Antihyperglycemic Activity of Micromeria graeca Aqueous Extract in Streptozotocin-Induced Diabetic Rats

Page: [887 - 894] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Aim: This study aimed to investigate the effect of Micromeria graeca on blood glucose levels and lipid parameters in an experimental model of diabetes.

Background: Micromeria graeca (L.) Benth. ex Rchb is a medicinal plant used in Morocco for the treatment of several pathologies including diabetes.

Objective: This study aimed to evaluate the antihyperglycemic and antihyperlipidemic effects of the aqueous extract of Micromeria graeca (M. graeca) aerial parts (AEMG) under physiological (normal rats) and pathological (STZ-induced diabetic rats) conditions. Additionally, we analyzed the phytochemical composition and antioxidant capacity.

Methods: The effects of the acute and sub-chronic administration of AEMG (20 mg/kg) on blood glucose levels and lipid profiles were evaluated in normal and streptozotocin-induced diabetic rats. Moreover, the phytochemical analysis was carried with standard tests and estimation of total phenolics compounds by Folin–Ciocalteu reagent. The antioxidant activity was realized by the DPPH method.

Results: Single oral administration of M. graeca aqueous extract decreased blood glucose levels 4 and 6 hours (p<0.01) after treatment in diabetic rats. In accordance, the repeated oral administration of M. graeca showed a significant reduction in blood glucose levels in diabetic rats since the second day to the end of the period experiment (p<0.0001). In addition, two weeks of treatment with M. graeca reduced total cholesterol levels (p<0.05) with a significant increase of HDL-c level (p<0.01) in diabetic rats. Moreover, M. graeca scavenged DPPH radical in a dose-dependent manner (IC50=0.48 mg/ml), whereas IC50 was 0.55 mg/ml for BHT. Phytochemical analysis showed the richness of Micromeria graeca on polyphenols (281.94±4.61 mg GAE/1 g), flavonoids, tannins, glycosides, saponins, sterols, sesquiterpenes, and terpenoids.

Conclusion: AEMG exhibits antihyperglycemic and antihyperlipidemic activities in STZ-induced diabetic rats and a potent antioxidant capacity.

Keywords: Micromeria graeca, diabetes, aqueous extract, lipid profile, phytochemistry, antioxidant activity.

Graphical Abstract

[1]
World Health Organization. Global Report on Diabetes., 2016, 88
[2]
Okur, M.E.; Karantas, I.D.; Siafaka, P. Diabetes mellitus: a review on pathophysiology, current status of oral medications and future perspectives. Acta Pharm Sci, 2017, 55(1), 61-82.
[http://dx.doi.org/10.23893/1307-2080.APS.0555]
[3]
Modak, M.; Dixit, P.; Londhe, J.; Ghaskadbi, S.; Devasagayam, T.P.A. Indian herbs and herbal drugs used for the treatment of diabetes. J. Clin. Biochem. Nutr., 2007, 40(3), 163-173.
[http://dx.doi.org/10.3164/jcbn.40.163] [PMID: 18398493]
[4]
Kremer, D.; Müller, I.D.; Stabentheiner, E.; Vitali, D.; Kopricanec, M.; Ruscić, M.; Kosalec, I.; Bezić, N.; Dunkić, V. Phytochemical and micromorphological traits of endemic Micromeria pseudocroatica (Lamiaceae). Nat. Prod. Commun., 2012, 7(12), 1667-1670.
[http://dx.doi.org/10.1177/1934578X1200701231] [PMID: 23413578]
[5]
Tzakou, O.; Couladis, M. The essential oil of Micromeria graeca (L.) Bentham et Reichenb. growing in Greece. Flavour Fragrance J., 2001, 16, 107-109.
[http://dx.doi.org/10.1002/ffj.955]
[6]
Vuko, E.; Dunkić, V.; Bezić, N.; Ruscić, M.; Kremer, D. Chemical composition and antiphytoviral activity of essential oil of Micromeria graeca Nat. Prod. Commun., 2012, 7(9), 1227-1230.
[http://dx.doi.org/10.1177/1934578X1200700933] [PMID: 23074916]
[7]
Abdelwahab, M.F.; Hussein, M.H.; Kadry, H.H. Cytotoxicity and antioxidant activity of new biologically active constituents from micromeria nervosa grown in Egypt. Bull. Fac. Pharm. Cairo Univ., 2015, 53(2), 185-194.
[http://dx.doi.org/10.1016/j.bfopcu.2015.11.001]
[8]
Al-Hamwi, M.; Aboul-Ela, M.; El-Lakany, A. Chemical composition, antimicrobial and antioxidant activities of the ethanolic extract of Micromeria fruticosa growing in Lebanon. Int. J. Chem. Sci., 2015, 13(1), 325-335.
[9]
Marin, P.D.; Grayer, R.J.; Veitch, N.C.; Kite, G.C.; Harborne, J.B. Acacetin glycosides as taxonomic markers in Calamintha and Micromeria. Phytochemistry, 2001, 58(6), 943-947.
[http://dx.doi.org/10.1016/S0031-9422(01)00352-1] [PMID: 11684193]
[10]
Tomas-Barberan, F.A.; Gil, M.I.; Marin, P.D.; Tomas-Lorente, F. Flavonoids from some Yugoslavian micromeria Species: chemotaxonomical aspects. Biochem. Syst. Ecol., 1991, 19, 697-698.
[http://dx.doi.org/10.1016/0305-1978(91)90088-H]
[11]
Brahmi, F.; Guendouze, N.; Hauchard, D. Phenolic profile and biological activities of Micromeria graeca (L.) Benth. ex Rchb. Int. J. Food Prop., 2017, 20(2), 2070-2083.
[12]
Stojanović, G.; Palic, I.; Ursic-Jankovic, J. Composition and antimicrobial activity of the essential oil of Micromeria cristata and Micromeria juliana. Flave Frag J., 2006, 21, 77-79.
[http://dx.doi.org/10.1002/ffj.1507]
[13]
Oztürk, M.; Kolak, U.; Duru, M.E.; Harmandar, M. GC-MS analysis of the antioxidant active fractions of Micromeria juliana with anticholinesterase activity. Nat. Prod. Commun., 2009, 4(9), 1271-1276.
[http://dx.doi.org/10.1177/1934578X0900400923] [PMID: 19831043]
[14]
Šamec, D.; Gruz, J.; Durgo, K.; Kremer, D.; Kosalec, I.; Žulj, L.V.; Martinez, S.; Salopek-Sondi, B.; Piljac-Žegarac, J. Molecular and cellular approach in the study of antioxidant/pro-oxidant properties of Micromeria croatica (Pers.). Schott. Nat. Prod. Res., 2015, 29(18), 1770-1774.
[http://dx.doi.org/10.1080/14786419.2014.999334] [PMID: 25597227]
[15]
Haverić, A.; Čakar, J.; Hadžić, M.; Haverić, S. Evaluation of cytotoxicity and genotoxicity of Micromeria pulegium (Rochel) Benth extract in human lymphocytes and Gr-M melanoma cells in vitro. Genetics & Applications, 2018, 2(1), 25-31.
[http://dx.doi.org/10.31383/ga.vol2iss1pp25-31]
[16]
Brahmi, F.; Amri, S.; Bentaleb, S.; Elsebai, M.F.; Yalaoui-Guellal, D.; Madani, K. Comparison of phenolic contents and biological potential of different polar extracts of Micromeria graeca, from Algeria. Curr. Nutr. Food Sci., 2019, 15(2), 148-155.
[http://dx.doi.org/10.2174/1573401313666170807155426]
[17]
El Khoury, R.; Caceres, I.; Puel, O.; Bailly, S.; Atoui, A.; Oswald, I.P.; El Khoury, A.; Bailly, J.D. Identification of the anti-aflatoxinogenic activity of Micromeria graeca and elucidation of its molecular mechanism in Aspergillus flavus. Toxins (Basel), 2017, 9(3), 87.
[http://dx.doi.org/10.3390/toxins9030087] [PMID: 28257049]
[18]
Akdad, M.; Eddouks, M. Cardiovascular effects of Micromeria graeca (L.) Benth. exRchb in normotensive and hypertensive rats. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(8), 1253-1261.
[http://dx.doi.org/10.2174/1871530319666191206163136] [PMID: 31822260]
[19]
Palevitch, D.; Yaniv, Z. Medicinal plants of the Holyland (in Hebrew); Tamus Modan Press: Tel Aviv, 1991, pp. 56-58.
[20]
Tošić, S.; Stojičić, D.; Slavkovska, V.; Mihailov-Krstev, T.; Zlatković, B.; Budimir, S.; Uzelac, B. Phytochemical composition and biological activities of native and in vitro-propagated Micromeria croatica (Pers.) Schott (Lamiaceae). Planta, 2019, 249(5), 1365-1377.
[http://dx.doi.org/10.1007/s00425-018-03071-5] [PMID: 30666408]
[21]
Redzić, S.S. The ecological aspect of ethnobotany and ethnopharmacology of population in Bosnia and Herzegovina. Coll. Antropol., 2007, 31(3), 869-890.
[PMID: 18041402]
[22]
Maghrani, M.; Lemhadri, A.; Jouad, H.; Michel, J.B.; Eddouks, M. Effect of the desert plant Retama raetam on glycaemia in normal and streptozotocin-induced diabetic rats. J. Ethnopharmacol., 2003, 87(1), 21-25.
[http://dx.doi.org/10.1016/S0378-8741(03)00104-1] [PMID: 12787950]
[23]
Eddouks, M.; Maghrani, M.; Zeggwagh, N.A.; Michel, J.B. Study of the hypoglycaemic activity of Lepidium sativum L. aqueous extract in normal and diabetic rats. J. Ethnopharmacol., 2005, 2897(2), 391-395.
[24]
Swanholm, C.E.; St John, H.; Scheuer, P.J. A survey for alkaloids in Hawaiian plants. Pac. Sci., 1959, 13(3), 295-305.
[25]
Moza, B.K. J. Sci. Ind. Res. (India), 1958, 17B, 202.
[26]
Silva, J.K.; Cazarin, C.B.B.; Colomeu, T.C. Antioxidant activity of aqueous extract of passion fruit (Passiflora edulis) leaves: in vitro and in vivo study. Food Res. Int., 2013, 53(2), 882-890.
[http://dx.doi.org/10.1016/j.foodres.2012.12.043]
[27]
Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature, 1958, 181, 1199-1200.
[http://dx.doi.org/10.1038/1811199a0]]
[28]
Trinder, P. Enzymatic colorimetric method for glucose determination. Ann. Clin. Biochem., 1969, 6, 24-27.
[http://dx.doi.org/10.1177/000456326900600108]
[29]
Arumugam, G.; Manjula, P.; Paari, N. A review: anti diabetic medicinal plants used for diabetes mellitus. J. Acute Dis., 2013, 2(3), 196-200.
[http://dx.doi.org/10.1016/S2221-6189(13)60126-2]
[30]
Salehi, B.; Ata, A.; Kumar, N.V.A.; Sharopov, F.; Ramírez-Alarcón, K.; Ruiz-Ortega, A.; Ayatollahi, S.A.; Fokou, P.V.T.; Kobarfard, F.; Zakaria, Z.A.; Iriti, M.; Taheri, Y.; Martorell, M.; Sureda, A.; Setzer, W.N.; Durazzo, A.; Lucarini, M.; Santini, A.; Capasso, R.; Ostrander, E.A. -ur-Rahman, A.; Choudhary, M.I.; Cho, W.C.; Sharifi-Rad, J. Antidiabetic potential of medicinal plants and their active components. Biomolecules, 2019, 9(10), 551.
[http://dx.doi.org/ 10.3390/biom9100551] [PMID: 31575072]
[31]
Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 2005, 54(6), 1615-1625.
[http://dx.doi.org/10.2337/diabetes.54.6.1615] [PMID: 15919781]
[32]
Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res., 2010, 107(9), 1058-1070.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545]
[33]
El Rabey, H.A.; Al-Seeni, M.N.; Bakhashwain, A.S. The antidiabetic activity of Nigella sativa and propolis on streptozotocin-induced diabetes and diabetic nephropathy in male rats. Evid. Based Complement. Alternat. Med., 2017, 20175439645
[http://dx.doi.org/10.1155/2017/5439645] [PMID: 28298934]
[34]
Couladis, M.; Tzakou, O.; Verykokidou, E.; Harvala, C. Screening of some Greek aromatic plants for antioxidant activity. Phytother. Res., 2003, 17(2), 194-195.
[http://dx.doi.org/10.1002/ptr.1261] [PMID: 12601688]
[35]
Rajasekaran, S.; Ravi, K.; Sivagnanam, K.; Subramanian, S. Beneficial effects of aloe vera leaf gel extract on lipid profile status in rats with streptozotocin diabetes. Clin. Exp. Pharmacol. Physiol., 2006, 33(3), 232-237.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04351.x] [PMID: 16487267]
[36]
Aghajanyan, A.; Movsisyan, Z.; Trchounian, A. Antihyperglycemic and antihyperlipidemic activity of hydroponic Stevia rebaudiana aqueous extract in hyperglycemia induced by immobilization stress in rabbits. BioMed Res. Int., 2017, 20179251358
[http://dx.doi.org/10.1155/2017/9251358] [PMID: 28758125]
[37]
Watanabe, M.; Houten, S.M.; Wang, L.; Moschetta, A.; Mangelsdorf, D.J.; Heyman, R.A.; Moore, D.D.; Auwerx, J. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J. Clin. Invest., 2004, 113(10), 1408-1418.
[http://dx.doi.org/10.1172/JCI21025] [PMID: 15146238]
[38]
Shradha, B.; Sisodia, S.S. Diabetes, dyslipidemia, antioxidant and status of oxidative stress. Int. J. Res. Ayurveda Pharm., 2010, 1(1), 33-42.
[39]
Afrisham, R.; Aberomand, M.; Ghaffari, M.; Siahpoosh, A.; Jamalan, M. Inhibitory effect of heracleum persicum and ziziphus jujuba on activity of alpha-amylase. J. Bot., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/824683]]
[40]
Chan, P.T.; Fong, W.P.; Cheung, Y.L.; Huang, Y.; Ho, W.K.; Chen, Z.Y. Jasmine green tea epicatechins are hypolipidemic in hamsters (Mesocricetus auratus) fed a high fat diet. J. Nutr., 1999, 129(6), 1094-1101.
[http://dx.doi.org/10.1093/jn/129.6.1094] [PMID: 10356071]
[41]
Guimarães, P.R.; Galvão, A.M.; Batista, C.M.; Azevedo, G.S.; Oliveira, R.D.; Lamounier, R.P.; Freire, N.; Barros, A.M.; Sakurai, E.; Oliveira, J.P.; Vieira, E.C.; Alvarez-Leite, J.I. Eggplant (Solanum melongena) infusion has a modest and transitory effect on hypercholesterolemic subjects. Braz. J. Med. Biol. Res., 2000, 33(9), 1027-1036.
[http://dx.doi.org/10.1590/S0100-879X2000000900006] [PMID: 10973133]