-1315.
[http://dx.doi.org/10.1016/j.bcp.2008.11.009] [PMID: 19071092]
[52]
Cooney, R.V.; Harwood, P.J.; Franke, A.A.; Narala, K.; Sundström, A.K.; Berggren, P.O.; Mordan, L.J. Products of γ-tocopherol reaction with NO2 and their formation in rat insulinoma (RINm5F) cells. Free Radic. Biol. Med., 1995, 19(3), 259-269.
[http://dx.doi.org/10.1016/0891-5849(95)00019-T] [PMID: 7557540]
[53]
Christen, S.; Woodall, A.A.; Shigenaga, M.K.; Southwell-Keely, P.T.; Duncan, M.W.; Ames, B.N. gamma-tocopherol traps mutagenic electrophiles such as NO(X) and complements alpha-tocopherol: Physiological implications. Proc. Natl. Acad. Sci. USA, 1997, 94(7), 3217-3222.
[http://dx.doi.org/10.1073/pnas.94.7.3217] [PMID: 9096373]
[54]
Cooney, R.V.; Franke, A.A.; Harwood, P.J.; Hatch-Pigott, V.; Custer, L.J.; Mordan, L.J. γ-tocopherol detoxification of nitrogen dioxide: Superiority to α-tocopherol. Proc. Natl. Acad. Sci. USA, 1993, 90(5), 1771-1775.
[http://dx.doi.org/10.1073/pnas.90.5.1771] [PMID: 8446589]
[55]
Christen, S.; Gee, P.; Ames, B.N. Mutagenicity of nitric oxide in base pair-specific Salmonella tester strains: TA7000 series. Methods Enzymol., 1996, 269, 267-278.
[http://dx.doi.org/10.1016/S0076-6879(96)69027-2] [PMID: 8791655]
[56]
van der Vliet, A.; Eiserich, J.P.; O’Neill, C.A.; Halliwell, B.; Cross, C.E. Tyrosine modification by reactive nitrogen species: A closer look. Arch. Biochem. Biophys., 1995, 319(2), 341-349.
[http://dx.doi.org/10.1006/abbi.1995.1303] [PMID: 7786014]
[57]
Ferroni, F.; Maccaglia, A.; Pietraforte, D.; Turco, L.; Minetti, M. Phenolic antioxidants and the protection of low density lipoprotein from peroxynitrite-mediated oxidations at physiologic CO2. J. Agric. Food Chem., 2004, 52(10), 2866-2874.
[http://dx.doi.org/10.1021/jf034270n] [PMID: 15137827]
[58]
Packer, L.; Weber, S.U.; Rimbach, G. Molecular aspects of alpha-tocotrienol antioxidant action and cell signalling. J. Nutr., 2001, 131(2), 369S-373S.
[http://dx.doi.org/10.1093/jn/131.2.369S] [PMID: 11160563]
[59]
Wong, R.S.; Radhakrishnan, A.K. Tocotrienol research: Past into present. Nutr. Rev., 2012, 70(9), 483-490.
[http://dx.doi.org/10.1111/j.1753-4887.2012.00512.x ] [PMID: 22946849]
[60]
Azzi, A.; Stocker, A.; Vitamin, E. Non-antioxidant roles. Prog. Lipid Res., 2000, 39(3), 231-255.
[http://dx.doi.org/10.1016/S0163-7827(00)00006-0 PMID: 10799717]
[61]
Terashima, K.; Takaya, Y.; Niwa, M. Powerful antioxidative agents based on garcinoic acid from Garcinia kola. Bioorg. Med. Chem., 2002, 10(5), 1619-1625.
[http://dx.doi.org/10.1016/S0968-0896(01)00428-X ] [PMID: 11886823]
[62]
Wallert, M.; Schmölz, L.; Galli, F.; Birringer, M.; Lorkowski, S. Regulatory metabolites of vitamin E and their putative relevance for atherogenesis. Redox Biol., 2014, 2, 495-503.
[http://dx.doi.org/10.1016/j.redox.2014.02.002] [PMID: 24624339]
[63]
Lei, Y.; Wang, K.; Deng, L.; Chen, Y.; Nice, E.C.; Huang, C. Redox regulation of inflammation: old elements, a new story. Med. Res. Rev., 2015, 35(2), 306-340.
[http://dx.doi.org/10.1002/med.21330] [PMID: 25171147]
[64]
Vanderhoek, J.Y.; Lands, W.E. The inhibition of the fatty acid oxygenase of sheep vesicular gland by antioxidants. Biochim. Biophys. Acta, 1973, 296(2), 382-385.
[http://dx.doi.org/10.1016/0005-2760(73)90096-9] [PMID: 4734625]
[65]
Beharka, A.A.; Wu, D.; Serafini, M.; Meydani, S.N. Mechanism of vitamin E inhibition of cyclooxygenase activity in macrophages from old mice: Role of peroxynitrite. Free Radic. Biol. Med., 2002, 32(6), 503-511.
[http://dx.doi.org/10.1016/S0891-5849(01)00817-6 ] [PMID: 11958951]
[66]
Rietjens, I.M.; Boersma, M.G.; Haan, Ld.; Spenkelink, B.; Awad, H.M.; Cnubben, N.H.; van Zanden, J.J.; Woude, Hv.; Alink, G.M.; Koeman, J.H. The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environ. Toxicol. Pharmacol., 2002, 11(3-4), 321-333.
[http://dx.doi.org/10.1016/S1382-6689(02)00003-0 ] [PMID: 21782615]
[67]
Halliwell, B.; Gutteridge, J. Free radicals in biology and medicine, 3rd ed; Clarendon Press: Oxford, 1999.
[68]
Liu, Z.Q. The “unexpected role” of vitamin E in free radical-induced hemolysis of human erythrocytes: alpha-tocopherol-mediated peroxidation. Cell Biochem. Biophys., 2006, 44(2), 233-239.
[http://dx.doi.org/10.1385/CBB:44:2:233] [PMID: 16456225]
[69]
Azzi, A. Many tocopherols, one vitamin E. Mol. Aspects Med., 2018, 61, 92-103.
[http://dx.doi.org/10.1016/j.mam.2017.06.004] [PMID: 28624327]
[70]
Kurumbail, R.G.; Kiefer, J.R.; Marnett, L.J. Cyclooxygenase enzymes: Catalysis and inhibition. Curr. Opin. Struct. Biol., 2001, 11(6), 752-760.
[http://dx.doi.org/10.1016/S0959-440X(01)00277-9 PMID: 11751058]
[71]
Jiang, Q.; Yin, X.; Lill, M.A.; Danielson, M.L.; Freiser, H.; Huang, J. Long-chain carboxychromanols, metabolites of vitamin E, are potent inhibitors of cyclooxygenases. Proc. Natl. Acad. Sci. USA, 2008, 105(51), 20464-20469.
[http://dx.doi.org/10.1073/pnas.0810962106] [PMID: 19074288]
[72]
Jiang, Z.; Yin, X.; Jiang, Q. Natural forms of vitamin E and 13′-carboxychromanol, a long-chain vitamin E metabolite, inhibit leukotriene generation from stimulated neutrophils by blocking calcium influx and suppressing 5-lipoxygenase activity, respectively. J. Immunol., 2011, 186(2), 1173-1179.
[http://dx.doi.org/10.4049/jimmunol.1002342] [PMID: 21169551]
[73]
Grau, A.; Ortiz, A. Dissimilar protection of tocopherol isomers against membrane hydrolysis by phospholipase A2. Chem. Phys. Lipids, 1998, 91(2), 109-118.
[http://dx.doi.org/10.1016/S0009-3084(97)00101-1] [PMID: 9569615]
[74]
Wagner, J.G.; Jiang, Q.; Harkema, J.R.; Ames, B.N.; Illek, B.; Roubey, R.A.; Peden, D.B. Gamma-tocopherol prevents airway eosinophilia and mucous cell hyperplasia in experimentally induced allergic rhinitis and asthma. Clin. Exp. Allergy, 2008, 38(3), 501-511.
[http://dx.doi.org/10.1111/j.1365-2222.2007.02855.x ] [PMID: 17970781]
[75]
Pantzaris, M.C.; Loukaides, G.N.; Ntzani, E.E.; Patrikios, I.S. A novel oral nutraceutical formula of omega-3 and omega-6 fatty acids with vitamins (PLP10) in relapsing remitting multiple sclerosis: A randomised, double-blind, placebo-controlled proof-of-concept clinical trial. BMJ Open, 2013, 3(4)e002170
[http://dx.doi.org/10.1136/bmjopen-2012-002170] [PMID: 23599375]
[76]
Kim, H.S.; Arai, H.; Arita, M.; Sato, Y.; Ogihara, T.; Inoue, K.; Mino, M.; Tamai, H. Effect of alpha-tocopherol status on alpha-tocopherol transfer protein expression and its messenger RNA level in rat liver. Free Radic. Res., 1998, 28(1), 87-92.
[http://dx.doi.org/10.3109/10715769809097879] [PMID: 9554836]
[77]
Munteanu, A.; Zingg, J.M.; Azzi, A. Anti-atherosclerotic effects of vitamin E--myth or reality? J. Cell. Mol. Med., 2004, 8(1), 59-76.
[http://dx.doi.org/10.1111/j.1582-4934.2004.tb00260.x ] [PMID: 15090261]
[78]
Raspor, P.; Plesničar, S.; Gazdag, Z.; Pesti, M.; Miklavcic, M.; Lah, B.; Logar-Marinsek, R.; Poljsak, B. Prevention of intracellular oxidation in yeast: The role of vitamin E analogue, Trolox (6-hydroxy-2,5,7,8-tetramethylkroman-2-carboxyl acid). Cell Biol. Int., 2005, 29(1), 57-63.
[http://dx.doi.org/10.1016/j.cellbi.2004.11.010] [PMID: 15763500]
[79]
Theodosis-Nobelos, P.; Kourounakis, P.N.; Rekka, E.A. Anti-inflammatory and hypolipidemic effect of novel conjugates with trolox and other antioxidant acids. Med. Chem., 2017, 13(3), 214-225.
[http://dx.doi.org/10.2174/1573406412666161104122310 ] [PMID: 27823562]
[80]
Mabile, L.; Fitoussi, G.; Periquet, B.; Schmitt, A.; Salvayre, R.; Nègre-Salvayre, A. alpha-Tocopherol and trolox block the early intracellular events (TBARS and calcium rises) elicited by oxidized low density lipoproteins in cultured endothelial cells. Free Radic. Biol. Med., 1995, 19(2), 177-187.
[http://dx.doi.org/10.1016/0891-5849(95)00006-J] [PMID: 7649489]
[81]
Burkitt, M.J.; Milne, L. Hydroxyl radical formation from Cu(II)-trolox mixtures: Insights into the pro-oxidant properties of α-tocopherol. FEBS Lett., 1996, 379(1), 51-54.
[http://dx.doi.org/10.1016/0014-5793(95)01481-0] [PMID: 8566228]
[82]
Prasad, K.N.; Kumar, B.; Yan, X.D.; Hanson, A.J.; Cole, W.C. Alpha-tocopheryl succinate, the most effective form of vitamin E for adjuvant cancer treatment: A review. J. Am. Coll. Nutr., 2003, 22(2), 108-117.
[http://dx.doi.org/10.1080/07315724.2003.10719283 ] [PMID: 12672706]
[83]
Zakharova, O.D.; Frolova, T.S.; Yushkova, Y.V.; Chernyak, E.I.; Pokrovsky, A.G.; Pokrovsky, M.A.; Morozov, S.V.; Sinitsina, O.I.; Grigor’ev, I.A.; Nevinsky, G.A. Antioxidant and antitumor activity of trolox, trolox succinate, and α-tocopheryl succinate conjugates with nitroxides. Eur. J. Med. Chem., 2016, 122, 127-137.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.051] [PMID: 27344490]
[84]
Singh, V.P.; Poon, J.F.; Engman, L. Catalytic antioxidants: Regenerable tellurium analogues of vitamin E. Org. Lett., 2013, 15(24), 6274-6277.
[http://dx.doi.org/10.1021/ol403131t] [PMID: 24279415]
[85]
Battioni, J.P.; Fontecave, M.; Jaouen, M.; Mansuy, D. Vitamin E derivatives as new potent inhibitors of microsomal lipid peroxidation. Biochem. Biophys. Res. Commun., 1991, 174(3), 1103-1108.
[http://dx.doi.org/10.1016/0006-291X(91)91534-J] [PMID: 1996979]
[86]
Lars, J.; Nilsson, G.; Selander, H.; Sievertsson, H.; Skånberg, I. The directing effect of annelated rings in aromatic systems. II. Synthesis and oxidation of 2,3-dihydro-5-benzofuranols. I. An apparent Mills-Nixon effect in oxidative coupling of phenols. Tetrahedron, 1970, 26(3), 879-886.
[http://dx.doi.org/10.1016/S0040-4020(01)97886-X ] [PMID: 5435927]
[87]
Cohen, N.; Schaer, B.; Saucy, G.; Borer, R.; Todaro, L.; Marie Chiu, A.M. Lewis acid mediated nucleophilic substitution reactions of 2-alkoxy-3,4-dihydro-2H-1-benzopyrans: Regiochemistry and utility in the synthesis of 3,4-dihydro-2H-1-benzopyran-2-carboxylic acids. J. Org. Chem., 1989, 54, 3282-3292.
[http://dx.doi.org/10.1021/jo00275a010]
[88]
Ingold, K.U.; Burton, G.W.; Foster, D.O.; Zuker, M.; Hughes, L.; Lacelle, S.; Lusztyk, E.; Slaby, M. A new vitamin E analogue more active than alpha-tocopherol in the rat curative myopathy bioassay. FEBS Lett., 1986, 205(1), 117-120.
[http://dx.doi.org/10.1016/0014-5793(86)80877-8] [PMID: 3743765]
[89]
Manfredini, S.; Vertuani, S.; Manfredi, B.; Rossoni, G.; Calviello, G.; Palozza, P. Novel antioxidant agents deriving from molecular combinations of vitamins C and E analogues: 3,4-dihydroxy-5(R)-[2(R,S)-(6-hydroxy-2,5,7,8-tetramethyl-chroman-2(R,S)-yl-methyl)-[1,3]dioxolan-4(S)-yl]-5H-furan-2-one and 3-O-octadecyl derivatives. Bioorg. Med. Chem., 2000, 8, 2791-2801.
[http://dx.doi.org/10.1016/S0968-0896(00)00205-4 ] [PMID: 11131170]
[90]
Arai, T.; Ohno, A.; Kazunori, M.; Kakizawa, T.; Kuwata, H.; Ozawa, T.; Shibanuma, M.; Hara, S.; Ishida, S.; Kurihara, M.; Miyata, N.; Nakagawa, H.; Fukuhara, K. Design, synthesis, and evaluation of Trolox-conjugated amyloid-β C-terminal peptides for therapeutic intervention in an in vitro model of Alzheimer’s disease. Bioorg. Med. Chem., 2016, 24(18), 4138-4143.
[http://dx.doi.org/10.1016/j.bmc.2016.06.057] [PMID: 27407032]
[91]
Xie, S.S.; Lan, J.S.; Wang, X.B.; Jiang, N.; Dong, G.; Li, Z.R.; Wang, K.D.; Guo, P.P.; Kong, L.Y. Multifunctional tacrine-trolox hybrids for the treatment of Alzheimer’s disease with cholinergic, antioxidant, neuroprotective and hepatoprotective properties. Eur. J. Med. Chem., 2015, 93, 42-50.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.058] [PMID: 25656088]
[92]
Nepovimova, E.; Korabecny, J.; Dolezal, R.; Babkova, K.; Ondrejicek, A.; Jun, D.; Sepsova, V.; Horova, A.; Hrabinova, M.; Soukup, O.; Bukum, N.; Jost, P.; Muckova, L.; Kassa, J.; Malinak, D.; Andrs, M.; Kuca, K. Tacrine-trolox hybrids: A novel class of centrally active, nonhepatotoxic multi-target-directed ligands exerting anticholinesterase and antioxidant activities with low in vivo toxicity. J. Med. Chem., 2015, 58(22), 8985-9003.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01325] [PMID: 26503905]
[93]
Koufaki, M.; Calogeropoulou, T.; Rekka, E.; Chryselis, M.; Papazafiri, P.; Gaitanaki, C.; Makriyannis, A. Bifunctional agents for reperfusion arrhythmias: Novel hybrid vitamin E/class I antiarrhythmics. Bioorg. Med. Chem., 2003, 11(23), 5209-5219.
[http://dx.doi.org/10.1016/j.bmc.2003.08.010] [PMID: 14604685]
[94]
Koufaki, M.; Detsi, A.; Theodorou, E.; Kiziridi, C.; Calogeropoulou, T.; Vassilopoulos, A.; Kourounakis, A.P.; Rekka, E.; Kourounakis, P.N.; Gaitanaki, C.; Papazafiri, P. Synthesis of chroman analogues of lipoic acid and evaluation of their activity against reperfusion arrhythmias. Bioorg. Med. Chem., 2004, 12(18), 4835-4841.
[http://dx.doi.org/10.1016/j.bmc.2004.07.012] [PMID: 15336262]
[95]
Theodosis-Nobelos, P.; Athanasekou, C.; Rekka, E.A. Dual antioxidant structures with potent anti-inflammatory, hypolipidemic and cytoprotective properties. Bioorg. Med. Chem. Lett., 2017, 27(21), 4800-4804.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.054] [PMID: 29017787]
[96]
Shimizu, K.; Kondo, R.; Sakai, K.; Takeda, N.; Nagahata, T.; Oniki, T. Novel vitamin E derivative with 4-substituted resorcinol moiety has both antioxidant and tyrosinase inhibitory properties. Lipids, 2001, 36(12), 1321-1326.
[http://dx.doi.org/10.1007/s11745-001-0847-9] [PMID: 11834083]
[97]
Tsiakitzis, K.; Kourounakis, A.P.; Tani, E.; Rekka, E.A.; Kourounakis, P.N. Stress and active oxygen species--effect of alpha-tocopherol on stress response. Arch. Pharm. (Weinheim), 2005, 338(7), 315-321.
[http://dx.doi.org/10.1002/ardp.200400946] [PMID: 15981300]
[98]
Tsiakitzis, K.C.; Rekka, E.A.; Kourounakis, A.P.; Kourounakis, P.N. Novel compounds designed as antistress agents. J. Med. Chem., 2009, 52(22), 7315-7318.
[http://dx.doi.org/10.1021/jm901169b] [PMID: 19863055]
[99]
Theodosis-Nobelos, P.; Papagiouvannis, G.; Kourounakis, P.N.; Rekka, E.A. Active anti-inflammatory and hypolipidemic derivatives of lorazepam. Molecules, 2019, 24(18)E3277
[http://dx.doi.org/10.3390/molecules24183277] [PMID: 31505754]
[100]
Tsiakitzis, K.C.; Papagiouvannis, G.; Theodosis-Nobelos, P.; Tziona, P.; Kourounakis, P.N.; Rekka, E.A. Synthesis, antioxidant and anti-inflammatoy effects of antioxidant acid amides with GABA and N-acyl-pyrrolidin-2-ones. Curr. Chem. Biol., 2017, 11, 127-139.
[http://dx.doi.org/10.2174/2212796811666170509123209]