Impact of MWCNT and GF Incorporation on Optical Properties of GTS Alloy

Page: [74 - 81] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Aim: To address the physical properties of the growing research topic based on inorganic and organic composite materials under the glassy regime. The incorporation of a small amount of organic content in inorganic chalcogenide alloy could be an interesting topic for the investigation. Such composite materials' optical and structural properties could define their prospective use.

Objectives: Considering the prospective utility of the inorganic and organic composite materials, this report’s key goal was to demonstrate the structural and optical properties, like, absorption spectra, extinction coefficient (k), real dielectric constant (εʹ), imaginary dielectric constant (εʹʹ), refractive index (n), absorption coefficient (α) and optical energy band (Eg ) for the Se 55 Te 25 Ge 20 (GTS) alloy, Se 55 Te 25 Ge 20 +0.025% multiwalled carbon nano tubes (MWCNT) and Se 55 Te 25 Ge 20 +0.025 % bilayer graphene (GF) composites.

Methods: To synthesize the materials, a direct melt-quenched technique was adopted. Materials microstructural and UV/Visible optical absorption were performed from the Field Emission Scanning Electron Microscope and UV/Visible optical spectrometer equipment’s.

Results: The obtained experimental evidences revealed that materials’ optical properties and microstructures slightly altered owing to the incorporation of multi walled carbon nano tubes and bilayer graphene in Se 55 Te 25 Ge 20 regime. To correlate the inorganic-organic material interactions, a schematic has also interpreted based on the bond formation in the solids.

Conclusion: The experimental evidences have revealed the existence of MWCNT and GF in the diffused form in GTS glassy configuration. The evidences have also revealed the diffused morphologies of the MWCNT and GF could not develop the specific structure within the complex configuration (although they have exhibited rather distinct morphologies), but they influenced the optical properties of the composite materials.

Keywords: Chalcogenide, MWCNT, GF, composites, UV-Visible property, alloy.

Graphical Abstract

[1]
Rana, D.; Soni, A.; Sharma, A.; Katoch, A.; Jamwal, D. Nanocomposites of chalcogenide and their applications. Nano Hybrids and Composites., 2018, 20, 46-64.
[http://dx.doi.org/10.4028/www.scientific.net/NHC.20.46]
[2]
Singh, D.; Kumar, S.; Thangaraj, R. Electrical properties of MWCNT-composite (Se80Te20)100−xAgx (0 ≤ x ≤ 4) chalcogenide glasses. Phase Transit., 2014, 87, 148-156.
[http://dx.doi.org/10.1080/01411594.2013.803285]
[3]
Martyshkin, D.V.; Goldstein, J.T.; Fedorov, V.V.; Mirov, S.B. Crystalline Cr2+:ZnSe/chalcogenide glass composites as active mid-IR materials. Opt. Lett., 2011, 36(9), 1530-1532.
[http://dx.doi.org/10.1364/OL.36.001530 ]
[4]
Tintu, R.; Saurav, K.; Sulakshna, K.; Nampoori, V.P.N.; Radhakrishnan, P.; Thomas, S. Ge28Se60Sb12/PVA composite films for photonic applications. J. Non-Oxide Glasses, 2010, 2, 167-174.
[5]
Andriesh, A. Chalcogenide glasses as multifunctional photonic materials. J. Opto. Adv. Mater., 2005, 7, 2931-2939.
[6]
Singh, K. Crystallization kinetics of Se–Zn–Sb nano composites chalcogenide alloys. J. Alloys Compd., 2013, 552, 166-172.
[http://dx.doi.org/10.1016/j.jallcom.2012.10.109]
[7]
Lee, Y.; Bae, S.R.; Park, B.J.; Shin, D.W.; Chung, W.J.; Kang, Y.M. Sn-based chalcogenide composite as a high-capacity anode material for lithium rechargeable batteries. J. Am. Ceram. Soc., 2012, 95, 2272-2276.
[http://dx.doi.org/10.1111/j.1551-2916.2012.05194.x]
[8]
Pilan, L.; Raicopol, M.; Vasile, E.; Ionita, M. The effect of incorporation of different carbon nanotubes on the properties of polypyrrole nanocomposite – molecular modeling and experimental investigations. Dig. J. Nanomater. Biostruct., 2012, 7, 1253-1262.
[9]
Jaiswal, P.; Dwivedi, D.K. Investigation of structural, electrical properties and dielectric relaxation of CNT doped Cu–Se–Ge–In chalcogenide glassy alloy. Mater. Res. Express, 2019.6015202
[http://dx.doi.org/10.1088/2053-1591/aae2e8]
[10]
Banik, I. Photoconductivity in chalcogenide glasses in non-stationary regime and the barrier-cluster model. Act. Electrotech. Informat., 2010, 10, 52-58.
[11]
Banik, I. Relation between optical absorption and photoluminescence in non-crystalline semiconductors. J. Opto. Adv. Mater., 2009, 11, 91-103.
[12]
Singh, A.K. SeZnSb alloy and its nano tubes, graphene composites properties. AIP Adv., 2013, 3, 042124-11.
[http://dx.doi.org/10.1063/1.4802912]
[13]
Elim, H.I.; Ji, W.; Ma, G.H.; Lim, K.Y.; Sow, C.H.; Huan, C.H.A. Ultrafast absorptive and refractive nonlinearities in multiwalled carbon nanotube films. Appl. Phys. Lett., 2004, 85, 1799-1801.
[http://dx.doi.org/10.1063/1.1786371]
[14]
Saito, R.; Hofmann, M.; Dresselhaus, G.; Jorio, A.; Dresselhaus, M.S. Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys., 2012, 60, 413-450.
[http://dx.doi.org/10.1080/00018732.2011.582251]
[15]
Lucovsky, G. Comments on the structure of chalcogenide glasses from infrared spectroscopy. Mater. Res. Bull., 1969, 4(8), 505-514.
[16]
Singh, A.K. Microscopic study on the Se-Te-Ge alloy and its composite with carbon nanotubes and graphene. J. Adv. Micro. Res., 2012, 7, 270-276.
[http://dx.doi.org/10.1166/jamr.2012.1125]
[17]
Singh, A.K. Optical properties of the chalcogenide-multi walled carbon nano tubes and chalcogenide-graphene composite materials. J. Nanoeng. Nanomanuf., 2014, 4, 200-208.
[http://dx.doi.org/10.1166/jnan.2014.1192]
[18]
Swanepoel, R. Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films. J. Phys. E Sci. Instrum., 1984, 17, 896-903.
[http://dx.doi.org/10.1088/0022-3735/17/10/023]
[19]
Singh, A.K.; Mehta, N.; Singh, K. Optical and FTIR properties of Se93−XZn2Te5InX chalcogenide glasses. Physica B, 2009, 404, 3470-3474.
[http://dx.doi.org/10.1016/j.physb.2009.05.045]
[20]
Singh, A.K. Recent advances in amorphous semiconductors-A correlative study on Se-based metallic chalcogenide alloys. Rev. Adv. Sci. Eng., 2012, 1, 292-301.
[21]
Anedda, A.; Carbonaro, C.M.; Serpi, A.; Chiodini, N.; Paleari, A.; Scott, R.; Brambilla, G.; Pruneri, V. Vacuum ultraviolet absorption spectrum of photorefractive Sn-doped silica fiber performs. J. Non-Cryst. Solids, 2001, 280, 287-291.
[http://dx.doi.org/10.1016/S0022-3093(00)00387-2]
[22]
O’Leary, S.K.; Johnson, S.R.; Lim, P.K. The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis. J. Appl. Phys., 1997, 82, 3334-3340.
[http://dx.doi.org/10.1063/1.365643]
[23]
Tauc, J.J.T., Ed.; Amorphous and Liquid Semiconductors; Plenum Press: New York, 1979, p. 159.
[24]
Urbach, F. Origin of the E layer of the ionosphere. Phys. Rev., 1953, 92, 1324-1324.
[http://dx.doi.org/10.1103/PhysRev.92.1324]
[25]
Hohl, D.; Jones, R.O. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B, 1991, 43, 3856-3863.
[http://dx.doi.org/10.1103/PhysRevB.43.3856]
[26]
Eder, D. Carbon nanotube-inorganic hybrids. Chem. Rev., 2010, 110(3), 1348-1385.
[http://dx.doi.org/10.1021/cr800433k ]
[27]
Adler, D.; Yoffa, E.J. Localized electronic states in amorphous semiconductors. Can. J. Chem., 1977, 55, 1920-1929.
[http://dx.doi.org/10.1139/v77-268]