The Correlation between Lipid Metabolism Disorders and Prostate Cancer

Page: [2048 - 2061] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Prostate cancer is the second most common cancer affecting the male population all over the world. The existence of a correlation between lipid metabolism disorders and cancer of the prostate gland has been widely known for a long time. According to hypotheses, cholesterol may contribute to prostate cancer progression as a result of its participation as a signaling molecule in prostate growth and differentiation via numerous biologic mechanisms including Akt signaling and de novo steroidogenesis. The results of some studies suggest that increased cholesterol levels may be associated with a higher risk of a more aggressive course of the disease. The aforementioned alterations in the synthesis of fatty acids are a unique feature of cancer and, therefore, constitute an attractive target for therapeutic intervention in the treatment of prostate cancer. Pharmacological or gene therapy aims to reduce the activity of enzymes involved in de novo synthesis of fatty acids, FASN, ACLY (ATP citrate lyase) or SCD-1 (Stearoyl-CoA Desaturase) in particular, that may result in cells growth arrest. Nevertheless, not all cancers are unequivocally associated with hypocholesterolaemia. It cannot be ruled out that the relationship between prostate cancer and lipid disorders is not a direct quantitative correlation between carcinogenesis and the amount of circulating cholesterol. Perhaps the correspondence is more sophisticated and connected to the distribution of cholesterol fractions or even sub-fractions of e.g. HDL cholesterol.

Keywords: Prostate cancer, carcinogenesis, cholesterol levels, lipids disorders, metastasis, cells growth, gene therapy.

[1]
Baade, P.D.; Youlden, D.R.; Krnjacki, L.J. International epidemiology of prostate cancer: geographical distribution and secular trends. Mol. Nutr. Food Res., 2009, 53(2), 171-184.
[http://dx.doi.org/10.1002/mnfr.200700511] [PMID: 19101947]
[2]
Siegel, R.; Ward, E.; Brawley, O.; Jemal, A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J. Clin., 2011, 61(4), 212-236.
[http://dx.doi.org/10.3322/caac.20121] [PMID: 21685461]
[3]
Häggström, C.; Stocks, T.; Ulmert, D.; Bjørge, T.; Ulmer, H.; Hallmans, G.; Manjer, J.; Engeland, A.; Nagel, G.; Almqvist, M.; Selmer, R.; Concin, H.; Tretli, S.; Jonsson, H.; Stattin, P. Prospective study on metabolic factors and risk of prostate cancer. Cancer, 2012, 118(24), 6199-6206.
[http://dx.doi.org/10.1002/cncr.27677] [PMID: 23090855]
[4]
Swinnen, J.V.; Esquenet, M.; Goossens, K.; Heyns, W.; Verhoeven, G. Androgens stimulate fatty acid synthase in the human prostate cancer cell line LNCaP. Cancer Res., 1997, 57(6), 1086-1090.
[PMID: 9067276]
[5]
Krycer, J.R.; Brown, A.J. Cholesterol accumulation in prostate cancer: a classic observation from a modern perspective. Biochim. Biophys. Acta, 2013, 1835(2), 219-229.
[http://dx.doi.org/10.1016/j.bbcan.2013.01.002] [PMID: 23357067]
[6]
Zhuang, L.; Lin, J.; Lu, M.L.; Solomon, K.R.; Freeman, M.R. Cholesterol-rich lipid rafts mediate akt-regulated survival in prostate cancer cells. Cancer Res., 2002, 62(8), 2227-2231.
[PMID: 11956073]
[7]
Mostaghel, E.A.; Solomon, K.R.; Pelton, K.; Freeman, M.R.; Montgomery, R.B. Impact of circulating cholesterol levels on growth and intratumoral androgen concentration of prostate tumors. PLoS One, 2012, 7(1), e30062.
[http://dx.doi.org/10.1371/journal.pone.0030062] [PMID: 22279565]
[8]
Platz, E.A.; Till, C.; Goodman, P.J.; Parnes, H.L.; Figg, W.D.; Albanes, D.; Neuhouser, M.L.; Klein, E.A.; Thompson, I.M. Jr.; Kristal, A.R. Men with low serum cholesterol have a lower risk of high-grade prostate cancer in the placebo arm of the prostate cancer prevention trial. Cancer Epidemiol. Biomarkers Prev., 2009, 18(11), 2807-2813.
[http://dx.doi.org/10.1158/1055-9965.EPI-09-0472] [PMID: 19887582]
[9]
Shafique, K.; McLoone, P.; Qureshi, K.; Leung, H.; Hart, C.; Morrison, D.S. Cholesterol and the risk of grade-specific prostate cancer incidence: evidence from two large prospective cohort studies with up to 37 years’ follow up. BMC Cancer, 2012, 12(1), 25.
[http://dx.doi.org/10.1186/1471-2407-12-25] [PMID: 22260413]
[10]
Long, J.; Zhang, C.J.; Zhu, N.; Du, K.; Yin, Y.F.; Tan, X.; Liao, D.F.; Qin, L. Lipid metabolism and carcinogenesis, cancer development. Am. J. Cancer Res., 2018, 8(5), 778-791.
[PMID: 29888102]
[11]
Xu, H.; Tan, P.; Zheng, X.; Ai, J.; Lin, T.; Jin, X.; Gong, L.; Lei, H.; Yang, L.; Wei, Q. Metabolic syndrome and upper tract urothelial carcinoma: a retrospective analysis from a large Chinese cohort. Urol. Oncol., 2019, 37(4), 291.e19-291.e28.
[http://dx.doi.org/10.1016/j.urolonc.2018.12.005] [PMID: 30584033]
[12]
Parsa, N.; Taravatmanesh, S.; Trevisan, M. Is low cholesterol a risk factor for cancer mortality? Eur. J. Cancer Prev., 2018, 27(6), 570-576.
[http://dx.doi.org/10.1097/CEJ.0000000000000391] [PMID: 28683011]
[13]
Kitahara, C.M.; Berrington de González, A.; Freedman, N.D.; Huxley, R.; Mok, Y.; Jee, S.H.; Samet, J.M. Total cholesterol and cancer risk in a large prospective study in Korea. J. Clin. Oncol., 2011, 29(12), 1592-1598.
[http://dx.doi.org/10.1200/JCO.2010.31.5200] [PMID: 21422422]
[14]
Potluri, R.; Carter, P.R.; Lavu, D.; Bainey, K.R. The interplay between cholesterol and breast cancer: is there a potential role for statin therapy? Future Oncol., 2018, 14(19), 1885-1888.
[http://dx.doi.org/10.2217/fon-2018-0160] [PMID: 30051723]
[15]
de Gonzalo-Calvo, D.; López-Vilaró, L.; Nasarre, L.; Perez-Olabarria, M.; Vázquez, T.; Escuin, D.; Badimon, L.; Barnadas, A.; Lerma, E.; Llorente-Cortés, V. Intratumor cholesteryl ester accumulation is associated with human breast cancer proliferation and aggressive potential: a molecular and clinicopathological study. BMC Cancer, 2015, 15(1), 460.
[http://dx.doi.org/10.1186/s12885-015-1469-5] [PMID: 26055977]
[16]
Byon, C.H.; Hardy, R.W.; Ren, C.; Ponnazhagan, S.; Welch, D.R.; McDonald, J.M.; Chen, Y. Free fatty acids enhance breast cancer cell migration through plasminogen activator inhibitor-1 and SMAD4. Lab. Invest., 2009, 89(11), 1221-1228.
[http://dx.doi.org/10.1038/labinvest.2009.97] [PMID: 19752858]
[17]
Lu, C.W.; Lo, Y.H.; Chen, C.H.; Lin, C.Y.; Tsai, C.H.; Chen, P.J.; Yang, Y.F.; Wang, C.H.; Tan, C.H.; Hou, M.F.; Yuan, S.F. VLDL and LDL, but not HDL, promote breast cancer cell proliferation, metastasis and angiogenesis. Cancer Lett., 2017, 388, 130-138.
[http://dx.doi.org/10.1016/j.canlet.2016.11.033] [PMID: 27940127]
[18]
Wei, L.J.; Zhang, C.; Zhang, H.; Wei, X.; Li, S.X.; Liu, J.T.; Ren, X.B. A case-control study on the association between serum lipid level and the risk of breast cancer. Zhonghua Yu Fang Yi Xue Za Zhi, 2016, 50(12), 1091-1095.
[http://dx.doi.org/10.3760/cma.j.issn.0253-9624.2016.12.013] [PMID: 28057114]
[19]
Yan, G.; Li, L.; Zhu, B.; Li, Y. Lipidome in colorectal cancer. Oncotarget, 2016, 7(22), 33429-33439.
[http://dx.doi.org/10.18632/oncotarget.7960] [PMID: 26967051]
[20]
Muka, T.; Kraja, B.; Ruiter, R.; de Keyser, C.E.; Hofman, A.; Stricker, B.H.; Kiefte-de Jong, J.C.; Franco, O.H. Dietary polyunsaturated fatty acids intake modifies the positive association between serum total cholesterol and colorectal cancer risk: the Rotterdam study. J. Epidemiol. Community Health, 2016, 70(9), 881-887.
[http://dx.doi.org/10.1136/jech-2015-206556] [PMID: 26917548]
[21]
Morel, S.; Leahy, J.; Fournier, M.; Lamarche, B.; Garofalo, C.; Grimard, G.; Poulain, F.; Delvin, E.; Laverdière, C.; Krajinovic, M.; Drouin, S.; Sinnett, D.; Marcil, V.; Levy, E. Lipid and lipoprotein abnormalities in acute lymphoblastic leukemia survivors. J. Lipid Res., 2017, 58(5), 982-993.
[http://dx.doi.org/10.1194/jlr.M072207] [PMID: 28274961]
[22]
Jiang, S.S.; Weng, D.S.; Jiang, L.; Zhang, Y.J.; Pan, K.; Pan, Q.Z.; Chen, C.L.; Zhao, J.J.; Zhang, X.F.; Zhang, H.X.; Tang, Y.; Zhou, Z.Q.; Chen, M.S.; Xia, J.C. The clinical significance of preoperative serum cholesterol and high-density lipoprotein-cholesterol levels in hepatocellular carcinoma. J. Cancer, 2016, 7(6), 626-632.
[http://dx.doi.org/10.7150/jca.13837] [PMID: 27076843]
[23]
Xu, X.; Cui, Y.; Cao, L.; Zhang, Y.; Yin, Y.; Hu, X. PCSK9 regulates apoptosis in human lung adenocarcinoma A549 cells via endoplasmic reticulum stress and mitochondrial signaling pathways. Exp. Ther. Med., 2017, 13(5), 1993-1999.
[http://dx.doi.org/10.3892/etm.2017.4218] [PMID: 28565798]
[24]
Piao, M.X.; Bai, J.W.; Zhang, P.F.; Zhang, Y.Z. PCSK9 regulates apoptosis in human neuroglioma u251 cells via mitochondrial signaling pathways. Int. J. Clin. Exp. Pathol., 2015, 8(3), 2787-2794.
[PMID: 26045785]
[25]
Jeong, H.C.; Bashraheel, F.K.; Byun, S.S.; Kwak, C.; Hwang, E.C.; Kang, S.H.; Chung, J.; Kim, T.H.; Kim, Y.J.; Hong, S.H. Gender- and cholesterol-specific predictive value of body mass index in renal cell carcinoma: a multicenter study. Asia Pac. J. Clin. Oncol., 2019, 15(2), e36-e42.
[http://dx.doi.org/10.1111/ajco.13073] [PMID: 30306711]
[26]
Medes, G.; Thomas, A.; Weinhouse, S. Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res., 1953, 13(1), 27-29.
[PMID: 13032945]
[27]
Freedland, S.J.; Aronson, W.J. Obesity and prostate cancer. Urology, 2005, 65(3), 433-439.
[http://dx.doi.org/10.1016/j.urology.2004.08.035] [PMID: 15780350]
[28]
Raza, S.; Meyer, M.; Goodyear, C.; Hammer, K.D.P.; Guo, B.; Ghribi, O. The cholesterol metabolite 27-hydroxycho-lesterol stimulates cell proliferation via ERβ in prostate cancer cells. Cancer Cell Int., 2017, 17(1), 52.
[http://dx.doi.org/10.1186/s12935-017-0422-x] [PMID: 28503095]
[29]
Huang, M.; Narita, S.; Numakura, K.; Tsuruta, H.; Saito, M.; Inoue, T.; Horikawa, Y.; Tsuchiya, N.; Habuchi, T. A high-fat diet enhances proliferation of prostate cancer cells and activates MCP-1/CCR2 signaling. Prostate, 2012, 72(16), 1779-1788.
[http://dx.doi.org/10.1002/pros.22531] [PMID: 22514016]
[30]
Solomon, K.R.; Freeman, M.R. Do the cholesterol-lowering properties of statins affect cancer risk? Trends Endocrinol. Metab., 2008, 19(4), 113-121.
[http://dx.doi.org/10.1016/j.tem.2007.12.004] [PMID: 18356074]
[31]
Morote, J.; Celma, A.; Planas, J.; Placer, J.; de Torres, I.; Olivan, M.; Carles, J.; Reventós, J.; Doll, A. Role of serum cholesterol and statin use in the risk of prostate cancer detection and tumor aggressiveness. Int. J. Mol. Sci., 2014, 15(8), 13615-13623.
[http://dx.doi.org/10.3390/ijms150813615] [PMID: 25101846]
[32]
Platz, E.A.; Clinton, S.K.; Giovannucci, E. Association between plasma cholesterol and prostate cancer in the PSA era. Int. J. Cancer, 2008, 123(7), 1693-1698.
[http://dx.doi.org/10.1002/ijc.23715] [PMID: 18646186]
[33]
Van Hemelrijck, M.; Garmo, H.; Holmberg, L.; Walldius, G.; Jungner, I.; Hammar, N.; Lambe, M. Prostate cancer risk in the Swedish AMORIS study: the interplay among triglycerides, total cholesterol, and glucose. Cancer, 2011, 117(10), 2086-2095.
[http://dx.doi.org/10.1002/cncr.25758] [PMID: 21523720]
[34]
His, M.; Zelek, L.; Deschasaux, M.; Pouchieu, C.; Kesse-Guyot, E.; Hercberg, S.; Galan, P.; Latino-Martel, P.; Blacher, J.; Touvier, M. Prospective associations between serum biomarkers of lipid metabolism and overall, breast and prostate cancer risk. Eur. J. Epidemiol., 2014, 29(2), 119-132.
[http://dx.doi.org/10.1007/s10654-014-9884-5] [PMID: 24519551]
[35]
Kok, D.E.G.; van Roermund, J.G.H.; Aben, K.K.H.; den Heijer, M.; Swinkels, D.W.; Kampman, E.; Kiemeney, L.A. Blood lipid levels and prostate cancer risk: a cohort study. Prostate Cancer Prostatic Dis., 2011, 14(4), 340-345.
[http://dx.doi.org/10.1038/pcan.2011.30] [PMID: 21727905]
[36]
Arthur, R.; Rodríguez-Vida, A.; Zadra, G.; Møller, H.; Van Hemelrijck, M. Serum lipids as markers of prostate cancer occurrence and prognosis? Clin. Lipidol., 2015, 10(2), 145-165.
[http://dx.doi.org/10.2217/clp.14.69]
[37]
Salgado-Montilla, J.; Salgado, M.S.; Trautmann, B.S.; Sánc-hez-Ortiz, R.; Irizarry-Ramírez, M. Association of serum lipid levels and prostate cancer severity among Hispanic Puerto Rican men. Lipids Health Dis., 2015, 14, 111.
[http://dx.doi.org/10.1186/s12944-015-0096-0] [PMID: 26377420]
[38]
Yang, G.; Timme, T.L.; Frolov, A.; Wheeler, T.M.; Thompson, T.C. Combined c-Myc and caveolin-1 expression in human prostate carcinoma predicts prostate carcinoma progression. Cancer, 2005, 103(6), 1186-1194.
[http://dx.doi.org/10.1002/cncr.20905] [PMID: 15712208]
[39]
Jacobs, E.J.; Stevens, V.L.; Newton, C.C.; Gapstur, S.M. Plasma total, LDL, and HDL cholesterol and risk of aggressive prostate cancer in the cancer prevention study II nutrition cohort. Cancer Causes Control, 2012, 23(8), 1289-1296.
[http://dx.doi.org/10.1007/s10552-012-0006-y] [PMID: 22692409]
[40]
Allott, E.H.; Howard, L.E.; Cooperberg, M.R.; Kane, C.J.; Aronson, W.J.; Terris, M.K.; Amling, C.L.; Freedland, S.J. Serum lipid profile and risk of prostate cancer recurrence: results from the SEARCH database. Cancer Epidemiol. Biomarkers Prev., 2014, 23(11), 2349-2356.
[http://dx.doi.org/10.1158/1055-9965.EPI-14-0458] [PMID: 25304929]
[41]
Hayashi, N.; Matsushima, M.; Yamamoto, T.; Sasaki, H.; Takahashi, H.; Egawa, S. The impact of hypertriglyceridemia on prostate cancer development in patients aged ≥60 years. BJU Int., 2012, 109(4), 515-519.
[http://dx.doi.org/10.1111/j.1464-410X.2011.10358.x] [PMID: 21812901]
[42]
Ulmer, H.; Borena, W.; Rapp, K.; Klenk, J.; Strasak, A.; Diem, G.; Concin, H.; Nagel, G. Serum triglyceride concentrations and cancer risk in a large cohort study in Austria. Br. J. Cancer, 2009, 101(7), 1202-1206.
[http://dx.doi.org/10.1038/sj.bjc.6605264] [PMID: 19690552]
[43]
Adedapo, K.S.; Arinola, O.G.; Shittu, O.B.; Kareem, O.I.; Okolo, C.A.; Nwobi, L.N. Diagnostic value of lipids, total antioxidants, and trace metals in benign prostate hyperplasia and prostate cancer. Niger. J. Clin. Pract., 2012, 15(3), 293-297.
[http://dx.doi.org/10.4103/1119-3077.100623] [PMID: 22960963]
[44]
Clarke, N.W.; Brown, M.D. The influence of lipid metabolism on prostate cancer development and progression: is it time for a closer look? Eur. Urol., 2007, 52(1), 3-4.
[http://dx.doi.org/10.1016/j.eururo.2007.04.039] [PMID: 17467164]
[45]
Suburu, J.; Chen, Y.Q. Lipids and prostate cancer. Prostaglandins Other Lipid Mediat., 2012, 98(1-2), 1-10.
[http://dx.doi.org/10.1016/j.prostaglandins.2012.03.003] [PMID: 22503963]
[46]
Butler, L.M.; Centenera, M.M.; Swinnen, J.V. Androgen control of lipid metabolism in prostate cancer: novel insights and future applications. Endocr. Relat. Cancer, 2016, 23(5), R219-R227.
[http://dx.doi.org/10.1530/ERC-15-0556] [PMID: 27130044]
[47]
Swinnen, J.V.; Brusselmans, K.; Verhoeven, G. Increased lipogenesis in cancer cells: new players, novel targets. Curr. Opin. Clin. Nutr. Metab. Care, 2006, 9(4), 358-365.
[http://dx.doi.org/10.1097/01.mco.0000232894.28674.30] [PMID: 16778563]
[48]
Menendez, J.A.; Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer, 2007, 7(10), 763-777.
[http://dx.doi.org/10.1038/nrc2222] [PMID: 17882277]
[49]
Kuemmerle, N.B.; Rysman, E.; Lombardo, P.S.; Flanagan, A.J.; Lipe, B.C.; Wells, W.A.; Pettus, J.R.; Froehlich, H.M.; Memoli, V.A.; Morganelli, P.M.; Swinnen, J.V.; Timmerman, L.A.; Chaychi, L.; Fricano, C.J.; Eisenberg, B.L.; Coleman, W.B.; Kinlaw, W.B. Lipoprotein lipase links dietary fat to solid tumor cell proliferation. Mol. Cancer Ther., 2011, 10(3), 427-436.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0802] [PMID: 21282354]
[50]
Liu, Y.; Zuckier, L.S.; Ghesani, N.V. Dominant uptake of fatty acid over glucose by prostate cells: a potential new diagnostic and therapeutic approach. Anticancer Res., 2010, 30(2), 369-374.
[PMID: 20332441]
[51]
Zaidi, N.; Lupien, L.; Kuemmerle, N.B.; Kinlaw, W.B.; Swinnen, J.V.; Smans, K. Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog. Lipid Res., 2013, 52(4), 585-589.
[http://dx.doi.org/10.1016/j.plipres.2013.08.005] [PMID: 24001676]
[52]
Gazi, E.; Gardner, P.; Lockyer, N.P.; Hart, C.A.; Brown, M.D.; Clarke, N.W. Direct evidence of lipid translocation between adipocytes and prostate cancer cells with imaging FTIR microspectroscopy. J. Lipid Res., 2007, 48(8), 1846-1856.
[http://dx.doi.org/10.1194/jlr.M700131-JLR200] [PMID: 17496269]
[53]
Swinnen, J.V.; Roskams, T.; Joniau, S.; Van Poppel, H.; Oyen, R.; Baert, L.; Heyns, W.; Verhoeven, G. Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer. Int. J. Cancer, 2002, 98(1), 19-22.
[http://dx.doi.org/10.1002/ijc.10127] [PMID: 11857379]
[54]
Bertilsson, H.; Tessem, M.B.; Flatberg, A.; Viset, T.; Gribbestad, I.; Angelsen, A.; Halgunset, J. Changes in gene transcription underlying the aberrant citrate and choline metabolism in human prostate cancer samples. Clin. Cancer Res., 2012, 18(12), 3261-3269.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2929] [PMID: 22510345]
[55]
Awwad, H.M.; Geisel, J.; Obeid, R. The role of choline in prostate cancer. Clin. Biochem., 2012, 45(18), 1548-1553.
[http://dx.doi.org/10.1016/j.clinbiochem.2012.08.012] [PMID: 22921309]
[56]
Yue, S.; Li, J.; Lee, S.Y.; Lee, H.J.; Shao, T.; Song, B.; Cheng, L.; Masterson, T.A.; Liu, X.; Ratliff, T.L.; Cheng, J.X. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab., 2014, 19(3), 393-406.
[http://dx.doi.org/10.1016/j.cmet.2014.01.019] [PMID: 24606897]
[57]
DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv., 2016, 2(5), e1600200.
[http://dx.doi.org/10.1126/sciadv.1600200] [PMID: 27386546]
[58]
Schlaepfer, I.R.; Rider, L.; Rodrigues, L.U.; Gijón, M.A.; Pac, C.T.; Romero, L.; Cimic, A.; Sirintrapun, S.J.; Glodé, L.M.; Eckel, R.H.; Cramer, S.D. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol. Cancer Ther., 2014, 13(10), 2361-2371.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0183] [PMID: 25122071]
[59]
Gabitova, L.; Gorin, A.; Astsaturov, I. Molecular pathways: sterols and receptor signaling in cancer. Clin. Cancer Res., 2014, 20(1), 28-34.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0122] [PMID: 24158702]
[60]
Majumder, P.K.; Sellers, W.R. Akt-regulated pathways in prostate cancer. Oncogene, 2005, 24(50), 7465-7474.
[http://dx.doi.org/10.1038/sj.onc.1209096] [PMID: 16288293]
[61]
Zhu, Y.; Aupperlee, M.D.; Zhao, Y.; Tan, Y.S.; Kirk, E.L.; Sun, X.; Troester, M.A.; Schwartz, R.C.; Haslam, S.Z. Pubertal and adult windows of susceptibility to a high animal fat diet in Trp53-null mammary tumorigenesis. Oncotarget, 2016, 7(50), 83409-83423.
[http://dx.doi.org/10.18632/oncotarget.13112] [PMID: 27825136]
[62]
Chen, Y.; Hughes-Fulford, M. Human prostate cancer cells lack feedback regulation of low-density lipoprotein receptor and its regulator, SREBP2. Int. J. Cancer, 2001, 91(1), 41-45.
[http://dx.doi.org/10.1002/1097-0215(20010101)91:1<41::AID-IJC1009>3.0.CO;2-2] [PMID: 11149418]
[63]
Rysman, E.; Brusselmans, K.; Scheys, K.; Timmermans, L.; Derua, R.; Munck, S.; Van Veldhoven, P.P.; Waltregny, D.; Daniëls, V.W.; Machiels, J.; Vanderhoydonc, F.; Smans, K.; Waelkens, E.; Verhoeven, G.; Swinnen, J.V. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res., 2010, 70(20), 8117-8126.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3871] [PMID: 20876798]
[64]
Barfeld, S.J.; Itkonen, H.M.; Urbanucci, A.; Mills, I.G. Androgen-regulated metabolism and biosynthesis in prostate cancer. Endocr. Relat. Cancer, 2014, 21(4), T57-T66.
[http://dx.doi.org/10.1530/ERC-13-0515] [PMID: 24497572]
[65]
Swinnen, J.V.; Van Veldhoven, P.P.; Esquenet, M.; Heyns, W.; Verhoeven, G. Androgens markedly stimulate the accumulation of neutral lipids in the human prostatic adenocarcinoma cell line LNCaP. Endocrinology, 1996, 137(10), 4468-4474.
[http://dx.doi.org/10.1210/endo.137.10.8828509] [PMID: 8828509]
[66]
Swinnen, J.V.; Ulrix, W.; Heyns, W.; Verhoeven, G. Coordinate regulation of lipogenic gene expression by androgens: evidence for a cascade mechanism involving sterol regulatory element binding proteins. Proc. Natl. Acad. Sci. USA, 1997, 94(24), 12975-12980.
[http://dx.doi.org/10.1073/pnas.94.24.12975] [PMID: 9371785]
[67]
Swinnen, J.V.; Heemers, H.; van de Sande, T.; de Schrijver, E.; Brusselmans, K.; Heyns, W.; Verhoeven, G. Androgens, lipogenesis and prostate cancer. J. Steroid Biochem. Mol. Biol., 2004, 92(4), 273-279.
[http://dx.doi.org/10.1016/j.jsbmb.2004.10.013] [PMID: 15663990]
[68]
O’Reilly, M.W.; House, P.J.; Tomlinson, J.W. Understanding androgen action in adipose tissue. J. Steroid Biochem. Mol. Biol., 2014, 143, 277-284.
[http://dx.doi.org/10.1016/j.jsbmb.2014.04.008] [PMID: 24787657]
[69]
Pinthus, J.H.; Lu, J.P.; Bidaisee, L.A.; Lin, H.; Bryskine, I.; Gupta, R.S.; Singh, G. Androgen-dependent regulation of medium and long chain fatty acids uptake in prostate cancer. Prostate, 2007, 67(12), 1330-1338.
[http://dx.doi.org/10.1002/pros.20609] [PMID: 17626249]
[70]
Ulrix, W.; Swinnen, J.V.; Heyns, W.; Verhoeven, G. Identification of the phosphatidic acid phosphatase type 2a isozyme as an androgen-regulated gene in the human prostatic adenocarcinoma cell line LNCaP. J. Biol. Chem., 1998, 273(8), 4660-4665.
[http://dx.doi.org/10.1074/jbc.273.8.4660] [PMID: 9468526]
[71]
Tamura, K.; Makino, A.; Hullin-Matsuda, F.; Kobayashi, T.; Furihata, M.; Chung, S.; Ashida, S.; Miki, T.; Fujioka, T.; Shuin, T.; Nakamura, Y.; Nakagawa, H. Novel lipogenic enzyme ELOVL7 is involved in prostate cancer growth through saturated long-chain fatty acid metabolism. Cancer Res., 2009, 69(20), 8133-8140.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0775] [PMID: 19826053]
[72]
Ettinger, S.L.; Sobel, R.; Whitmore, T.G.; Akbari, M.; Bradley, D.R.; Gleave, M.E.; Nelson, C.C. Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Res., 2004, 64(6), 2212-2221.
[http://dx.doi.org/10.1158/0008-5472.CAN-2148-2] [PMID: 15026365]
[73]
Wu, X.; Daniels, G.; Lee, P.; Monaco, M.E. Lipid metabolism in prostate cancer. Am. J. Clin. Exp. Urol., 2014, 2(2), 111-120.
[PMID: 25374912]
[74]
Liu, Y. Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis., 2006, 9(3), 230-234.
[http://dx.doi.org/10.1038/sj.pcan.4500879] [PMID: 16683009]
[75]
Lloyd, M.D.; Yevglevskis, M.; Lee, G.L.; Wood, P.J.; Threadgill, M.D.; Woodman, T.J. α-Methylacyl-CoA racemase (AMACR): metabolic enzyme, drug metabolizer and cancer marker P504S. Prog. Lipid Res., 2013, 52(2), 220-230.
[http://dx.doi.org/10.1016/j.plipres.2013.01.001] [PMID: 23376124]
[76]
Shurbaji, M.S.; Kalbfleisch, J.H.; Thurmond, T.S. Immunohistochemical detection of a fatty acid synthase (OA-519) as a predictor of progression of prostate cancer. Hum. Pathol., 1996, 27(9), 917-921.
[http://dx.doi.org/10.1016/S0046-8177(96)90218-X] [PMID: 8816886]
[77]
Alo’, P.L.; Visca, P.; Marci, A.; Mangoni, A.; Botti, C.; Di Tondo, U. Expression of fatty acid synthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients. Cancer, 1996, 77(3), 474-482.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19960201)77: 3<474:AID-CNCR8>3.0.CO;2-K] [PMID: 8630954]
[78]
Gansler, T.S.; Hardman, W., III.; Hunt, D.A.; Schaffel, S.; Hennigar, R.A. Increased expression of fatty acid synthase (OA-519) in ovarian neoplasms predicts shorter survival. Hum. Pathol., 1997, 28(6), 686-692.
[http://dx.doi.org/10.1016/S0046-8177(97)90177-5] [PMID: 9191002]
[79]
Takahiro, T.; Shinichi, K.; Toshimitsu, S. Expression of fatty acid synthase as a prognostic indicator in soft tissue sarcomas. Clin. Cancer Res., 2003, 9(6), 2204-2212.
[PMID: 12796387]
[80]
Rossi, S.; Graner, E.; Febbo, P.; Weinstein, L.; Bhattacharya, N.; Onody, T.; Bubley, G.; Balk, S.; Loda, M. Fatty acid synthase expression defines distinct molecular signatures in prostate cancer. Mol. Cancer Res., 2003, 1(10), 707-715.
[PMID: 12939396]
[81]
Stoykova, G.E.; Schlaepfer, I.R. Lipid metabolism and endocrine resistance in prostate cancer, and new opportunities for therapy. IJMS, 2019, 20(11), 2626.
[http://dx.doi.org/10.3390/ijms20112626] [PMID: 31142021]
[82]
Vriens, K.; Christen, S.; Parik, S.; Broekaert, D.; Yoshinaga, K.; Talebi, A.; Dehairs, J.; Escalona-Noguero, C.; Schmieder, R.; Cornfield, T.; Charlton, C.; Romero-Pérez, L.; Rossi, M.; Rinaldi, G.; Orth, M.F.; Boon, R.; Kerstens, A.; Kwan, S.Y.; Faubert, B.; Méndez-Lucas, A.; Kopitz, C.C.; Chen, T.; Fernandez-Garcia, J.; Duarte, J.A.G.; Schmitz, A.A.; Steigemann, P.; Najimi, M.; Hägebarth, A.; Van Ginderachter, J.A.; Sokal, E.; Gotoh, N.; Wong, K.K.; Verfaillie, C.; Derua, R.; Munck, S.; Yuneva, M.; Beretta, L.; DeBerardinis, R.J.; Swinnen, J.V.; Hodson, L.; Cassiman, D.; Verslype, C.; Christian, S.; Grünewald, S.; Grünewald, T.G.P.; Fendt, S.M. Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity. Nature, 2019, 566(7744), 403-406.
[http://dx.doi.org/10.1038/s41586-019-0904-1] [PMID: 30728499]
[83]
Martinez-Outschoorn, U.E.; Pavlides, S.; Howell, A.; Pestell, R.G.; Tanowitz, H.B.; Sotgia, F.; Lisanti, M.P. Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment. Int. J. Biochem. Cell Biol., 2011, 43(7), 1045-1051.
[http://dx.doi.org/10.1016/j.biocel.2011.01.023] [PMID: 21300172]
[84]
Tousignant, K.D.; Rockstroh, A.; Fard, A.T.; Lehman, M.L.; Wang, C.; McPherson, S.J.; Philp, L.K.; Bartonicek, N.; Dinger, M.E.; Nelson, C.C.; Sadowski, M.C. Lipid uptake is an androgen-enhanced lipid supply pathway associated with prostate cancer disease progression and bone metastasis. Mol. Cancer Res., 2019, 17(5), 1166-1179.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-1147] [PMID: 30808729]
[85]
Xu, H.; Hu, M.B.; Bai, P.D.; Zhu, W.H.; Ding, Q.; Jiang, H.W. Will metformin postpone high-fat diet promotion of TRAMP mouse prostate cancer development and progression? Int. Urol. Nephrol., 2014, 46(12), 2327-2334.
[http://dx.doi.org/10.1007/s11255-014-0823-x] [PMID: 25158895]
[86]
Wuermli, L.; Joerger, M.; Henz, S.; Schmid, H.P.; Riesen, W.F.; Thomas, G.; Krek, W.; Cerny, T.; Gillessen, S. Hypertriglyceridemia as a possible risk factor for prostate cancer. Prostate Cancer Prostatic Dis., 2005, 8(4), 316-320.
[http://dx.doi.org/10.1038/sj.pcan.4500834] [PMID: 16158078]
[87]
Havel, R.J. Postprandial hyperlipidemia and remnant lipoproteins. Curr. Opin. Lipidol., 1994, 5(2), 102-109.
[http://dx.doi.org/10.1097/00041433-199404000-00006] [PMID: 8044412]
[88]
Pelton, K.; Freeman, M.R.; Solomon, K.R. Cholesterol and prostate cancer. Curr. Opin. Pharmacol., 2012, 12(6), 751-759.
[http://dx.doi.org/10.1016/j.coph.2012.07.006] [PMID: 22824430]
[89]
Day, S.D.; Enos, R.T.; McClellan, J.L.; Steiner, J.L.; Velázquez, K.T.; Murphy, E.A. Linking inflammation to tumorigenesis in a mouse model of high-fat-diet-enhanced colon cancer. Cytokine, 2013, 64(1), 454-462.
[http://dx.doi.org/10.1016/j.cyto.2013.04.031] [PMID: 23735174]
[90]
McCubrey, J.A.; Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Wong, E.W.; Chang, F.; Lehmann, B.; Terrian, D.M.; Milella, M.; Tafuri, A.; Stivala, F.; Libra, M.; Basecke, J.; Evangelisti, C.; Martelli, A.M.; Franklin, R.A. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta, 2007, 1773(8), 1263-1284.
[http://dx.doi.org/10.1016/j.bbamcr.2006.10.001] [PMID: 17126425]
[91]
Dufour, J.; Viennois, E.; De Boussac, H.; Baron, S.; Lobaccaro, J.M. Oxysterol receptors, AKT and prostate cancer. Curr. Opin. Pharmacol., 2012, 12(6), 724-728.
[http://dx.doi.org/10.1016/j.coph.2012.06.012] [PMID: 22819197]
[92]
Sekine, Y.; Koike, H.; Nakano, T.; Nakajima, K.; Suzuki, K. Remnant lipoproteins stimulate proliferation and activate MAPK and Akt signaling pathways via G protein-coupled receptor in PC-3 prostate cancer cells. Clin. Chim. Acta, 2007, 383(1-2), 78-84.
[http://dx.doi.org/10.1016/j.cca.2007.04.016] [PMID: 17512923]
[93]
Sekine, Y.; Koike, H.; Nakano, T.; Nakajima, K.; Takahashi, S.; Suzuki, K. Remnant lipoproteins induced proliferation of human prostate cancer cell, PC-3 but not LNCaP, via low density lipoprotein receptor. Cancer Epidemiol., 2009, 33(1), 16-23.
[http://dx.doi.org/10.1016/j.canep.2009.04.004] [PMID: 19679042]
[94]
Sun, X.; Essalmani, R.; Day, R.; Khatib, A.M.; Seidah, N.G.; Prat, A. Proprotein convertase subtilisin/kexin type 9 deficiency reduces melanoma metastasis in liver. Neoplasia, 2012, 14(12), 1122-1131.
[http://dx.doi.org/10.1593/neo.121252] [PMID: 23308045]
[95]
Migita, T.; Ruiz, S.; Fornari, A.; Fiorentino, M.; Priolo, C.; Zadra, G.; Inazuka, F.; Grisanzio, C.; Palescandolo, E.; Shin, E.; Fiore, C.; Xie, W.; Kung, A.L.; Febbo, P.G.; Subramanian, A.; Mucci, L.; Ma, J.; Signoretti, S.; Stampfer, M.; Hahn, W.C.; Finn, S.; Loda, M. Fatty acid synthase: a metabolic enzyme and candidate oncogene in prostate cancer. J. Natl. Cancer Inst., 2009, 101(7), 519-532.
[http://dx.doi.org/10.1093/jnci/djp030] [PMID: 19318631]
[96]
Deng, H.; Zhou, T.; Mo, X.; Liu, C.; Yin, Y. Low-density lipoprotein promotes lymphatic metastasis of esophageal squamous cell carcinoma and is an adverse prognostic factor. Oncol. Lett., 2019, 17(1), 1053-1061.
[http://dx.doi.org/10.3892/ol.2018.9683] [PMID: 30655865]
[97]
Reverter, M.; Rentero, C.; Garcia-Melero, A.; Hoque, M.; Vilà de Muga, S.; Alvarez-Guaita, A.; Conway, J.R.; Wood, P.; Cairns, R.; Lykopoulou, L.; Grinberg, D.; Vilageliu, L.; Bosch, M.; Heeren, J.; Blasi, J.; Timpson, P.; Pol, A.; Tebar, F.; Murray, R.Z.; Grewal, T.; Enrich, C. Cholesterol regulates Syntaxin 6 trafficking at trans-golgi network endosomal boundaries. Cell Rep., 2014, 7(3), 883-897.
[http://dx.doi.org/10.1016/j.celrep.2014.03.043] [PMID: 24746815]
[98]
dos Santos, C.R.; Domingues, G.; Matias, I.; Matos, J.; Fonseca, I.; de Almeida, J.M.; Dias, S. LDL-cholesterol signaling induces breast cancer proliferation and invasion. Lipids Health Dis., 2014, 13(1), 16.
[http://dx.doi.org/10.1186/1476-511X-13-16] [PMID: 24428917]
[99]
Jiang, L.; Wang, H.; Li, J.; Fang, X.; Pan, H.; Yuan, X.; Zhang, P. Up-regulated FASN expression promotes transcoelomic metastasis of ovarian cancer cell through epithelial-mesenchymal transition. Int. J. Mol. Sci., 2014, 15(7), 11539-11554.
[http://dx.doi.org/10.3390/ijms150711539] [PMID: 24979135]
[100]
Li, J.; Dong, L.; Wei, D.; Wang, X.; Zhang, S.; Li, H. Fatty acid synthase mediates the epithelial-mesenchymal transition of breast cancer cells. Int. J. Biol. Sci., 2014, 10(2), 171-180.
[http://dx.doi.org/10.7150/ijbs.7357] [PMID: 24520215]
[101]
Yang, W.; Bai, Y.; Xiong, Y.; Zhang, J.; Chen, S.; Zheng, X.; Meng, X.; Li, L.; Wang, J.; Xu, C.; Yan, C.; Wang, L.; Chang, C.C.; Chang, T.Y.; Zhang, T.; Zhou, P.; Song, B.L.; Liu, W.; Sun, S.C.; Liu, X.; Li, B.L.; Xu, C. Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature, 2016, 531(7596), 651-655.
[http://dx.doi.org/10.1038/nature17412] [PMID: 26982734]
[102]
Fritz, V.; Benfodda, Z.; Rodier, G.; Henriquet, C.; Iborra, F.; Avancès, C.; Allory, Y.; de la Taille, A.; Culine, S.; Blancou, H.; Cristol, J.P.; Michel, F.; Sardet, C.; Fajas, L. Abrogation of de novo lipogenesis by stearoyl-CoA desaturase 1 inhibition interferes with oncogenic signaling and blocks prostate cancer progression in mice. Mol. Cancer Ther., 2010, 9(6), 1740-1754.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-1064] [PMID: 20530718]
[103]
Hatzivassiliou, G.; Zhao, F.; Bauer, D.E.; Andreadis, C.; Shaw, A.N.; Dhanak, D.; Hingorani, S.R.; Tuveson, D.A.; Thompson, C.B. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell, 2005, 8(4), 311-321.
[http://dx.doi.org/10.1016/j.ccr.2005.09.008] [PMID: 16226706]
[104]
Brusselmans, K.; De Schrijver, E.; Verhoeven, G.; Swinnen, J.V. RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells. Cancer Res., 2005, 65(15), 6719-6725.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0571] [PMID: 16061653]
[105]
De Schrijver, E.; Brusselmans, K.; Heyns, W.; Verhoeven, G.; Swinnen, J.V. RNA interference-mediated silencing of the fatty acid synthase gene attenuates growth and induces morphological changes and apoptosis of LNCaP prostate cancer cells. Cancer Res., 2003, 63(13), 3799-3804.
[PMID: 12839976]
[106]
Beckers, A.; Organe, S.; Timmermans, L.; Scheys, K.; Peeters, A.; Brusselmans, K.; Verhoeven, G.; Swinnen, J.V. Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res., 2007, 67(17), 8180-8187.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0389] [PMID: 17804731]
[107]
Kridel, S.J.; Axelrod, F.; Rozenkrantz, N.; Smith, J.W. Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res., 2004, 64(6), 2070-2075.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3645] [PMID: 15026345]