Diversified Synthetic Pathway of 1, 4-Dihydropyridines: A Class of Pharmacologically Important Molecules

Page: [135 - 149] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

The current review discusses the different synthetic pathways for one of the most important and interesting heterocyclic ring systems, 1,4-dihydropyridine. This cyclic system depicts diverse pharmacological action on several receptors, channels, and enzymes. Dihydropyridine moiety plays an important role in several calcium-channel blockers. Moreover, it has been exploited for the treatment of a variety of cardiovascular diseases due to its potential antihypertensive, anti-angina, vasodilator, and cardiac depressant activities. Furthermore, it also shows antibacterial, anticancer, anti-leishmanial, anticoagulant, anticonvulsant, anti-tubercular, antioxidant, antiulcer, and neuroprotective properties. Several reports have demonstrated dihydropyridine derivatives as a potentiator of cystic fibrosis transmembrane conductance regulator protein, potent antimalarial agent and HIV-1 protease inhibitor. Herein, we have briefly reviewed different novel chemistry and the synthesis of 1,4-dihydropyridine.

Keywords: Dihydropyridine, anticancer, anti-tubercular, ionizing radiation, anti-leishmanial, HIV-1.

Graphical Abstract

[1]
Khedkar, S.A.; Auti, P.B. 1, 4-Dihydropyridines: a class of pharmacologically important molecules. Mini Rev. Med. Chem., 2014, 14(3), 282-290.
[http://dx.doi.org/10.2174/1389557513666131119204126 PMID: 24251802]
[2]
Eisner, U.; Kuthan, J. Chemistry of dihydropyridines. Chem. Rev., 1972, 72(1), 1-42.
[http://dx.doi.org/10.1021/cr60275a001]
[3]
Francis, R.F.; Davis, W.; Wisener, J.T. Reaction intermediates in the alkylation of pyridine with tert-butyllithium. J. Org. Chem., 1974, 39(1), 59-62.
[http://dx.doi.org/10.1021/jo00915a011]
[4]
Stout, D.M.; Meyers, A.I. Recent advances in the chemistry of dihydropyridines. Chem. Rev., 1982, 82(2), 223-243.
[http://dx.doi.org/10.1021/cr00048a004]
[5]
Bennasar, M.L.; Vidal, B.; Bosch, J. Biomimetic total synthesis of ervitsine and indole alkaloids of the ervatamine group via 1, 4-dihydropyridines. J. Org. Chem., 1997, 62(11), 3597-3609.
[http://dx.doi.org/10.1021/jo9623301]
[6]
Kutney, J.P.; Karton, Y.; Kawamura, N.; Worth, B.R. Dihydropyridines in synthesis and biosynthesis. IV. Dehydrosecodine, in vitro precursor of indole alkaloids. Can. J. Chem., 1982, 60(11), 1269-1278.
[http://dx.doi.org/10.1139/v82-187]
[7]
Davis, N.R.; Anwar, R.A. On the mechanism of formation of desmosine and isodesmosine cross-links of elastin. J. Am. Chem. Soc., 1970, 92(12), 3778-3782.
[http://dx.doi.org/10.1021/ja00715a040] [PMID: 5422774]
[8]
Akagawa, M.; Suyama, K. Mechanism of formation of elastin crosslinks. Connect. Tissue Res., 2000, 41(2), 131-141.
[http://dx.doi.org/10.3109/03008200009067665 PMID: 10992159]
[9]
Narayanan, A.S.; Page, R.C.; Kuzan, F.; Cooper, C.G. Elastin cross-linking in vitro. Studies on factors influencing the formation of desmosines by lysyl oxidase action on tropoelastin. Biochem. J., 1978, 173(3), 857-862.
[http://dx.doi.org/10.1042/bj1730857] [PMID: 30449]
[10]
Winstead, J.A.; Gass, A.E., Jr Studies on the mechanism of substrate protection of enolase and lactic dehydrogenase against ionizing radiation. Radiat. Res., 1967, 30(2), 208-216.
[http://dx.doi.org/10.2307/3572046] [PMID: 4381270]
[11]
Epstein, W. On the condensation of zaldaldehyde with acetoacetate and ammonia. Justus Liebigs Ann. Chem., 1885, 231(1), 1-36.
[http://dx.doi.org/10.1002/jlac.18852310102]
[12]
Kurz, J.L.; Hutton, R.; Westheimer, F.H. The photochemical reduction of bromotrichloromethane by derivatives of 1, 4-dihydropyridine. J. Am. Chem. Soc., 1961, 83(3), 584-588.
[http://dx.doi.org/10.1021/ja01464a021]
[13]
Kuss, L.; Karrer, P. On the constitution of Hantzsch’sdihydro-pyridines and their ortho-dihydro-pyridine derivatives. Helv. Chim. Acta, 1957, 40(3), 740-750.
[http://dx.doi.org/10.1002/hlca.19570400327]
[14]
Traber, W.; Karrer, P. ZurKenntnis der Dihydro‐pyridin‐Verbindungen. Helv. Chim. Acta, 1958, 41(7), 2066-2094.
[http://dx.doi.org/10.1002/hlca.19580410715]
[15]
Pullman, M.E.; San Pietro, A.; Colowick, S.P. On the structure of reduced diphosphopyridine nucleotide. J. Biol. Chem., 1954, 206(1), 129-141.
[PMID: 13130534]
[16]
Berson, J.A.; Brown, E. Studies on dihydropyridines. I. The preparation of unsymmetrical 4-Aryl-1, 4-dihydropyridines by the Hantzsch-Beyer synthesis1. J. Am. Chem. Soc., 1955, 77(2), 444-447.
[http://dx.doi.org/10.1021/ja01607a066]
[17]
Kuthan, J. Constitution and absorption spectra of alkylated 3, 5-dicyandihydropyridines. Collection of Czechoslovak Chemical Communications, 27(9), 2175-2185.
[18]
Dittmer, D.C.; Kolyer, J.M. Action of base on quaternary salts of Nicotinamide1-3. J. Org. Chem., 1963, 28(9), 2288-2294.
[http://dx.doi.org/10.1021/jo01044a032]
[19]
Ludowieg, J.; Bhacca, N.; Levy, A. Structure and properties of the acetone adducts of 1-n-propyl nicotinamide iodide. Biochem. Biophys. Res. Commun., 1964, 14(5), 431-436.
[http://dx.doi.org/10.1016/0006-291X(64)90081-6 PMID: 4220836]
[20]
Ahlbrecht, H.; Kröhnke, F. About pseudobases, VIII. Spectroscopic investigations on dihydroheterocycles. Justus Liebigs Ann. Chem., 1968, 717(1), 96-103.
[http://dx.doi.org/10.1002/jlac.19687170111]
[21]
Lovesey, AC Ross, WC Potential coenzyme inhibitors. Part II. Reduction of 4-methylnicotinamide derivatives by sodium dithionite and sodium borohydride. J. Chem. Soc. B: Phy. Org., 1969, 192-195.
[22]
Fraenkel, G.; Cooper, J.W.; Fink, C.M. One‐Step synthesis of 2‐substituted N‐Ethoxycarbonyl‐1, 2‐dihydropyridines. Angew. Chem. Int. Ed. Engl., 1970, 9(7), 523.
[http://dx.doi.org/10.1002/anie.197005231]
[23]
Karrer, P.; Schwarzenbach, G.; Utzinger, G.E. Dihydro-pyridine compounds IV. N-phenyl-o-dihydro-pyridine and N-p-methoxy-phenyl-o-dihydro-pyridine. Helv. Chim. Acta, 1937, 20(1), 72-79.
[http://dx.doi.org/10.1002/hlca.19370200107]
[24]
Craig, D.; Schaefgen, L.; Tyler, W.P. N-Phenyl-3, 5-diethyl-2-propyl-1, 4-dihydropyridine. J. Am. Chem. Soc., 1948, 70(4), 1624-1629.
[http://dx.doi.org/10.1021/ja01184a094]
[25]
Patrick, T.M., Jr The reaction of aldehydes with aldimines1. J. Am. Chem. Soc., 1952, 74(12), 2984-2986.
[http://dx.doi.org/10.1021/ja01132a008]
[26]
Saunders, M.; Gold, E.H. The preparation of N-Phenyl-1, 2-dihydropyridine1, 2. J. Org. Chem., 1962, 27(4), 1439-1441.
[http://dx.doi.org/10.1021/jo01051a505]
[27]
Arens, J.F.; Wibaut, J.P. A New approach to introducing alkyl groups into the 4-Site in the pyridine molecule: 50th communication on derivatives of pyridine and quinoline. Recueil des TravauxChimiques des Pays-Bas., 1942, 61(1), 59-68.
[http://dx.doi.org/10.1002/recl.19420610108]
[28]
Arens, J.F.; Wibaut, J.P. The catalytic hydrogenation of pyridine in acetic anhydride. The formation of piperidine and condensation products. Recueil des TravauxChimiques des Pays-Bas., 1942, 61(6), 452-462.
[http://dx.doi.org/10.1002/recl.19420610607]
[29]
Lansbury, P.T.; Peterson, J.O. Lithium tetrakis-(N-dihydropyridyl)-aluminate: structure and reducing properties. J. Am. Chem. Soc., 1963, 85(15), 2236-2242.
[http://dx.doi.org/10.1021/ja00898a010]
[30]
Lyle, R.E.; Gauthier, G.J. Reactions of nucleophiles with pyridinium ions. Cyanide ion reactions with some pyridinium ions. Tetrahedron Lett., 1965, 6(51), 4615-4621.
[http://dx.doi.org/10.1016/S0040-4039(01)84023-5]
[31]
Wallenfels, K.; Gellrich, M. About the mechanism of hydrogen transfer with pyridine nucleotides, XI The nonenzymatic reduction of quinones with DPNH models. Justus Liebigs Ann. Chem., 1959, 621(1), 149-165.
[http://dx.doi.org/10.1002/jlac.19596210115]
[32]
Cook, N.C.; Lyons, J.E. 1, 4-Dihydropyridine. J. Am. Chem. Soc., 1965, 87(14), 3283-3284.
[http://dx.doi.org/10.1021/ja01092a074]
[33]
Kröhnke, F.; Ahrenholz, G.M.; Gross, K.F. About phenacyl ether and thioether. III. Reactions with phenyl-phenacyl-thioethers. J. Prakt. Chem., 1960, 11(5-6), 256-264.
[34]
Zecher, W; Kröhnke, F. Pyridines from phenyl-phenacyl (thio) ethers and ω-cyano-acetophenone A new synthesis of substituted pyridines, III. Chemical reports, 1961, 94(3), 707-712.
[35]
Brignell, PJ; Eisner, U; Farrell, PG PG Substituent effects in the ultraviolet spectra of 1, 4-dihydropyridines. J. Chem. Soc. B: Phy. Org, 1966, 1083-1089.
[36]
Wallenfels, K.; Gellrich, M.; Kubowitz, F. On the mechanism of hydrogen transfer with pyridine nucleotides. X further coenzyme models and a DPN analogue. Justus Liebigs Ann. Chem., 1959, 621(1), 137-148.
[http://dx.doi.org/10.1002/jlac.19596210114]
[37]
Rao, H.S.; Parthiban, A. One-pot pseudo three-component reaction of nitroketene-N,S-acetals and aldehydes for synthesis of highly functionalized hexa-substituted 1,4-dihydropyridines. Org. Biomol. Chem., 2014, 12(32), 6223-6238.
[http://dx.doi.org/10.1039/C4OB00628C] [PMID: 25007896]
[38]
Ananda Kumar, T.D.; Mohan, P.; Subrahmanyam, C.V.; Satyanarayana, K. Comparative study of catalytic potential of TBAB, BTEAC, and CTAB in one-pot synthesis of 1, 4-Dihydropyridines under aqueous medium. Synth. Commun., 2014, 44(4), 574-582.
[http://dx.doi.org/10.1080/00397911.2013.825807]
[39]
Tale, R.H.; Siraskar, R.U.; Zangade, S.B. Silica-supported 2, 4, 6-trichloro-1, 3, 5-triazine (Silica-TCT): Environmentally benign, mild and efficient catalyst for the synthesis of 1, 4-dihydropyridines under solvent-free conditions. Eur. Chem. Bull., 2013, 2(5), 279-282.
[40]
Ghattali, S.N.; Saidi, K.; Khabazzadeh, H. (NH 4) 2.5 H 0.5 PW 12 O 40-catalyzed rapid and efficient one-pot synthesis of dihydropyridines via the Hantzsch reaction under solvent-free conditions. Res. Chem. Intermed., 2014, 40(1), 281-291.
[http://dx.doi.org/10.1007/s11164-012-0962-6]
[41]
Safaei-Ghomi, J.; Ziarati, A.; Teymuri, R. CuI nanoparticles as new, efficient and reusable catalyst for the one-pot synthesis of 1, 4-dihydropyridines. Bull. Korean Chem. Soc., 2012, 33(8), 2679-2682.
[http://dx.doi.org/10.5012/bkcs.2012.33.8.2679]
[42]
Liu, L.; Sarkisian, R.; Deng, Y.; Wang, H. Sc(OTf)3-catalyzed three-component cyclization of arylamines, β,γ-unsaturated α-ketoesters, and 1,3-dicarbonyl compounds for the synthesis of highly substituted 1,4-dihydropyridines and tetrahydropyridines. J. Org. Chem., 2013, 78(11), 5751-5755.
[http://dx.doi.org/10.1021/jo400578m] [PMID: 23614840]
[43]
Mirsafaei, R.; Delzendeh, S.; Abdolazimi, A. Synthesis and characterization of reusable nano-order SO 3 H-KIT-5 as a heterogeneous catalyst for eco-friendly synthesis of 1, 4-dihydropyridines. Int. J. Environ. Sci. Technol., 2016, 13(9), 2219-2226.
[http://dx.doi.org/10.1007/s13762-016-1037-9]
[44]
Nasr-Esfahani, M.; Hoseini, S.J.; Montazerozohori, M.; Mehrabi, R.; Nasrabadi, H. Magnetic Fe3O4 nanoparticles: Efficient and recoverable nanocatalyst for the synthesis of polyhydroquinolines and Hantzsch 1, 4-dihydropyridines under solvent-free conditions. J. Mol. Catal. Chem., 2014, 382, 99-105.
[http://dx.doi.org/10.1016/j.molcata.2013.11.010]
[45]
Priede, E.; Zicmanis, A. One‐pot three‐component synthesis of Hantzsch 1, 4‐dihydropyridines promoted by dimethyl phosphate ionic liquids. Helv. Chim. Acta, 2015, 98(8), 1095-1103.
[http://dx.doi.org/10.1002/hlca.201500009]
[46]
Wang, Z.; Liu, Q.; Zhang, W.; Chen, Q. Facile synthesis of Hantzsch 1, 4-dihydropyridines with unsymmetrical 2, 6-and 3, 5-substituents. J. Chem. Res., 2013, 37(12), 748-750.
[http://dx.doi.org/10.3184/174751913X13843392957323]
[47]
Zhang, Q.; Zhang, Y.; Zhao, Y.; Yang, B.; Fu, C.; Wei, Y.; Tao, L. Multicomponent polymerization system combining Hantzsch reaction and reversible addition–fragmentation chain transfer to efficiently synthesize well-defined poly (1, 4-dihydropyridine) s. ACS Macro Lett., 2015, 4(1), 128-132.
[http://dx.doi.org/10.1021/mz500734c]
[48]
Jia, X.; Wang, Y.; Peng, F.; Huo, C.; Yu, L.; Liu, J.; Wang, X. Catalytic oxidation of C (sp3)- H bonds induced by a radical cation salt: construction of 1, 4‐Dihydropyridines using a fragment‐reassembly strategy. Adv. Synth. Catal., 2014, 356(6), 1210-1216.
[http://dx.doi.org/10.1002/adsc.201300810]
[49]
Reddy, B.P.; Rajesh, K.; Vijayakumar, V. Ionic liquid [tbmim] Cl2/AlCl3 under ultrasonic irradiation towards synthesis of 1, 4-DHP’s. Arab. J. Chem., 2015, 8(1), 138-141.
[http://dx.doi.org/10.1016/j.arabjc.2011.01.027]
[50]
Ray, S.; Brown, M.; Bhaumik, A.; Dutta, A.; Mukhopadhyay, C. A new MCM-41 supported HPF 6 catalyst for the library synthesis of highly substituted 1, 4-dihydropyridines and oxidation to pyridines: report of one-dimensional packing towards LMSOMs and studies on their photophysical properties. Green Chem., 2013, 15(7), 1910-1924.
[http://dx.doi.org/10.1039/c3gc40441b]
[51]
Naik, T.R.; Shivashankar, S.A. Heterogeneous bimetallic ZnFe2O4 nanopowdercatalyzed synthesis of Hantzsch 1, 4-dihydropyridines in water. Tetrahedron Lett., 2016, 57(36), 4046-4049.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.071]
[52]
Wang, M.; Qian, L.; Guo, Y.; Wu, H.; Liu, M.; Gao, W.; Li, G.; Ding, J.; Huang, X. Solid-state acidochromic properties of barbituric acid-based 1, 4-dihydropyridine derivatives with multiple coloured emissions switching. Dyes Pigments, 2019, 160, 378-385.
[http://dx.doi.org/10.1016/j.dyepig.2018.08.018]
[53]
Maru, M.S. SudhadeviAntharjanam PK, Khan NU. Catalyst‐free solid phase microwave‐assisted synthesis of 1, 4‐Dihydropyridine derivatives and their single crystal structure determination. ChemistrySelect, 2019, 4(3), 774-782.
[http://dx.doi.org/10.1002/slct.201803559]
[54]
Bhaskaruni, S.V.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. V2O5/ZrO2 as an efficient reusable catalyst for the facile, green, one-pot synthesis of novel functionalized 1, 4-dihydropyridine derivatives. Catal. Today, 2018, 309, 276-281.
[http://dx.doi.org/10.1016/j.cattod.2017.05.038]
[55]
Bitaraf, M.; Amoozadeh, A.; Otokesh, S. A Simple and Efficient One‐pot Synthesis of 1, 4‐dihydropyridines Using Nano‐WO3‐supported Sulfonic Acid as an Heterogeneous Catalyst under Solvent‐free Conditions. J. Chin. Chem. Soc. (Taipei), 2016, 63(4), 336-344.
[http://dx.doi.org/10.1002/jccs.201500453]
[56]
da Costa Cabrera, D.; Santa-Helena, E.; Leal, H.P.; de Moura, R.R.; Nery, L.E.M.; Gonçalves, C.A.N.; Russowsky, D.; Montes D’Oca, M.G. Synthesis and antioxidant activity of new lipophilic dihydropyridines. Bioorg. Chem., 2019, 84, 1-16.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.009] [PMID: 30471487]
[57]
Davarpanah, J.; Ghahremani, M.; Najafi, O. Synthesis of 1, 4-dihydropyridine and polyhydroquinoline derivatives via Hantzsch reaction using nicotinic acid as a green and reusable catalyst. J. Mol. Struct., 2019, 1177, 525-535.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.002]
[58]
Dekamin, M.G.; Kazemi, E.; Karimi, Z.; Mohammadalipoor, M.; Naimi-Jamal, M.R. hitosan: An efficient biomacromolecule support for synergic catalyzing of Hantzsch esters by CuSO4. Int. J. Biol. Macromol., 2016, 93(Pt A), 767-774.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.012] [PMID: 27608546]
[59]
Kumar, A.; Khatri, V.; Rungta, P.; Kumar, S.; Prasad, A.K. Synthesis of novel unsymmetrical coumarinyl-1, 4-dihydropyridines. Synth. Commun., 2018, 48(6), 685-691.
[http://dx.doi.org/10.1080/00397911.2017.1416638]
[60]
Maleki, A.; Firouzi-Haji, R.; Hajizadeh, Z. Magnetic guanidinylated chitosan nanobiocomposite: A green catalyst for the synthesis of 1,4-dihydropyridines. Int. J. Biol. Macromol., 2018, 116, 320-326.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.035] [PMID: 29751038]
[61]
Auria-Luna, F.; Marqués-López, E.P.; Herrera, R. First organocatalytic asymmetric synthesis of 1-benzamido-1,4-dihydropyridine derivatives. Molecules, 2018, 23(10), 2692.
[http://dx.doi.org/10.3390/molecules23102692] [PMID: 30347659]
[62]
Pourian, E.; Javanshir, S.; Dolatkhah, Z.; Molaei, S.; Maleki, A. Ultrasonic-assisted preparation, characterization, and use of novel biocompatible core/shell Fe3O4@GA@Isinglass in the synthesis of 1,4-dihydropyridine and 4H-pyran derivatives. ACS Omega, 2018, 3(5), 5012-5020.
[http://dx.doi.org/10.1021/acsomega.8b00379] [PMID: 31458714]