Dimroth´s Rearrangement as a Synthetic Strategy Towards New Heterocyclic Compounds

Page: [1999 - 2018] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Molecular rearrangements are important tools to increase the molecular diversity of new bioactive compounds, especially in the class of heterocycles. This review deals specifically with a very famous and widely applicable rearrangement known as the Dimroth Rearrangement. Although it has originally been observed for 1,2,3-triazoles, its amplitude was greatly expanded to other heterocycles, as well as from laboratory to large scale production of drugs and intermediates. The reactions that were discussed in this review were selected with the aim of demonstrating the windows that may be open by the Dimroth's rearrangement, especially in what regards the development of new synthetic approaches toward biologically active compounds.

Keywords: Heterocycles, synthesis, azoles, 1, 2, 3-triazoles, pyrimidine, quinazoline.

Graphical Abstract

[1]
El Ashry, E.S.H.; Nadeem, S.; Shah, M.R.; Kilany, Y.E. Recent advances in the Dimroth rearrangement.Advances in Heterocyclic Chemistry; Katritzky, A.R., Ed.; Elsevier Inc.: Oxford, 2010, Vol. 101, pp. 161-228.
[2]
Wang, Y.; Wang, Z.; Tang, Y. Renaissance of ring-opening chemistry of benzotriazoles: new wine in an old bottle. Chem. Rec., 2020, 20(7), 693-709.
[http://dx.doi.org/10.1002/tcr.201900088] [PMID: 31916676]
[3]
Dimroth, O. Ueber intramolekulare Umlagerungen. Umlagerungen in der Reihe des 1,2,3-Triazols. Justus Liebigs Ann. Chem., 1909, 364, 183-226.
[http://dx.doi.org/10.1002/jlac.19093640204]
[4]
Dimroth, O. Walter Michaelis. Intramolekulare umlagerung der 5-amino-1,2,3-triazole. Justus Liebigs Ann. Chem., 1927, 459, 39-46.
[http://dx.doi.org/10.1002/jlac.19274590104]
[5]
Fabian, W.M.F.; Bakulev, V.A.; Kappe, C.O. Pericyclic versus pseudopericyclic 1,5-electrocyclization of iminodiazomethanes. An ab initio and density functional theory study. J. Org. Chem., 1998, 63(17), 5801-5805.
[http://dx.doi.org/10.1021/jo980238u] [PMID: 11672180]
[6]
Lieber, E.; Chao, T.S.; Rao, C.N.R. Synthesis and isomerization of substituted 5-amino-1,2,3-triazoles. J. Org. Chem., 1957, 22, 654-662.
[http://dx.doi.org/10.1021/jo01357a018]
[7]
Zong, C.Y.; Gu, H.W.; Zhang, L.J.; Jin, Y.D.; Sun, Y.Q. Microwave-accelerated Dimroth rearrangement for the synthesis o pyrido[2,3-d]pyrimidin-4-amine derivatives. Chin. J. Org. Chem., 2018, 38, 1165-1171.
[http://dx.doi.org/10.6023/cjoc201711028]
[8]
Foucourt, A.; Dubouilh-Benard, C.; Chosson, E.; Corbière, C.; Besson, T. Microwave-accelerated Dimroth rearrangement for the synthesis of 4-anilino-6-nitroquinazolines. Application to an efficient synthesis of a microtubule destabilizing agent. Tetrahedron, 2010, 66, 4495-4502.
[http://dx.doi.org/10.1016/j.tet.2010.04.066]
[9]
Glasnov, T.N.; Vugts, D.J.; Koningstein, M.M.; Desai, B.; Fabian, W.M.F.; Orru, R.V.A.; Kappe, C.O. Microwave-assisted Dimroth rearrangement of thiazines to dihydropyrimidinethiones: synthetic and mechanistic aspects. QSAR Comb. Sci., 2006, 25, 509-518.
[http://dx.doi.org/10.1002/qsar.200540210]
[10]
Van der Plas, H.C. The SN(ANRORC) mechanism: a new mechanism for nucleophilic substitution. Acc. Chem. Res., 1978, 11, 462-468.
[http://dx.doi.org/10.1021/ar50132a005]
[11]
Subbotina, J.O.; Fabian, W.M.F.; Tarasov, E.V.; Volkova, N.N.; Bakulev, V.A. Synthetic and theoretical aspects of new Dimroth rearrangement of 6-aminopyran-2-ones to 6-hydroxypyridin-2-ones via carbamoyl ketenes. Eur. J. Org. Chem., 2005, 2005(14), 2914-2923.
[http://dx.doi.org/10.1002/ejoc.200400875]
[12]
Albert, A. The Dimroth rearrangement. Part XII. Transformation by alkali of 4-amino-3-benzyl-1,2,3-triazole and its 5-substituted derivatives into the corresponding 4-benzylamino isomers. Retrogression of this reaction in neutral solvents. J. Chem. Soc. C, 1970, 1970(2), 230-235.
[http://dx.doi.org/10.1039/j39700000230]
[13]
Champiré, A.; Vala, C.; Laabid, A.; Benharref, A.; Marchivie, M.; Plé, K.; Routier, S. Controlled Dimroth rearrangement in the Suzuki-Miyaura cross coupling of triazolopyridopyrimidines. J. Org. Chem., 2016, 81(24), 12506-12513.
[http://dx.doi.org/10.1021/acs.joc.6b02357] [PMID: 27978739]
[14]
Paronikyan, E.G.; Dashyan, S.S. Synthesis of cyclopenta[4′,5′]-pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidine derivatives. Dimroth rearrangement of triazolopyrimidines. Russ. J. Gen. Chem., 2018, 88, 1623-1628.
[http://dx.doi.org/10.1134/S1070363218080121]
[15]
Sirakanyana, S.N.; Hakobyana, E.K.; Hovakimyana, A.A. Synthesis of new sulfur-substituted pentacyclic 1,2,4-triazolopyrimidine derivatives. Russ. J. Org. Chem., 2019, 55, 308-313.
[http://dx.doi.org/10.1134/S1070428019030059]
[16]
El Ashry, E.S.H.; Awad, L.F.; Teleb, M.; Ibrahim, N.A.; Abu-Serie, M.M.; Abd Al Moaty, M.N. Structure-based design and optimization of pyrimidine- and 1,2,4-triazolo[4,3-a]pyrimidine-based matrix metalloproteinase-10/13 inhibitors via Dimroth rearrangement towards targeted polypharmacology. Bioorg. Chem., 2020, 96103616
[http://dx.doi.org/10.1016/j.bioorg.2020.103616] [PMID: 32032847]
[17]
Da Settimo, A.; Primofiore, G.; Da Settimo, F.; Pardi, G.; Simorini, F.; Marini, A.M. An approach to novel fused triazole or tetrazole derivatives starting from benzimidazo[1,2 a]quinazoline-5(7H)-one and 5,7-dihydro-5-oxopyrido[3′,2′:5,6]pyrimido[1,2-a]benzimidazole. J. Heterocycl. Chem., 2002, 39, 1007-1011.
[http://dx.doi.org/10.1002/jhet.5570390523]
[18]
Karpenko, A.V.; Kovalenko, S.I.; Shishkin, O.V. Synthesis of spiro-fused (C5)-pyrazolino-(C6)-triazinones, a new heterocyclic system. Tetrahedron, 2009, 65, 5964-5972.
[http://dx.doi.org/10.1016/j.tet.2009.05.091]
[19]
Krinochkin, A.P.; Kopchuk, D.S.; Giri, K.; Shtaitz, Y.K.; Starnovskaya, E.S.; Khalymbadzha, I.A.; Drokin, R.A.; Ulomsky, E.N.; Santra, S.; Zyryanov, G.V.; Rusinov, V.L.; Chupahin, O.N. A PASE approach towards (adamantyl-1)-, alkyl- and (het) aryl-substituted [1,2,4]triazolo[1,5-d][1,2,4]triazines: a sequence of two solvent-free reactions bearing lower E-factors. ChemistrySelect, 2018, 3, 8202-8206.
[http://dx.doi.org/10.1002/slct.201801244]
[20]
Krylov, A.S.; Petrosian, A.A.; Piterskaya, J.L.; Svintsitskaya, N.I.; Dogadina, A.V. Synthesis of ([1,2,4]triazolo[4,3-a]pyridin-3-ylmethyl)phospho-nates and their benzo derivatives via 5-exo-dig cyclization. Beilstein J. Org. Chem., 2019, 15, 1563-1568.
[http://dx.doi.org/10.3762/bjoc.15.159] [PMID: 31354875]
[21]
Starosotnikov, A.M.; Bastrakov, M.A.; Knyazev, D.A.; Fedyanin, I.V.; Kachala, V.V.; Dalinger, I.L. Synthesis of N-bridged 6,8-dinitrotriazolo[1,5-a]pyridines. ChemistrySelect, 2019, 4, 1510-1515.
[http://dx.doi.org/10.1002/slct.201803068]
[22]
Gazizov, D.A.; Fedotov, V.V.; Gorbunov, E.B.; Ulomskiy, E.N.; Yeltsov, O.S.; Rusinov, G.L.; Rusinov, V.L. Effective method for the synthesis of azolo[1,5-a]pyrimidin-7-amines. Chem. Heterocycl. Compd., 2019, 55, 573-577.
[http://dx.doi.org/10.1007/s10593-019-02498-2]
[23]
Dabaevaa, V.V.; Bagdasaryana, M.R.; Paronikyana, E.G.; Dashyana, S.S. Synthesis of new fused thieno[3,2-d]pyrimidines based on thieno[3,2-d][1,3]oxazine derivative. Russ. J. Gen. Chem., 2019, 89, 847-851.
[http://dx.doi.org/10.1134/S1070363219040340]
[24]
Sutherland, D.R.; Tennant, G. The chemistry of polyazaheterocyclic compounds. Part IV. Dimroth rearrangements of 4-substituted 5-amino-1-phenyl-1,2,3-triazoles and a synthesis of v-triazolo[4,5-d]pyrimidines. J. Chem. Soc. C, 1971, 1971, 706-713.
[http://dx.doi.org/10.1039/j39710000706]
[25]
Cao, Z-P.; Quan, B.; Dong, H-S. Synthesis of (3,5-Aryl/methyl-1H-pyrazol-1-yl)-(5-arylamino-2H-1,2,3-triazol-4-yl)methanone. J. Chin. Chem. Soc. (Taipei), 2008, 55, 761-767.
[http://dx.doi.org/10.1002/jccs.200800114]
[26]
Ashry, E.S.H.E.; Kilany, Y.E.; Rashed, N.; Assafir, H. Dimroth rearrangement: translocation of heteroatoms in heterocyclic rings and its role in ring transformations of heterocycles.Advances in Heterocyclic Chemistry; Katritzky, A.R., Ed.; Elsevier Inc.: Oxford, 1999, Vol. 75, pp. 79-165.
[27]
Costanzi, S.; Rouse, S.P.N.; Vanbaelinghem, L.; Prior, T.J.; Ewing, D.F.; Boa, A.N.; Mackenzie, G. Dimroth-type rearrangement of 1-benzyl- and 1-glycosyl-5-aminoimidazoles to 4-(N-substituted amino)imidazoles. Tetrahedron Lett., 2012, 53, 412-415.
[http://dx.doi.org/10.1016/j.tetlet.2011.11.058]
[28]
Pazdera, P.; Meindl, J.; Novacek, E. Thermal behavior of some 2-(3-R-thioureido)benzonitriles. Chem. Pap., 1992, 46, 322-328.
[29]
Henry, R.A.; Finnegan, W.G.; Lieber, E. Thermal isomerization of substituted 5-aminotetrazoles. J. Am. Chem. Soc., 1954, 76, 88-93.
[http://dx.doi.org/10.1021/ja01630a024]
[30]
Brown, D.J.; Ienaga, K. The Dimroth rearrangement. XVII. The rearrangement of some 1,6-Dihydro-6-imino-1,2-polymethylenepyrimidines into 2,N6-polymethylene-bridged 6-aminopyrimidines. Aust. J. Chem., 1975, 28, 119-127.
[http://dx.doi.org/10.1071/CH9750119]
[31]
Brown, D.J.; Ienaga, K. The Dimroth rearrangement. Part XVIII. Syntheses and rearrangement of 4-iminoquinazolines and related systems. J. Chem. Soc., Perkin Trans. 1, 1975, 1975(21), 2182-2185.
[http://dx.doi.org/10.1039/p19750002182]
[32]
Fischer, R.W.; Misun, M. Large-scale synthesis of a pyrrolo[2,3-d]pyrimidine via Dakin-West reaction and Dimroth rearrangement. Org. Process Res. Dev., 2001, 5, 581-586.
[http://dx.doi.org/10.1021/op010041v]
[33]
Hirota, K.; Ni, P-Z.; Suzuki, A.; Takasu, H.; Kitade, Y.; Maki, Y. Pyrimidines. part LIIX. The Dimroth rearrangement of 6-aminouracil derivatives. Chem. Pharm. Bull. (Tokyo), 1992, 40, 2839-2841.
[http://dx.doi.org/10.1248/cpb.40.2839]
[34]
Fizer, M.; Slivka, M.; Baumer, V.; Lendel, V. Synthesis of 3-alkyl-5-allylamino-2-benzoylimino-1,3,4-thiadiazoles via Dimroth rearrangement. Heterocycl. Commun., 2016, 22(2), 1-5.
[http://dx.doi.org/10.1515/hc-2015-0279]
[35]
Fizer, M.; Slivka, M.; Lendel, V. New method of synthesis of 3,5,6,7-tetrahydro[1,2,4]triazolo[1,5-a]pyrimidine-2(1H)-thione. Chem. Heterocycl. Compd., 2013, 49, 1243-1245.
[http://dx.doi.org/10.1007/s10593-013-1369-z]
[36]
L’abbé, G. Molecular rearrangements of five-membered ring heteromonocycles. J. Heterocycl. Chem., 1984, 21, 627-638.
[http://dx.doi.org/10.1002/jhet.5570210301]
[37]
L’abbè, G.; Albrecht, E.; Toppet, S. Addition-rearrangement reactions of 5-imino-Δ3-1,2,4-thiadiazolines with trichloroacetonitrile. J. Heterocycl. Chem., 1992, 29, 1317-1319.
[http://dx.doi.org/10.1002/jhet.5570290544]
[38]
Hoff, S.; Blok, A.P. Cycloaddition of isothiocyanates with diazomethane and hydrazoic acid. Recl. Trav. Chim. Pays Bas, 2010, 93, 317-319.
[http://dx.doi.org/10.1002/recl.19740931205]
[39]
Morzherin, Y.Y.; Glukhareva, T.V.; Bakulev, V.A. Rearrangements and transformations of 1,2,3-thiadiazoles in organic synthesis. Chem. Heterocycl. Compd., 2003, 39, 679-706.
[http://dx.doi.org/10.1023/A:1025689208261]
[40]
Baiazitov, R.Y.; Sydorenko, N.; Ren, H.; Moon, Y.C. Unexpected observation of the Dimroth rearrangement in the ribosylation of 4-aminopyrimidines. J. Org. Chem., 2017, 82(11), 5881-5889.
[http://dx.doi.org/10.1021/acs.joc.7b00780] [PMID: 28493695]
[41]
El-Sayed, H.A.; Assy, M.G.; Mahamoud, W.M.; El-Sheakh, A.A.; Morsy, H.A. Heteroannulation of 2‐amino‐6‐thioxouracil: a new access for the synthesis of fused pyrimidine derivatives. J. Heterocycl. Chem., 2019, 57, 805-812.
[http://dx.doi.org/10.1002/jhet.3825]
[42]
Hassaneen, H.M.; Saleh, F.M.; Abdallah, T.A.; Mohamed, Y.S.; Awad, E.M. Synthesis, reactions, and antimicrobial activity of some novel pyrazolo[3,4-d]pyrimidine, pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine, and pyrazolo[4,3-e][1,2,4]triazolo[3,4-c]pyrimidine derivatives. J. Heterocycl. Chem., 2019, 57, 892-912.
[http://dx.doi.org/10.1002/jhet.3835]
[43]
Kalinina, T.A.; Bystrykh, O.A.; Glukhareva, T.V.; Morzherim, Y.Y. Transformation of 1,2,3-thiadiazolyl hydrazones as method for preparation of 1,2,3-triazolo[5,1-b][1,3,4]thiadiazines. J. Heterocycl. Chem., 2017, 54, 137-146.
[http://dx.doi.org/10.1002/jhet.2554]
[44]
Rozhkov, V.Y.; Batog, L.V.; Shevtsova, E.K.; Struchkova, M.I. Synthesis and Dimroth rearrangement of 3-amino-4-(5-amino-1H-1,2,3-triazol-1-yl)-1,2,5-oxadiazoles. Mendeleev Commun., 2004, 14, 76-77.
[http://dx.doi.org/10.1070/MC2004v014n02ABEH001891]
[45]
Chakrasali, R.T. Ila, H.; Junjappa, H. Cycloaddition of aroyl/acylketene S,N-acetals with tosyl azide: synthesis of novel 4-aroyl/acyl-5-amino-lH-1,2,3-triazoles and 3,4-annulated 1,2,3-triazoles. Synthesis, 2018, 50, 2191-2199.
[http://dx.doi.org/10.1055/s-1988-27728]
[46]
Ghozlan, S.A.S.; Abdelmoniem, D.M.; Mady, M.F.; Abdelmoniem, A.M.; Abdelhamid, I.A. An efficient synthesis of 1-(4H-1,2,4-triazol-3-yl)-hexahydroquinoline-3-carbonitrile and their spiro derivatives from β-enaminones heterocycles. Heterocycles, 2016, 92, 637-648.
[http://dx.doi.org/10.3987/COM-15-13353]
[47]
Li, Z.; Chen, J.; Wu, L.; Ren, A.; Lu, P.; Wang, Y. Preparation of 4-diazoisoquinolin-3-ones via Dimroth rearrangement and their extension to 4-aryltetrahydroisoquinolin-3-ones. Org. Lett., 2020, 22(1), 26-30.
[http://dx.doi.org/10.1021/acs.orglett.9b03708] [PMID: 31829606]
[48]
Tietze, L.F. Domino reactions in organic synthesis. Chem. Rev., 1996, 96(1), 115-136.
[http://dx.doi.org/10.1021/cr950027e] [PMID: 11848746]
[49]
Fathalla, W.; Nofal, E.Y.; El-Moneim, M.A. Domino synthesis of pyrimido and imidazoquinazolinones. J. Heterocycl. Chem., 2020, 57(3), 1266-1274.
[http://dx.doi.org/10.1002/jhet.3864]
[50]
Filák, L.; Riedl, Z.; Egyed, O.; Czugler, M.; Hoang, C.N.; Schantl, J.G.; Hajós, G. A new synthesis of the linearly fused [1,2,4]triazolo[1,5-b]isoquinoline ring. Observation of an unexpected Dimroth rearrangement. Tetrahedron, 2008, 64, 1101-1113.
[http://dx.doi.org/10.1016/j.tet.2007.10.103]
[51]
Fathalla, W.; Pazdera, P. Convenient domino synthesis of 1-alkyl 3-(2-(substitutedphenyl) quinazolin-4-yl) thioureas. Org. Prep. Proced. Int., 2018, 50, 385-407.
[http://dx.doi.org/10.1080/00304948.2018.1468981]
[52]
Fathalla, W.; Pazdera, P. Domino synthesis of quinazolin-4-yl thioureido alkanoates. Chem. Pap., 2018, 72, 209-219.
[http://dx.doi.org/10.1007/s11696-017-0273-x]
[53]
Fathalla, W.; Pazdera, P. Convenient domino synthesis of quinazolin-4(3H)-ylidene carbothioamides and carbamothioates. Tetrahedron, 2017, 73, 4573-4583.
[http://dx.doi.org/10.1016/j.tet.2017.06.024]
[54]
Liu, Q.; Sui, Y.; Zhang, Y.; Zhang, K.; Chen, Y.; Zhou, H. Copper-catalyzed one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones from 2-nitro-benzonitriles and carbonyl compounds mediated by diboronic acid in methanol-water. Synlett, 2019, 31(3), 275-279.
[http://dx.doi.org/10.1055/s-0037-1610740]
[55]
Tang, J.; Li, J.; Zhang, L.; Ma, S.; Shi, D.; Zhang, Q.; Yang, L.; Wang, X.; Liu, X.; Liu, C. The divergent transformations of aromatic o‐aminonitrile with carbonyl compound. J. Heterocycl. Chem., 2012, 49, 533-542.
[http://dx.doi.org/10.1002/jhet.804]
[56]
Wu, X.F.; Oschatz, S.; Block, A.; Spannenberg, A.; Langer, P. Base mediated synthesis of 2-aryl-2,3-dihydroquinazolin-4(1H)-ones from 2-amino-benzonitriles and aromatic aldehydes in water. Org. Biomol. Chem., 2014, 12(12), 1865-1870.
[http://dx.doi.org/10.1039/c3ob42434k] [PMID: 24522449]
[57]
Yang, L.; Li, J.; Chai, H.; Lu, H.; Zhang, Q.; Shi, D. A divergent synthesis of 1,8‐naphthyridines and hydropyridopyrimidinones by the reactions of o‐aminonitriles with ketones. Chin. J. Chem., 2013, 31, 443-448.
[http://dx.doi.org/10.1002/cjoc.201201247]
[58]
Li, J.; Zhang, L.; Shi, D.; Li, Q.; Wang, D.; Wang, C.; Zhang, Q.; Zhang, L.; Fan, Y. Investigation of the reaction of o-aminonitriles with ketones: a new modification of Friedländer reaction and structures of its products. Synlett, 2008, 2008(2), 233-236.
[http://dx.doi.org/10.1055/s-2007-1000841]
[59]
Yang, J.; Shi, D.; Liu, M.; Zhang, L.; Zhang, Q.; Li, J. Structure of the condensed product of aromatic o-aminonitrile with carbonyl compound and its mechanism. Chin. J. Org. Chem., 2014, 34, 2424-2437.
[http://dx.doi.org/10.6023/cjoc201406007]
[60]
Cascioferro, S.; Parrino, B.; Spanò, V.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G. 1,3,5-Triazines: a promising scaffold for anticancer drugs development. Eur. J. Med. Chem., 2017, 142, 523-549.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.035] [PMID: 29046238]
[61]
Modest, E.J.; Levine, P. Chemical and biological studies on 1,2-dihydro-s-triazines. III. Two-component synthesis. J. Org. Chem., 1956, 21, 14-20.
[http://dx.doi.org/10.1021/jo01107a002]
[62]
Junaid, A.; Tan, Y.S.; Tiekink, E.R.T.; Dolzhenko, A.V. A one-pot synthesis of N2,6-diaryl-5,6-dihydro-1,3,5-triazine-2,4-diamines and systematic evaluation of their ability to host ethanol in crystals. RSC Advances, 2019, 9, 37660-37667.
[http://dx.doi.org/10.1039/C9RA08795H]
[63]
Di Mola, A.; Di Martino, M.; Capaccio, V.; Pierri, G.; Palombi, L.; Tedesco, C.; Massa, A. Synthesis of 2-acetylbenzonitriles and their reactivity in tandem reactions with carbon and hetero nucleophiles: easy access to 3,3-disubstituted isoindolinones. Eur. J. Org. Chem., 2018, 2018(14), 1699-1708.
[http://dx.doi.org/10.1002/ejoc.201800240]
[64]
Romano, F.; Di Mola, A.; Palombi, L.; Tiner, M.; Waser, M.; Massa, A. Synthesis and organocatalytic asymmetric nitro-aldol initiated cascade reactions of 2-acylbenzonitriles leading to 3,3-disubstituted isoindolinones. Catalysts, 2019, 9, 327.
[http://dx.doi.org/10.3390/catal9040327]
[65]
Chanda, T.; Zhao, J.C.G. Recent progress in organocatalytic asymmetric domino transformations. Adv. Synth. Catal., 2018, 360, 2-79.
[http://dx.doi.org/10.1002/adsc.201701059]
[66]
Grossmann, A.; Enders, D. N-heterocyclic carbene catalyzed domino reactions. Angew. Chem. Int. Ed. Engl., 2012, 51(2), 314-325.
[http://dx.doi.org/10.1002/anie.201105415] [PMID: 22121084]
[67]
Fogg, D.E.; dos Santos, E.N. Tandem catalysis: a taxonomy and illustrative review. Coord. Chem. Rev., 2004, 248, 2365-2379.
[http://dx.doi.org/10.1016/j.ccr.2004.05.012]
[68]
Tietze, L.F.; Beifuss, U. Sequential transformations in organic chemistry: a synthetic strategy with a future. Angew. Chem. Int. Ed. Engl., 1993, 32, 131-163.
[http://dx.doi.org/10.1002/anie.199301313]
[69]
Leiby, R.W.; Corley, E.G.; Heindel, N.D. A unique ring contraction of 1,4-dihydro-5H-1,3,4-benzotriazepin-5-ones to 1-methyl-2-(methylamino)-4(1H)-quinazolinones via an intermediate Dimroth rearrangement. J. Org. Chem., 1978, 43, 3427-3429.
[http://dx.doi.org/10.1021/jo00411a050]
[70]
Sako, M.; Kawada, H. A new and efficient synthetic method for 15N3-labeled cytosine nucleosides: Dimroth rearrangement of cytidine N3-oxides. J. Org. Chem., 2004, 69(23), 8148-8150.
[http://dx.doi.org/10.1021/jo0486241] [PMID: 15527310]
[71]
Brocklesby, K.L.; Waby, J.S.; Cawthorne, C.; Smith, G. An alternative synthesis of Vandetanib (Caprelsa™) via a microwave accelerated Dimroth rearrangement. Tetrahedron Lett., 2017, 58(15), 1467-1469.
[http://dx.doi.org/10.1016/j.tetlet.2017.02.082] [PMID: 28413233]
[72]
Goundry, W.R.F.; Boardman, K.; Cunningham, O.; Evans, M.; Jones, M.F.; Millard, K.; Sanchez, R.R.; Sawyer, Y.; Siedlecki, P.; Whitlock, B. The development of a Dimroth rearrangement route to AZD8931. Org. Process Res. Dev., 2017, 21, 336-345.
[http://dx.doi.org/10.1021/acs.oprd.6b00412]
[73]
Young, D.C.; Layre, E.; Pan, S.J.; Tapley, A.; Adamson, J.; Seshadri, C.; Wu, Z.; Buter, J.; Minnaard, A.J.; Coscolla, M.; Gagneux, S.; Copin, R.; Ernst, J.D.; Bishai, W.R.; Snider, B.B.; Moody, D.B. In vivo biosynthesis of terpene nucleosides provides unique chemical markers of Mycobacterium tuberculosis infection. Chem. Biol., 2015, 22(4), 516-526.
[http://dx.doi.org/10.1016/j.chembiol.2015.03.015] [PMID: 25910243]
[74]
Buter, J.; Heijnen, D.; Wan, I.C.; Bickelhaupt, F.M.; Young, D.C.; Otten, E.; Moody, D.B.; Minnaard, A.J. stereoselective synthesis of 1-tuberculosinyl adenosine; a virulence factor of Mycobacterium tuberculosis. J. Org. Chem., 2016, 81(15), 6686-6696.
[http://dx.doi.org/10.1021/acs.joc.6b01332] [PMID: 27398789]
[75]
Volkova, N.N.; Tarasov, E.V.; Van Meervelt, L.; Toppet, S.; Dehaen, W.; Bakulev, V.A. Reaction of 5-halo-1,2,3-thiadiazoles with arylenediamines as a new approach to tricyclic 1,3,6-thiadiazepines. J. Chem. Soc., Perkin Trans. 1, 2002, 2002(13), 1574-1580.
[http://dx.doi.org/10.1039/b203072a]
[76]
L’abbé, G.; Vanderstede, E. Dimroth rearrangement of 5-hydrazino-1,2,3-thiadiazoles. J. Heterocycl. Chem., 1989, 26, 1811-1814.
[http://dx.doi.org/10.1002/jhet.5570260652]
[77]
L’abbé, G.; D’Hooge, B.; Dehaen, W. 1,2,3-Thiadiazoles as a convenient source for the study of molecular rearrangements, single bond/no bond resonance and dendrimer synthesis. Molecules, 1996, 1, 190-200.
[http://dx.doi.org/10.1007/s007830050037]
[78]
Morzherin, Y.; Prokhorova, P.E.; Musikhin, D.A.; Glukhareva, T.V.; Fan, Z. 2-Hydroxypropyl derivatives of 1,2,3-thiadiazole and 1,2,3-triazole: synthesis and antifungal activity. Pure Appl. Chem., 2011, 83, 715-722.
[http://dx.doi.org/10.1351/PAC-CON-10-11-08]
[79]
Lauria, A.; Patella, C.; Abbate, I.; Martorana, A.; Almerico, A.M. An unexpected Dimroth rearrangement leading to annelated thieno[3,2-d][1,2,3]triazolo[1,5-a]pyrimidines with potent antitumor activity. Eur. J. Med. Chem., 2013, 65, 381-388.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.012] [PMID: 23747807]
[80]
Roshani, M.; Davoodnia, A.; Hedayat, M.S.; Bakavoli, M. A convenient synthesis of new pyridothienopyrimidin-4(3H)ones and pyridothienopyrimidin-2, 4(1H,3H)diones. Phosphorus Sulfur Silicon Relat. Elem., 2004, 179, 1153-1157.
[http://dx.doi.org/10.1080/10426500490459759]
[81]
Davoodnia, A.; Bakavoli, M.; Bashash, M.; Roshani, M.; Zhiani, R. Synthesis of new 5-aryl pyrido [3´, 2´: 4, 5] thieno [2, 3-e] [1, 2, 3, 4] tetrazolo [1, 5-c] pyrimidine derivatives. Turk. J. Chem., 2007, 31, 599-603.
[82]
Davoodnia, A.; Bakavoli, M.; Mohseni, S.; Hoseini, N.T. Synthesis of pyrido[3′, 2′:4, 5] thieno [2, 3-e] [1, 2, 4] triazolo [4, 3-a] pyrimidin-5(4H)-one derivatives. Monatsh. Chem., 2008, 139, 963-965.
[http://dx.doi.org/10.1007/s00706-007-0844-6]
[83]
Davoodnia, A.; Zhiani, R.; Hoseini, N.T. Synthesis of pyrazolo[4,3-e][1,2,4]triazolo[4,3-c]pyrimidines. Monatsh. Chem., 2008, 139, 1405-1407.
[http://dx.doi.org/10.1007/s00706-008-0939-8]
[84]
Davoodnia, A.; Bakavoli, M.; Soleimany, M.; Hoseini, N.T. New route to 2-arylthieno[2,3-d]pyrimidin-4(3H)-ones and isolation of the unoxidized intermediates. Monatsh. Chem., 2009, 140, 355-358.
[http://dx.doi.org/10.1007/s00706-008-0032-3]
[85]
Dehghan, M.; Davoodnia, A.; Bozorgmehr, M.R.; Bamoharram, F.F. Fast Synthesis and antibacterial evaluation of benzimidazo[2,1-b]quinazolin-1-ones: another successful application of newly prepared SO3H-functionalized ionic liquids as catalysts. Org. Prep. Proced. Int., 2017, 49, 236-248.
[http://dx.doi.org/10.1080/00304948.2017.1320905]
[86]
Hosseininasab, N.; Davoodnia, A.; Charati, F.R.; Hoseini, N.T.; Khojastehnezhad, A. Synthesis of new pyrimido[4′,5′:3,4]pyrazolo[1,2-b]phtha-lazine-4,7,12- triones: derivatives of a new heterocyclic ring system. J. Heterocycl. Chem., 2018, 55, 161-165.
[http://dx.doi.org/10.1002/jhet.3019]
[87]
Ebrahimi, Z.; Davoodnia, A.; Motavalizadehkakhky, A.; Mehrzad, J. Synthesis of benzo[f]chromeno[2,3-d]pyrimidines via the tandem intramolecular Pinner/Dimroth rearrangement and their antibacterial and antioxidant evaluation. Org. Prep. Proced. Int., 2019, 51, 357-367.
[http://dx.doi.org/10.1080/00304948.2019.1596472]
[88]
Tang, J.H.; Shi, D.X.; Zhang, L.J.; Zhang, Q.; Li, J.R. Facile and one-pot synthesis of 1,2-dihydroquinazolin-4(3H)-ones via tandem intramolecular Pinner/Dimroth rearrangement. Synth. Commun., 2010, 40, 632-641.
[http://dx.doi.org/10.1080/00397910902908822]
[89]
Chai, H.; Li, J.; Yang, L.; Lu, H.; Qi, Z.; Shi, D. Copper-catalyzed tandem N-arylation/condensation: synthesis of quinazolin-4(3H)-ones from 2-halobenzonitriles and amides. RSC Advances, 2014, 4, 44811-44814.
[http://dx.doi.org/10.1039/C4RA08031A]
[90]
Karimi, N.; Davoodnia, A.; Pordel, M. Synthesis of new 3H-chromeno[2,3-d]pyrimidine- 4,6(5H,7H)-diones via the tandem intramolecular Pinner/Dimroth rearrangement. Heterocycl. Commun., 2018, 24, 31-35.
[http://dx.doi.org/10.1515/hc-2017-0228]
[91]
Asadian, M.; Davoodnia, A.; Beyramabadi, S.A. Efficient synthesis of new pyrimido[5, 4: 5, 6] pyrano [2, 3-d] pyrimidine-2,4,6(1H, 3H)-triones via the tandem intramolecular Pinner-Dimroth rearrangement, and their antibacterial activity. Russ. J. Gen. Chem., 2018, 88, 2658-2663.
[http://dx.doi.org/10.1134/S1070363218120290]
[92]
Dorostkar-Ahmadi, N.; Davoodnia, A.; Hoseini, N.T.; Behmadi, H.; Moghaddam, M.N. Facile synthesis of new pyrazolo[4′,3′:5,6]pyrano[2,3-d]pyrimidin-5(1H)-ones via the tandem intramolecular Pinner-Dimroth rearrangement and their antibacterial evaluation. Z. Naturforsch. B, 2019, 74, 175-181.
[http://dx.doi.org/10.1515/znb-2018-0166]
[93]
Grimm, S.; Phuphanich, S.; Recht, L.; Rosenfeld, S.; Chamberlain, M.; Zhu, J-J.; Fadul, C.; Swabb, E.; Pope, C.; Beelen, A.; Raizer, J. No-65. Phase 2 study of Azixa (MPC-6827) for the treatment of glioblastoma after bevacizumab failure. Neuro-oncol., 2010, 12(4), 36-57.
[94]
Zhang, Y.L.; Ma, S.S.; Li, X.B.; Hou, Q.L.; Lu, M.J.; Hao, Y.X.; Wang, W.; Li, B.L. Synthesis and antiproliferative activities of novel pyrrolotriazine derivatives. Chin. J. Org. Chem., 2018, 38, 3270-3277.
[http://dx.doi.org/10.6023/cjoc201805005]
[95]
Hassaneen, H.M.; Wardakhan, W.W.; Mohammed, Y.S. Synthesis and reactions of pyrido[2,1-a]isoquinolin-4-yl formimidate derivatives and antimicrobial activities of isolated products. J. Heterocycl. Chem., 2017, 54, 2850-2858.
[http://dx.doi.org/10.1002/jhet.2891]
[96]
Zakia, R.M.; El-Deana, A.M.K.; Radwana, S.M.; Ammara, M.A. Synthesis, reactions, and antimicrobial activity of novel heterocyclic compounds containing cyclopenta[d]thieno[2,3-b]pyridine moiety and related fused heterocycles. Russ. J. Bioorganic Chem., 2020, 46(1), 85-96.
[http://dx.doi.org/10.1134/S1068162020010148]
[97]
Kharizomenova, I.A.; Grinev, A.N.; Samsonova, N.V. Functional derivatives of thiophene. XIX. Synthesis and biological activity of esters of 2‐benzoylaminothiophene‐3‐carboxylic acids. Chemischer Informationsdienst, 1981, 12, 40-44.
[98]
Kaplina, N.V.; Grinev, A.N.; Bogdanova, G.A. Synthesis of mono- and dibromomethyl derivatives of thieno[2,3-d] pyrimidines. Pharm. Chem. J., 1987, 21, 126-129.
[http://dx.doi.org/10.1007/BF00765112]
[99]
Litvinov, V.P. Thienopyrimidines: synthesis, properties, and biological activity. Russ. Chem. Bull., 2004, 53, 487-516.
[http://dx.doi.org/10.1023/B:RUCB.0000035630.75564.2b]
[100]
Gillespie, E.; Dungan, K.W.; Gomoll, A.W.; Seidehamel, R.J. Selected immunologic properties of tiprinast, a non-steroidal antiallergy agent. Int. J. Immunopharmacol., 1985, 7(5), 655-660.
[http://dx.doi.org/10.1016/0192-0561(85)90149-3] [PMID: 2412976]
[101]
Shishoo, C.J.; Shirsath, V.S.; Rathod, I.S.; Yande, V.D. Design, synthesis and antihistaminic (H(1)) activity of some condensed 3-aminopyrimidin-4(3H)-ones. Eur. J. Med. Chem., 2000, 35(3), 351-358.
[http://dx.doi.org/10.1016/S0223-5234(00)00128-8] [PMID: 10785561]
[102]
Sasaki, S.; Cho, N.; Nara, Y.; Harada, M.; Endo, S.; Suzuki, N.; Furuya, S.; Fujino, M. Discovery of a thieno[2,3-d]pyrimidine-2,4-dione bearing a p-methoxyureidophenyl moiety at the 6-position: a highly potent and orally bioavailable non-peptide antagonist for the human luteinizing hormone-releasing hormone receptor. J. Med. Chem., 2003, 46(1), 113-124.
[http://dx.doi.org/10.1021/jm020180i] [PMID: 12502365]