Abstract
The Aedes aegypti is responsible for the transmission of arboviruses, which compromise public health.
In the search for synthetic product alternatives, essential oils (OEs) have been highlighted by many researchers as
natural insecticides. This systematic review (SR) was performed according to PRISMA guidelines (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses) and its objective was to evaluate studies addressing
OEs with larvicidal properties against Ae. aegypti, through electronic database searches (Pubmed, Science Direct
and Scielo), covering an overview of the plant sources OEs, which plant parts were used, the extraction methods,
analytical techniques, major and/or secondary constituents with greater percentages, as well as the LC50s responsible
for larval mortality. Following study analysis, plants distributed across 32 families, 90 genera and 175 species
were identified. The Lamiaceae, Myrtaceae, Piperaceae, Asteraceae, Rutaceae, Euphorbiaceae and Lauraceae
families obtained the highest number of species with toxic properties against larvae from this vector. Practically
all plant parts were found to be used for OE extraction. Hydrodistillation and steam distillation were the main
extraction methods identified, with GC-MS/GC-FID representing the main analytical techniques used to reveal
their chemical composition, especially of terpene compounds. In this context, OEs are promising alternatives for
the investigation of natural, ecologically correct and biodegradable insecticides with the potential to be used in
Ae. aegypti control programs.
Keywords:
Aedes aegypti, essential oils, bioinsecticides, larvicidal activity, hydrodistillation, steam distillation.
[10]
Silva WJD. Atividade larvicida do óleo essencial de plantas existentes no estado de Sergipe contra Aedes aegypti Linn Dissertação (Mestrado em Desenvolvimento e Meio Ambiente) - Universidade Federal de Sergipe, São Cristóvão 2006.
[13]
Simões CMO, Schenkel EP, de Mello JCP, et al. Farmacognosia: do produto natural ao medicamento. Artmed Editora 2016.
[21]
De Araújo JCL, Lima EDO, de Ceballos BS, et al. Ação antimicrobiana de óleos essenciais sobre microrganismos potencialmente causadores de infecções oportunistas. Rev Patol Trop 2004; 33(1): 55-64.
[30]
Koketsu M, Gonçalves SL. Óleos essenciais e sua extração por arraste a vapor EMBRAPA-CTAA. Documentos 1991.
[31]
Brasil Farmacopeia Brasileira, vol 2 / Agência Nacional de Vigilância Sanitária Brasília Anvisa 2010; 546.
[33]
Rocha SFR, Ming LC, Marques MOM. Influência de cinco temperaturas de secagem no rendimento e composição do óleo essencial de citronela (Cymbopogon winterianus Jowitt). Rev Bras Plantas Med 2000; 3: 73-8.
[34]
Do Nascimento IB, Innecco R, Matos SH, et al. Influence of cut-time on lemon grass (andropogum sp) essential oil yield. Rev Caatinga 2006; 19(2): 123-7.
[36]
Guimarães LGDL, Cardoso MDG, Zacaroni LM, et al. Influence of light and temperature on the oxidation of the essential oil of lemongrass (cymbopogon citratus (d.c.) stapf. Quim Nova 2008; 31(6): 1476-80.
[69]
Aciole SD, Piccoli CF, Duque LJE, et al. Insecticidal activity of three species of Guatteria (Annonaceae) against Aedes aegypti (Diptera: Culicidae). Rev Colomb Entomol 2011; 37(2): 262-8.
[71]
Pereira ÁIS, Pereira ADGS, Sobrinho OPL, et al. Atividade antimicrobiana no combate as larvas do mosquito Aedes aegypti: Homogeneização dos óleos essenciais do linalol e eugenol. Educ quím 2014; 25(4): 446-9.