Endocrine, Metabolic & Immune Disorders - Drug Targets

Author(s): Shahzad Khan*, Syed S. Ahmad and Mohammad A. Kamal

DOI: 10.2174/1871530320666200731174724

Diabetic Cardiomyopathy: From Mechanism to Management in a Nutshell

Page: [268 - 281] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Diabetic cardiomyopathy (DCM) is a significant complication of diabetes mellitus characterized by gradually failing heart with detrimental cardiac remodelings, such as fibrosis and diastolic and systolic dysfunction, which is not directly attributable to coronary artery disease. Insulin resistance and resulting hyperglycemia is the main trigger involved in the initiation of diabetic cardiomyopathy. There is a constellation of many pathophysiological events, such as lipotoxicity, oxidative stress, inflammation, inappropriate activation of the renin-angiotensin-aldosterone system, dysfunctional immune modulation promoting increased rate of cardiac cell injury, apoptosis, and necrosis, which ultimately culminates into interstitial fibrosis, cardiac stiffness, diastolic dysfunction, initially, and later systolic dysfunction too. These events finally lead to clinical heart failure of DCM. Herein, The pathophysiology of DCM is briefly discussed. Furthermore, potential therapeutic strategies currently used for DCM are also briefly mentioned.

Keywords: Diabetic cardiomyopathy, pathophysiology, heart failure, hyperglycemia, insulin resistance, diabetes mellitus.

Graphical Abstract

[1]
Abbas, G.; Al Harrasi, A.; Hussain, H.; Hamaed, A.; Supuran, C.T. The management of diabetes mellitus-imperative role of natural products against dipeptidyl peptidase-4, α-glucosidase and sodium-dependent glucose co-transporter 2 (SGLT2). Bioorg. Chem., 2019, 86, 305-315.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.009] [PMID: 30738330]
[2]
Bharti, S.K.; Krishnan, S.; Kumar, A.; Rajak, K.K.; Murari, K.; Bharti, B.K.; Gupta, A.K. Antihyperglycemic activity with DPP-IV inhibition of alkaloids from seed extract of Castanospermum australe: Investigation by experimental validation and molecular docking. Phytomedicine, 2012, 20(1), 24-31.
[http://dx.doi.org/10.1016/j.phymed.2012.09.009] [PMID: 23063145]
[3]
Cooke, D.W.; Plotnick, L. Management of diabetic ketoacidosis in children and adolescents. Pediatr. Rev., 2008, 29(12), 431-435.
[http://dx.doi.org/10.1542/pir.29-12-431] [PMID: 19047433]
[4]
Chen, G.; Guo, M. Rapid screening for α-Glucosidase inhibitors from Gymnema sylvestre by affinity ultrafiltration-HPLC-MS. Front. Pharmacol., 2017, 8, 228.
[http://dx.doi.org/10.3389/fphar.2017.00228] [PMID: 28496409]
[5]
He, J-H.; Chen, L-X.; Li, H. Progress in the discovery of naturally occurring anti-diabetic drugs and in the identification of their molecular targets. Fitoterapia, 2019, 134, 270-289.
[http://dx.doi.org/10.1016/j.fitote.2019.02.033] [PMID: 30840917]
[6]
Bugger, H.; Abel, E.D. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia, 2014, 57(4), 660-671.
[http://dx.doi.org/10.1007/s00125-014-3171-6] [PMID: 24477973]
[7]
Jia, G.; DeMarco, V.G.; Sowers, J.R. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat. Rev. Endocrinol., 2016, 12(3), 144-153.
[http://dx.doi.org/10.1038/nrendo.2015.216] [PMID: 26678809]
[8]
Pappachan, J.M.; Varughese, G.I.; Sriraman, R.; Arunagirinathan, G. Diabetic cardiomyopathy: pathophysiology, diagnostic evaluation and management. World J. Diabetes, 2013, 4(5), 177-189.
[http://dx.doi.org/10.4239/wjd.v4.i5.177] [PMID: 24147202]
[9]
Yoon, M-S. The role of mammalian target of rapamycin (mTOR) in insulin signaling. Nutrients, 2017, 9(11), 1176.
[http://dx.doi.org/10.3390/nu9111176] [PMID: 29077002]
[10]
Jia, G.; Habibi, J.; DeMarco, V.G.; Martinez-Lemus, L.A.; Ma, L.; Whaley-Connell, A.T. Endothelial mineralocorticoid receptor deletion prevents diet-induced cardiac diastolic dysfunction in females. Hypertension, 2015, 66(6), 1159-1167.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06015]
[11]
Kim, J.A.; Jang, H-J.; Martinez-Lemus, L.A.; Sowers, J.R. Activation of mTOR/p70S6 kinase by ANG II inhibits insulin-stimulated endothelial nitric oxide synthase and vasodilation. Am. J. Physiol. Endocrinol. Metab., 2012, 302(2), E201-E208.
[http://dx.doi.org/10.1152/ajpendo.00497.2011] [PMID: 22028412]
[12]
van Heerebeek, L.; Hamdani, N.; Handoko, M.L.; Falcao-Pires, I.; Musters, R.J.; Kupreishvili, K.; Ijsselmuiden, A.J.; Schalkwijk, C.G.; Bronzwaer, J.G.; Diamant, M.; Borbély, A.; van der Velden, J.; Stienen, G.J.; Laarman, G.J.; Niessen, H.W.; Paulus, W.J. Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation, 2008, 117(1), 43-51.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.728550] [PMID: 18071071]
[13]
Lazo, M.; Halushka, M.K.; Shen, L.; Maruthur, N.; Rebholz, C.M.; Rawlings, A.M.; Hoogeveen, R.C.; Brinkley, T.E.; Ballantyne, C.M.; Astor, B.C.; Selvin, E. Soluble receptor for advanced glycation end products and the risk for incident heart failure: The atherosclerosis risk in communities study. Am. Heart J., 2015, 170(5), 961-967.
[http://dx.doi.org/10.1016/j.ahj.2015.08.008] [PMID: 26542505]
[14]
Ma, H.; Li, S.Y.; Xu, P.; Babcock, S.A.; Dolence, E.K.; Brownlee, M.; Li, J.; Ren, J. Advanced glycation endproduct (AGE) accumulation and AGE receptor (RAGE) up-regulation contribute to the onset of diabetic cardiomyopathy. J. Cell. Mol. Med., 2009, 13(8B), 1751-1764.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00547.x] [PMID: 19602045]
[15]
Makino, A.; Dai, A.; Han, Y.; Youssef, K.D.; Wang, W.; Donthamsetty, R.; Scott, B.T.; Wang, H.; Dillmann, W.H. O-GlcNAcase overexpression reverses coronary endothelial cell dysfunction in type 1 diabetic mice. Am. J. Physiol. Cell Physiol., 2015, 309(9), C593-C599.
[http://dx.doi.org/10.1152/ajpcell.00069.2015] [PMID: 26269457]
[16]
Hu, Y.; Belke, D.; Suarez, J.; Swanson, E.; Clark, R.; Hoshijima, M.; Dillmann, W.H. Adenovirus-mediated overexpression of O-GlcNAcase improves contractile function in the diabetic heart. Circ. Res., 2005, 96(9), 1006-1013.
[http://dx.doi.org/10.1161/01.RES.0000165478.06813.58] [PMID: 15817886]
[17]
Lee, T-W.; Bai, K-J.; Lee, T-I.; Chao, T-F.; Kao, Y-H.; Chen, Y-J. PPARs modulate cardiac metabolism and mitochondrial function in diabetes. J. Biomed. Sci., 2017, 24(1), 5.
[http://dx.doi.org/10.1186/s12929-016-0309-5] [PMID: 28069019]
[18]
Finck, B.N.; Lehman, J.J.; Leone, T.C.; Welch, M.J.; Bennett, M.J.; Kovacs, A.; Han, X.; Gross, R.W.; Kozak, R.; Lopaschuk, G.D.; Kelly, D.P. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J. Clin. Invest., 2002, 109(1), 121-130.
[http://dx.doi.org/10.1172/JCI0214080] [PMID: 11781357]
[19]
Atkinson, L.L.; Kozak, R.; Kelly, S.E.; Onay Besikci, A.; Russell, J.C.; Lopaschuk, G.D. Potential mechanisms and consequences of cardiac triacylglycerol accumulation in insulin-resistant rats. Am. J. Physiol. Endocrinol. Metab., 2003, 284(5), E923-E930.
[http://dx.doi.org/10.1152/ajpendo.00360.2002] [PMID: 12464581]
[20]
Yilmaz, S.; Canpolat, U.; Aydogdu, S.; Abboud, H.E. Diabetic cardiomyopathy; summary of 41 years. Korean Circ. J., 2015, 45(4), 266-272.
[http://dx.doi.org/10.4070/kcj.2015.45.4.266] [PMID: 26240579]
[21]
Song, C.; Luo, B.; Gong, L. Resveratrol reduces the apoptosis induced by cigarette smoke extract by upregulating MFN2. PLoS One, 2017, 12(4)e0175009
[http://dx.doi.org/10.1371/journal.pone.0175009] [PMID: 28406974]
[22]
Yi, C.; Vakifahmetoglu-Norberg, H.; Yuan, J., Eds.; Integration of apoptosis and metabolism. Cold Spring Harbor symposia on quantitative biology; Cold Spring Harbor Laboratory Press, 2011.
[23]
Xia, P.; Liu, Y.; Cheng, Z. Signaling pathways in cardiac myocyte apoptosis. BioMed Res. Int., 2016.20169583268
[http://dx.doi.org/10.1155/2016/9583268] [PMID: 28101515]
[24]
Haunstetter, A.; Izumo, S. Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ. Res., 1998, 82(11), 1111-1129.
[http://dx.doi.org/10.1161/01.RES.82.11.1111] [PMID: 9633912]
[25]
Kung, G.; Konstantinidis, K.; Kitsis, R.N. Programmed necrosis, not apoptosis, in the heart. Circ. Res., 2011, 108(8), 1017-1036.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.225730] [PMID: 21493924]
[26]
Takahashi, K.; Ghatei, M.A.; Lam, H-C.; O’Halloran, D.J.; Bloom, S.R. Elevated plasma endothelin in patients with diabetes mellitus. Diabetologia, 1990, 33(5), 306-310.
[http://dx.doi.org/10.1007/BF00403325] [PMID: 2198188]
[27]
Makino, A.; Kamata, K. Elevated plasma endothelin-1 level in streptozotocin-induced diabetic rats and responsiveness of the mesenteric arterial bed to endothelin-1. Br. J. Pharmacol., 1998, 123(6), 1065-1072.
[http://dx.doi.org/10.1038/sj.bjp.0701704] [PMID: 9559887]
[28]
Schneider, J.G.; Tilly, N.; Hierl, T.; Sommer, U.; Hamann, A.; Dugi, K.; Leidig-Bruckner, G.; Kasperk, C. Elevated plasma endothelin-1 levels in diabetes mellitus. Am. J. Hypertens., 2002, 15(11), 967-972.
[http://dx.doi.org/10.1016/S0895-7061(02)03060-1] [PMID: 12441216]
[29]
Kiowski, W.; Sütsch, G.; Hunziker, P.; Müller, P.; Kim, J.; Oechslin, E.; Schmitt, R.; Jones, R.; Bertel, O. Evidence for endothelin-1-mediated vasoconstriction in severe chronic heart failure. Lancet, 1995, 346(8977), 732-736.
[http://dx.doi.org/10.1016/S0140-6736(95)91504-4] [PMID: 7658874]
[30]
Xu, F.P.; Chen, M.S.; Wang, Y.Z.; Yi, Q.; Lin, S.B.; Chen, A.F.; Luo, J.D. Leptin induces hypertrophy via endothelin-1-reactive oxygen species pathway in cultured neonatal rat cardiomyocytes. Circulation, 2004, 110(10), 1269-1275.
[http://dx.doi.org/10.1161/01.CIR.0000140766.52771.6D] [PMID: 15313952]
[31]
Alvarez-Guardia, D.; Palomer, X.; Coll, T.; Serrano, L.; Rodríguez-Calvo, R.; Davidson, M.M.; Merlos, M.; El Kochairi, I.; Michalik, L.; Wahli, W.; Vázquez-Carrera, M. PPARβ/δ activation blocks lipid-induced inflammatory pathways in mouse heart and human cardiac cells. Biochim. Biophys. Acta, 2011, 1811(2), 59-67.
[http://dx.doi.org/10.1016/j.bbalip.2010.11.002] [PMID: 21070867]
[32]
Widyantoro, B.; Emoto, N.; Nakayama, K.; Anggrahini, D.W.; Adiarto, S.; Iwasa, N.; Yagi, K.; Miyagawa, K.; Rikitake, Y.; Suzuki, T.; Kisanuki, Y.Y.; Yanagisawa, M.; Hirata, K. Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation, 2010, 121(22), 2407-2418.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.938217] [PMID: 20497976]
[33]
Luo, B.; Li, B.; Wang, W.; Liu, X.; Xia, Y.; Zhang, C.; Zhang, M.; Zhang, Y.; An, F. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS One, 2014, 9(8)e104771
[http://dx.doi.org/10.1371/journal.pone.0104771] [PMID: 25136835]
[34]
Kanamori, H.; Takemura, G.; Goto, K.; Tsujimoto, A.; Mikami, A.; Ogino, A.; Watanabe, T.; Morishita, K.; Okada, H.; Kawasaki, M.; Seishima, M.; Minatoguchi, S. Autophagic adaptations in diabetic cardiomyopathy differ between type 1 and type 2 diabetes. Autophagy, 2015, 11(7), 1146-1160.
[http://dx.doi.org/10.1080/15548627.2015.1051295] [PMID: 26042865]
[35]
Feidantsis, K.; Mellidis, K.; Galatou, E.; Sinakos, Z.; Lazou, A. Treatment with crocin improves cardiac dysfunction by normalizing autophagy and inhibiting apoptosis in STZ-induced diabetic cardiomyopathy. Nutr. Metab. Cardiovasc. Dis., 2018, 28(9), 952-961.
[http://dx.doi.org/10.1016/j.numecd.2018.06.005] [PMID: 30017436]
[36]
Deluyker, D.; Ferferieva, V.; Noben, J.P.; Swennen, Q.; Bronckaers, A.; Lambrichts, I.; Rigo, J.M.; Bito, V. Cross-linking versus RAGE: how do high molecular weight advanced glycation products induce cardiac dysfunction? Int. J. Cardiol., 2016, 210, 100-108.
[http://dx.doi.org/10.1016/j.ijcard.2016.02.095] [PMID: 26938684]
[37]
Zha, Z.M.; Wang, J.H.; Li, S.L.; Guo, Y. Pitavastatin attenuates AGEs-induced mitophagy via inhibition of ROS generation in the mitochondria of cardiomyocytes. J. Biomed. Res., 2018, 32(4), 281-287.
[PMID: 29089470]
[38]
Voulgari, C.; Papadogiannis, D.; Tentolouris, N. Diabetic cardiomyopathy: from the pathophysiology of the cardiac myocytes to current diagnosis and management strategies. Vasc. Health Risk Manag., 2010, 6, 883-903.
[http://dx.doi.org/10.2147/VHRM.S11681] [PMID: 21057575]
[39]
Stølen, T.O.; Høydal, M.A.; Kemi, O.J.; Catalucci, D.; Ceci, M.; Aasum, E.; Larsen, T.; Rolim, N.; Condorelli, G.; Smith, G.L.; Wisløff, U. Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy. Circ. Res., 2009, 105(6), 527-536.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.199810] [PMID: 19679837]
[40]
Epp, R.A.; Susser, S.E.; Morissette, M.P.; Kehler, D.S.; Jassal, D.S.; Duhamel, T.A. Exercise training prevents the development of cardiac dysfunction in the low-dose streptozotocin diabetic rats fed a high-fat diet. Can. J. Physiol. Pharmacol., 2013, 91(1), 80-89.
[http://dx.doi.org/10.1139/cjpp-2012-0294] [PMID: 23369057]
[41]
Maciel, M.A.M.; Pinto, A.C.; Veiga, V.F., Jr; Grynberg, N.F.; Echevarria, A. Plantas medicinais: a necessidade de Estudos multidisciplinares. Quim. Nova, 2002, 25(3), 429-438.
[http://dx.doi.org/10.1590/S0100-40422002000300016]
[42]
Malviya, N.; Jain, S.; Malviya, S. Antidiabetic potential of medicinal plants. Acta Pol. Pharm., 2010, 67(2), 113-118.
[PMID: 20369787]
[43]
Verspohl, E.J. Recommended testing in diabetes research. Planta Med., 2002, 68(7), 581-590.
[http://dx.doi.org/10.1055/s-2002-32894] [PMID: 12142989]
[44]
Jiang, C-S.; Liang, L.F.; Guo, Y.W. Natural products possessing protein tyrosine phosphatase 1B (PTP1B) inhibitory activity found in the last decades. Acta Pharmacol. Sin., 2012, 33(10), 1217-1245.
[http://dx.doi.org/10.1038/aps.2012.90] [PMID: 22941286]
[45]
Ezzat, S.M.; Bishbishy, M.H.E.; Habtemariam, S.; Salehi, B.; Sharifi-Rad, M.; Martins, N.; Sharifi-Rad, J. Looking at marine-derived bioactive molecules as upcoming anti-diabetic agents: a special emphasis on PTP1B inhibitors. Molecules, 2018, 23(12), 3334.
[http://dx.doi.org/10.3390/molecules23123334] [PMID: 30558294]
[46]
Rienks, J.; Barbaresko, J.; Oluwagbemigun, K.; Schmid, M.; Nöthlings, U. Polyphenol exposure and risk of type 2 diabetes: dose-response meta-analyses and systematic review of prospective cohort studies. Am. J. Clin. Nutr., 2018, 108(1), 49-61.
[http://dx.doi.org/10.1093/ajcn/nqy083] [PMID: 29931039]
[47]
Unnikrishnan, M.K.; Veerapur, V.; Nayak, Y.; Mudgal, P.P.; Mathew, G. Antidiabetic, Antihyperlipidemic and Antioxidant Effects of the Flavonoids: Polyphenols in Human Health and Disease; Ronald Ross Watson, Victor R. Preedy, Sherma Zibadi; Academic Press, 2014, Vol. 1, pp. 143-161.
[48]
Sharma, A.K.; Srinivasan, B.P. Triple versus glimepiride plus metformin therapy on cardiovascular risk biomarkers and diabetic cardiomyopathy in insulin resistance type 2 diabetes mellitus rats. Eur. J. Pharm. Sci., 2009, 38(5), 433-444.
[http://dx.doi.org/10.1016/j.ejps.2009.09.004] [PMID: 19765654]
[49]
Thilagam, E.; Parimaladevi, B.; Kumarappan, C.; Mandal, S.C. α-Glucosidase and α-amylase inhibitory activity of Senna surattensis. J. Acupunct. Meridian Stud., 2013, 6(1), 24-30.
[http://dx.doi.org/10.1016/j.jams.2012.10.005] [PMID: 23433052]
[50]
Jung, M.; Park, M.; Lee, H.C.; Kang, Y-H.; Kang, E.S.; Kim, S.K. Antidiabetic agents from medicinal plants. Curr. Med. Chem., 2006, 13(10), 1203-1218.
[http://dx.doi.org/10.2174/092986706776360860] [PMID: 16719780]
[51]
La Greca, A.M.; Mackey, E.R. Type 1 Diabetes Mellitus.Behavioral Approaches to Chronic Disease in Adolescence; O’Donohue, W., Ed.; Springer: USA, 2009, pp. 85-100.
[http://dx.doi.org/10.1007/978-0-387-87687-0_8]
[52]
Alhadramy, M.S. Diabetes and oral therapies: A review of oral therapies for diabetes mellitus. J. Taibah Univ. Sci., 2016, 11(4), 317-329.
[http://dx.doi.org/10.1016/j.jtumed.2016.02.001]
[53]
Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; Sasapu, A.; Beebe, A.; Patil, N.; Musham, C.K.; Lohani, G.P.; Mirza, W. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front. Endocrinol. (Lausanne), 2017, 8, 6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
[54]
Ali, M.S.; Jahangir, M.; Hassan, S.S. Inhibition of alpha-glucosidase by oleanolic acid and its synthetic derivatives. Phytochemistry, 2002, 60(3), 295-299.
[http://dx.doi.org/10.1016/s0031-9422(02)00104-8] [PMID: 12031449]
[55]
Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of alpha-glucosidase and alpha-amylase by flavonoids. J. Nutr. Sci. Vitaminol. (Tokyo), 2006, 52(2), 149-153.
[http://dx.doi.org/10.3177/jnsv.52.149] [PMID: 16802696]
[56]
Ye, F.; Shen, Z.; Xie, M. Alpha-glucosidase inhibition from a Chinese medical herb (Ramulus mori) in normal and diabetic rats and mice. Phytomedicine, 2002, 9(2), 161-166.
[http://dx.doi.org/10.1078/0944-7113-00065] [PMID: 11995950]
[57]
Standl, E.; Schnell, O. Alpha-glucosidase inhibitors 2012 - cardiovascular considerations and trial evaluation. Diab. Vasc. Dis. Res., 2012, 9(3), 163-169.
[http://dx.doi.org/10.1177/1479164112441524] [PMID: 22508699]
[58]
Kato, E.T.; Das, S.R.; McGuire, D.K. Antihyperglycemic therapies and cardiovascular outcomes in patients with type 2 diabetes mellitus: State of the art and future directions. Trends Cardiovasc. Med., 2020, S1050-1738(20), 30003-7.
[http://dx.doi.org/10.1016/j.tcm.2019.12.010] [PMID: 31982285]
[59]
Elya, B.; Basah, K.; Mun’im, A.; Yuliastuti, W.; Bangun, A.; Septiana, E.K. Screening of α-glucosidase inhibitory activity from some plants of apocynaceae, clusiaceae, euphorbiaceae, and rubiaceae. J. Biomed. Biotechnol., 2012.2012281078
[http://dx.doi.org/10.1155/2012/281078] [PMID: 22187534]
[60]
Al-masri, I.M.; Mohammad, M.K.; Tahaa, M.O. Inhibition of dipeptidyl peptidase IV (DPP IV) is one of the mechanisms explaining the hypoglycemic effect of berberine. J. Enzyme Inhib. Med. Chem., 2009, 24(5), 1061-1066.
[http://dx.doi.org/10.1080/14756360802610761] [PMID: 19640223]
[61]
Fan, J.; Johnson, M.H.; Lila, M.A.; Yousef, G.; de Mejia, E.G. Berry and citrus phenolic compounds inhibit dipeptidyl peptidase IV: implications in diabetes management. Evid. Based Complement. Alternat. Med., 2013, 2013
[http://dx.doi.org/10.1155/2013/479505] [PMID: 24069048]
[62]
Almagthali, A.G.; Alkhaldi, E.H.; Alzahrani, A.S.; Alghamdi, A.K.; Alghamdi, W.Y.; Kabel, A.M. Dipeptidyl peptidase-4 inhibitors: Anti-diabetic drugs with potential effects on cancer. Diabetes Metab. Syndr., 2019, 13(1), 36-39.
[http://dx.doi.org/10.1016/j.dsx.2018.08.012] [PMID: 30641726]
[63]
Li, X.; Hansen, P.A.; Xi, L.; Chandraratna, R.A.S.; Burant, C.F. Distinct mechanisms of glucose lowering by specific agonists for peroxisomal proliferator activated receptor gamma and retinoic acid X receptors. J. Biol. Chem., 2005, 280(46), 38317-38327.
[http://dx.doi.org/10.1074/jbc.M505853200] [PMID: 16179348]
[64]
Kramer, D.; Shapiro, R.; Adler, A.; Bush, E.; Rondinone, C.M. Insulin-sensitizing effect of rosiglitazone (BRL-49653) by regulation of glucose transporters in muscle and fat of Zucker rats. Metabolism, 2001, 50(11), 1294-1300.
[http://dx.doi.org/10.1053/meta.2001.27202] [PMID: 11699047]
[65]
Wang, L.; Waltenberger, B.; Pferschy-Wenzig, E-M.; Blunder, M.; Liu, X.; Malainer, C.; Blazevic, T.; Schwaiger, S.; Rollinger, J.M.; Heiss, E.H.; Schuster, D.; Kopp, B.; Bauer, R.; Stuppner, H.; Dirsch, V.M.; Atanasov, A.G. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem. Pharmacol., 2014, 92(1), 73-89.
[http://dx.doi.org/10.1016/j.bcp.2014.07.018] [PMID: 25083916]
[66]
Guan, Y.; Zhang, Y.; Breyer, M.D. The Role of PPARs in the Transcriptional control of cellular processes. Drug News Perspect., 2002, 15(3), 147-154.
[http://dx.doi.org/10.1358/dnp.2002.15.3.840011] [PMID: 12677257]
[67]
Staels, B.; Fruchart, J-C. Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes, 2005, 54(8), 2460-2470.
[http://dx.doi.org/10.2337/diabetes.54.8.2460] [PMID: 16046315]
[68]
Gu, M-X.; Liu, X-C.; Jiang, L. [Effect of peroxisome proliferator-activated receptor-gamma on proliferation of airway smooth muscle cells in mice with asthma] Zhongguo Dang Dai Er Ke Za Zhi, 2013, 15(7), 583-587.
[PMID: 23866284]
[69]
Aboukhoudir, F.; Rekik, S. Left ventricular systolic function deterioration during dobutamine stress echocardiography as an early manifestation of diabetic cardiomyopathy and reversal by optimized therapeutic approach. Int. J. Cardiovasc. Imaging, 2012, 28(6), 1329-1339.
[http://dx.doi.org/10.1007/s10554-011-9938-7] [PMID: 21850410]
[70]
Chung, J.; Abraszewski, P.; Yu, X.; Liu, W.; Krainik, A.J.; Ashford, M.; Caruthers, S.D.; McGill, J.B.; Wickline, S.A. Paradoxical increase in ventricular torsion and systolic torsion rate in type I diabetic patients under tight glycemic control. J. Am. Coll. Cardiol., 2006, 47(2), 384-390.
[http://dx.doi.org/10.1016/j.jacc.2005.08.061] [PMID: 16412865]
[71]
Xie, Z.; Lau, K.; Eby, B.; Lozano, P.; He, C.; Pennington, B.; Li, H.; Rathi, S.; Dong, Y.; Tian, R.; Kem, D.; Zou, M.H. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes, 2011, 60(6), 1770-1778.
[http://dx.doi.org/10.2337/db10-0351] [PMID: 21562078]
[72]
Bibra, H.v.; Sutton, M.S.J. Impact of diabetes on postinfarction heart failure and left ventricular remodeling. Curr. Heart Fail. Rep., 2011, 8(4), 242-251.
[http://dx.doi.org/10.1007/s11897-011-0070-8] [PMID: 21842146]
[73]
Wong, A.K.; Symon, R.; AlZadjali, M.A.; Ang, D.S.; Ogston, S.; Choy, A.; Petrie, J.R.; Struthers, A.D.; Lang, C.C. The effect of metformin on insulin resistance and exercise parameters in patients with heart failure. Eur. J. Heart Fail., 2012, 14(11), 1303-1310.
[http://dx.doi.org/10.1093/eurjhf/hfs106] [PMID: 22740509]
[74]
Mamas, M.A.; Deaton, C.; Rutter, M.K.; Yuille, M.; Williams, S.G.; Ray, S.G.; New, J.; Gibson, J.M.; Neyses, L. Impaired glucose tolerance and insulin resistance in heart failure: underrecognized and undertreated? J. Card. Fail., 2010, 16(9), 761-768.
[http://dx.doi.org/10.1016/j.cardfail.2010.05.027] [PMID: 20797600]
[75]
Caglayan, E.; Stauber, B.; Collins, A.R.; Lyon, C.J.; Yin, F.; Liu, J. Differential roles of cardiomyocyte and macrophage PPARγ in cardiac fibrosis. Diabetes, 2008, 57(9), 2470-2479.
[http://dx.doi.org/10.2337/db07-0924]
[76]
Saccà, L.; Napoli, R. Insulin resistance in chronic heart failure: a difficult bull to take by the horns. Nutr. Metab. Cardiovasc. Dis., 2009, 19(5), 303-305.
[http://dx.doi.org/10.1016/j.numecd.2008.09.002] [PMID: 19097875]
[77]
Doehner, W.; Frenneaux, M.; Anker, S.D. Metabolic impairment in heart failure: the myocardial and systemic perspective. J. Am. Coll. Cardiol., 2014, 64(13), 1388-1400.
[http://dx.doi.org/10.1016/j.jacc.2014.04.083] [PMID: 25257642]
[78]
Younce, C.W.; Burmeister, M.A.; Ayala, J.E. Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a. Am. J. Physiol. Cell Physiol., 2013, 304(6), C508-C518.
[http://dx.doi.org/10.1152/ajpcell.00248.2012] [PMID: 23302777]
[79]
Inzucchi, S.E.; Zinman, B.; Wanner, C.; Ferrari, R.; Fitchett, D.; Hantel, S.; Espadero, R.M.; Woerle, H.J.; Broedl, U.C.; Johansen, O.E. SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab. Vasc. Dis. Res., 2015, 12(2), 90-100.
[http://dx.doi.org/10.1177/1479164114559852] [PMID: 25589482]
[80]
Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Inzucchi, S.E. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med., 2015, 373(22), 2117-2128.
[http://dx.doi.org/10.1056/NEJMoa1504720] [PMID: 26378978]
[81]
Yong, Q.C.; Thomas, C.M.; Seqqat, R.; Chandel, N.; Baker, K.M.; Kumar, R. Angiotensin type 1a receptor-deficient mice develop diabetes-induced cardiac dysfunction, which is prevented by renin-angiotensin system inhibitors. Cardiovasc. Diabetol., 2013, 12(1), 169.
[http://dx.doi.org/10.1186/1475-2840-12-169] [PMID: 24215514]
[82]
Symeonides, P.; Koulouris, S.; Vratsista, E.; Triantafyllou, K.; Ioannidis, G.; Thalassinos, N.; Katritsis, D. Both ramipril and telmisartan reverse indices of early diabetic cardiomyopathy: a comparative study. Eur. J. Echocardiogr., 2007, 8(6), 480-486.
[http://dx.doi.org/10.1016/j.euje.2006.09.005] [PMID: 17113349]
[83]
Machackova, J.; Liu, X.; Lukas, A.; Dhalla, N.S. Renin-angiotensin blockade attenuates cardiac myofibrillar remodelling in chronic diabetes. Mol. Cell. Biochem., 2004, 261(1-2), 271-278.
[http://dx.doi.org/10.1023/B:MCBI.0000028765.89855.73] [PMID: 15362513]
[84]
Mohamad, H.E.; Askar, M.E.; Hafez, M.M. Management of cardiac fibrosis in diabetic rats; the role of peroxisome proliferator activated receptor gamma (PPAR-gamma) and calcium channel blockers (CCBs). Diabetol. Metab. Syndr., 2011, 3(1), 4.
[http://dx.doi.org/10.1186/1758-5996-3-4] [PMID: 21450068]
[85]
Isidori, A.; Giannetta, E.; Galea, N.; Iacopo, C.; Mandosi, E.; Morano, S. Chronic inhibition of cGMP phosphodiesterase 5A improves diabetic cardiomyopathy exerting an anti-remodeling effect: a randomized, controlled clinical trial with magnetic resonance imaging: ps-04-002. J. Sex. Med., 2012, 9, 310.
[86]
Chen, Y-H.; Feng, B.; Chen, Z-W. Statins for primary prevention of cardiovascular and cerebrovascular events in diabetic patients without established cardiovascular diseases: a meta-analysis. Exp. Clin. Endocrinol. Diabetes, 2012, 120(2), 116-120.
[http://dx.doi.org/10.1055/s-0031-1297968] [PMID: 22187291]
[87]
Van Linthout, S.; Riad, A.; Dhayat, N.; Spillmann, F.; Du, J.; Dhayat, S.; Westermann, D.; Hilfiker-Kleiner, D.; Noutsias, M.; Laufs, U.; Schultheiss, H.P.; Tschöpe, C. Anti-inflammatory effects of atorvastatin improve left ventricular function in experimental diabetic cardiomyopathy. Diabetologia, 2007, 50(9), 1977-1986.
[http://dx.doi.org/10.1007/s00125-007-0719-8] [PMID: 17589825]
[88]
Dai, Q.M.; Lu, J.; Liu, N.F. Fluvastatin attenuates myocardial interstitial fibrosis and cardiac dysfunction in diabetic rats by inhibiting over-expression of connective tissue growth factor. Chin. Med. J. (Engl.), 2011, 124(1), 89-94.
[PMID: 21362314]
[89]
Gao, D.; Ning, N.; Niu, X.; Hao, G.; Meng, Z. Trimetazidine: a meta-analysis of randomised controlled trials in heart failure. Heart, 2011, 97(4), 278-286.
[http://dx.doi.org/10.1136/hrt.2010.208751] [PMID: 21134903]
[90]
Lee, W.S.; Kim, J. Diabetic cardiomyopathy: where we are and where we are going. Korean J. Intern. Med., 2017, 32(3), 404-421.
[http://dx.doi.org/10.3904/kjim.2016.208] [PMID: 28415836]
[91]
Nickel, A.; Löffler, J.; Maack, C. Myocardial energetics in heart failure. Basic Res. Cardiol., 2013, 108(4), 358.
[http://dx.doi.org/10.1007/s00395-013-0358-9] [PMID: 23740216]
[92]
Senanayake, E.L.; Howell, N.J.; Ranasinghe, A.M.; Drury, N.E.; Freemantle, N.; Frenneaux, M. Multicentre double-blind randomized controlled trial of perhexiline as a metabolic modulator to augment myocardial protection in patients with left ventricular hypertrophy undergoing cardiac surgery. Eur. J. Cardiothorac. Surg., 2015, 48(3), 354-362.
[http://dx.doi.org/10.1093/ejcts/ezu452]
[93]
Xu, Y.J.; Tappia, P.S.; Neki, N.S.; Dhalla, N.S. Prevention of diabetes-induced cardiovascular complications upon treatment with antioxidants. Heart Fail. Rev., 2014, 19(1), 113-121.
[http://dx.doi.org/10.1007/s10741-013-9379-6] [PMID: 23436032]
[94]
Szeto, H.H. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br. J. Pharmacol., 2014, 171(8), 2029-2050.
[http://dx.doi.org/10.1111/bph.12461] [PMID: 24117165]
[95]
Huynh, K.; Kiriazis, H.; Du, X.J.; Love, J.E.; Jandeleit-Dahm, K.A.; Forbes, J.M.; McMullen, J.R.; Ritchie, R.H. Coenzyme Q10 attenuates diastolic dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis in the db/db mouse model of type 2 diabetes. Diabetologia, 2012, 55(5), 1544-1553.
[http://dx.doi.org/10.1007/s00125-012-2495-3] [PMID: 22374176]
[96]
Mortensen, S.A.; Rosenfeldt, F.; Kumar, A.; Dolliner, P.; Filipiak, K.J.; Pella, D.; Alehagen, U.; Steurer, G.; Littarru, G.P. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail., 2014, 2(6), 641-649.
[http://dx.doi.org/10.1016/j.jchf.2014.06.008] [PMID: 25282031]
[97]
Huynh, K.; Bernardo, B.C.; McMullen, J.R.; Ritchie, R.H. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol. Ther., 2014, 142(3), 375-415.
[http://dx.doi.org/10.1016/j.pharmthera.2014.01.003] [PMID: 24462787]
[98]
Salvemini, D.; Riley, D.P.; Cuzzocrea, S. SOD mimetics are coming of age. Nat. Rev. Drug Discov., 2002, 1(5), 367-374.
[http://dx.doi.org/10.1038/nrd796] [PMID: 12120412]
[99]
Ye, G.; Metreveli, N.S.; Donthi, R.V.; Xia, S.; Xu, M.; Carlson, E.C.; Epstein, P.N. Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. Diabetes, 2004, 53(5), 1336-1343.
[http://dx.doi.org/10.2337/diabetes.53.5.1336] [PMID: 15111504]
[100]
Lovshin, J.A.; Drucker, D.J. Incretin-based therapies for type 2 diabetes mellitus. Nat. Rev. Endocrinol., 2009, 5(5), 262-269.
[http://dx.doi.org/10.1038/nrendo.2009.48] [PMID: 19444259]
[101]
Shaikh, S.; Ahmad, S.S.; Ansari, M.A.; Shakil, S.; Rizvi, S.M.D.; Shakil, S. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24059300 (Accessed 2014)
[102]
Yaribeygi, H.; Atkin, S.L.; Sahebkar, A. Natural compounds with DPP-4 inhibitory effects: Implications for the treatment of diabetes. J. Cell. Biochem., 2019.
[http://dx.doi.org/10.1002/jcb.28467] [PMID: 30775811]
[103]
Kang, K.A.; Zhang, R.; Piao, M.J.; Chae, S.; Kim, H.S.; Park, J.H.; Jung, K.S.; Hyun, J.W. Baicalein inhibits oxidative stress-induced cellular damage via antioxidant effects. Toxicol. Ind. Health, 2012, 28(5), 412-421.
[http://dx.doi.org/10.1177/0748233711413799] [PMID: 21957089]
[104]
Fang, J-Y.; Lin, C-H.; Huang, T-H.; Chuang, S-Y. In vivo rodent models of type 2 diabetes and their usefulness for evaluating flavonoid bioactivity. Nutrients, 2019, 11(3), 530.
[http://dx.doi.org/10.3390/nu11030530] [PMID: 30823474]
[105]
Cheng, Y.; Guo, S.; Liu, G.; Feng, Y.; Yan, B.; Yu, J.; Feng, K.; Li, Z. Transplantation of bone marrow-derived endothelial progenitor cells attenuates myocardial interstitial fibrosis and cardiac dysfunction in streptozotocin-induced diabetic rats. Int. J. Mol. Med., 2012, 30(4), 870-876.
[http://dx.doi.org/10.3892/ijmm.2012.1083] [PMID: 22859217]
[106]
Katare, R.; Caporali, A.; Zentilin, L.; Avolio, E.; Sala-Newby, G.; Oikawa, A.; Cesselli, D.; Beltrami, A.P.; Giacca, M.; Emanueli, C.; Madeddu, P. Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling. Circ. Res., 2011, 108(10), 1238-1251.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.239111] [PMID: 21474815]
[107]
Greco, S.; Fasanaro, P.; Castelvecchio, S.; D’Alessandra, Y.; Arcelli, D.; Di Donato, M.; Malavazos, A.; Capogrossi, M.C.; Menicanti, L.; Martelli, F. MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes, 2012, 61(6), 1633-1641.
[http://dx.doi.org/10.2337/db11-0952] [PMID: 22427379]
[108]
Chen, H.; Untiveros, G.M.; McKee, L.A.; Perez, J.; Li, J.; Antin, P.B.; Konhilas, J.P. Micro-RNA-195 and -451 regulate the LKB1/AMPK signaling axis by targeting MO25. PLoS One, 2012, 7(7)e41574
[http://dx.doi.org/10.1371/journal.pone.0041574] [PMID: 22844503]
[109]
Kubisch, H.M.; Wang, J.; Bray, T.M.; Phillips, J.P. Targeted overexpression of Cu/Zn superoxide dismutase protects pancreatic β-cells against oxidative stress. Diabetes, 1997, 46(10), 1563-1566.
[http://dx.doi.org/10.2337/diabetes.46.10.1563] [PMID: 9313750]
[110]
Shen, X.; Zheng, S.; Metreveli, N.S.; Epstein, P.N. Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes, 2006, 55(3), 798-805.
[http://dx.doi.org/10.2337/diabetes.55.03.06.db05-1039] [PMID: 16505246]
[111]
Turdi, S.; Li, Q.; Lopez, F.L.; Ren, J. Catalase alleviates cardiomyocyte dysfunction in diabetes: role of Akt, Forkhead transcriptional factor and silent information regulator 2. Life Sci., 2007, 81(11), 895-905.
[http://dx.doi.org/10.1016/j.lfs.2007.07.029] [PMID: 17765928]
[112]
Harmon, J.S.; Bogdani, M.; Parazzoli, S.D.; Mak, S.S.; Oseid, E.A.; Berghmans, M.; Leboeuf, R.C.; Robertson, R.P. β-cell-specific overexpression of glutathione peroxidase preserves intranuclear MafA and reverses diabetes in db/db mice. Endocrinology, 2009, 150(11), 4855-4862.
[http://dx.doi.org/10.1210/en.2009-0708] [PMID: 19819955]
[113]
Matsushima, S.; Kinugawa, S.; Ide, T.; Matsusaka, H.; Inoue, N.; Ohta, Y.; Yokota, T.; Sunagawa, K.; Tsutsui, H. Overexpression of glutathione peroxidase attenuates myocardial remodeling and preserves diastolic function in diabetic heart. Am. J. Physiol. Heart Circ. Physiol., 2006, 291(5), H2237-H2245.
[http://dx.doi.org/10.1152/ajpheart.00427.2006] [PMID: 16844917]
[114]
Adluri, R.S.; Thirunavukkarasu, M.; Zhan, L.; Akita, Y.; Samuel, S.M.; Otani, H.; Ho, Y.S.; Maulik, G.; Maulik, N. Thioredoxin 1 enhances neovascularization and reduces ventricular remodeling during chronic myocardial infarction: a study using thioredoxin 1 transgenic mice. J. Mol. Cell. Cardiol., 2011, 50(1), 239-247.
[http://dx.doi.org/10.1016/j.yjmcc.2010.11.002] [PMID: 21074540]
[115]
Yamamoto, M.; Yang, G.; Hong, C.; Liu, J.; Holle, E.; Yu, X.; Wagner, T.; Vatner, S.F.; Sadoshima, J. Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy. J. Clin. Invest., 2003, 112(9), 1395-1406.
[http://dx.doi.org/10.1172/JCI200317700] [PMID: 14597765]
[116]
Huynh, K.; Kiriazis, H.; Du, X.J.; Love, J.E.; Gray, S.P.; Jandeleit-Dahm, K.A.; McMullen, J.R.; Ritchie, R.H. Targeting the upregulation of reactive oxygen species subsequent to hyperglycemia prevents type 1 diabetic cardiomyopathy in mice. Free Radic. Biol. Med., 2013, 60, 307-317.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.02.021] [PMID: 23454064]
[117]
Lin, R.C.; Weeks, K.L.; Gao, X.M.; Williams, R.B.; Bernardo, B.C.; Kiriazis, H.; Matthews, V.B.; Woodcock, E.A.; Bouwman, R.D.; Mollica, J.P.; Speirs, H.J.; Dawes, I.W.; Daly, R.J.; Shioi, T.; Izumo, S.; Febbraio, M.A.; Du, X.J.; McMullen, J.R. PI3K(p110 alpha) protects against myocardial infarction-induced heart failure: identification of PI3K-regulated miRNA and mRNA. Arterioscler. Thromb. Vasc. Biol., 2010, 30(4), 724-732.
[http://dx.doi.org/10.1161/ATVBAHA.109.201988] [PMID: 20237330]
[118]
Pretorius, L.; Du, X.J.; Woodcock, E.A.; Kiriazis, H.; Lin, R.C.; Marasco, S.; Medcalf, R.L.; Ming, Z.; Head, G.A.; Tan, J.W.; Cemerlang, N.; Sadoshima, J.; Shioi, T.; Izumo, S.; Lukoshkova, E.V.; Dart, A.M.; Jennings, G.L.; McMullen, J.R. Reduced phosphoinositide 3-kinase (p110α) activation increases the susceptibility to atrial fibrillation. Am. J. Pathol., 2009, 175(3), 998-1009.
[http://dx.doi.org/10.2353/ajpath.2009.090126] [PMID: 19679877]
[119]
Ritchie, R.H.; Love, J.E.; Huynh, K.; Bernardo, B.C.; Henstridge, D.C.; Kiriazis, H.; Tham, Y.K.; Sapra, G.; Qin, C.; Cemerlang, N.; Boey, E.J.; Jandeleit-Dahm, K.; Du, X.J.; McMullen, J.R. Enhanced phosphoinositide 3-kinase(p110α) activity prevents diabetes-induced cardiomyopathy and superoxide generation in a mouse model of diabetes. Diabetologia, 2012, 55(12), 3369-3381.
[http://dx.doi.org/10.1007/s00125-012-2720-0] [PMID: 23001375]
[120]
Mochly-Rosen, D.; Das, K.; Grimes, K.V. Protein kinase C, an elusive therapeutic target? Nat. Rev. Drug Discov., 2012, 11(12), 937-957.
[http://dx.doi.org/10.1038/nrd3871] [PMID: 23197040]
[121]
McGill, J.B.; King, G.L.; Berg, P.H.; Price, K.L.; Kles, K.A.; Bastyr, E.J.; Hyslop, D.L. Clinical safety of the selective PKC-β inhibitor, ruboxistaurin. Expert Opin. Drug Saf., 2006, 5(6), 835-845.
[http://dx.doi.org/10.1517/14740338.5.6.835] [PMID: 17044810]
[122]
Aiello, L.P.; Vignati, L.; Sheetz, M.J.; Zhi, X.; Girach, A.; Davis, M.D.; Wolka, A.M.; Shahri, N.; Milton, R.C. Oral protein kinase c β inhibition using ruboxistaurin: efficacy, safety, and causes of vision loss among 813 patients (1,392 eyes) with diabetic retinopathy in the protein kinase C β inhibitor-diabetic retinopathy study and the protein kinase C β inhibitor-diabetic retinopathy study 2. Retina, 2011, 31(10), 2084-2094.
[http://dx.doi.org/10.1097/IAE.0b013e3182111669] [PMID: 21862954]
[123]
Denise Martin, E.; De Nicola, G.F.; Marber, M.S. New therapeutic targets in cardiology: p38 alpha mitogen-activated protein kinase for ischemic heart disease. Circulation, 2012, 126(3), 357-368.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.071886] [PMID: 22801653]
[124]
Meloni, M.; Caporali, A.; Graiani, G.; Lagrasta, C.; Katare, R.; Van Linthout, S.; Spillmann, F.; Campesi, I.; Madeddu, P.; Quaini, F.; Emanueli, C. Nerve growth factor promotes cardiac repair following myocardial infarction. Circ. Res., 2010, 106(7), 1275-1284.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.210088] [PMID: 20360245]
[125]
Meloni, M.; Descamps, B.; Caporali, A.; Zentilin, L.; Floris, I.; Giacca, M.; Emanueli, C. Nerve growth factor gene therapy using adeno-associated viral vectors prevents cardiomyopathy in type 1 diabetic mice. Diabetes, 2012, 61(1), 229-240.
[http://dx.doi.org/10.2337/db11-0763] [PMID: 22187379]
[126]
Hu, S.; Yan, G.; Xu, H.; He, W.; Liu, Z.; Ma, G. Hypoxic preconditioning increases survival of cardiac progenitor cells via the pim-1 kinase-mediated anti-apoptotic effect. Circ. J., 2014, 78(3), 724-731.
[http://dx.doi.org/10.1253/circj.CJ-13-0841] [PMID: 24401608]
[127]
Muraski, J.A.; Rota, M.; Misao, Y.; Fransioli, J.; Cottage, C.; Gude, N.; Esposito, G.; Delucchi, F.; Arcarese, M.; Alvarez, R.; Siddiqi, S.; Emmanuel, G.N.; Wu, W.; Fischer, K.; Martindale, J.J.; Glembotski, C.C.; Leri, A.; Kajstura, J.; Magnuson, N.; Berns, A.; Beretta, R.M.; Houser, S.R.; Schaefer, E.M.; Anversa, P.; Sussman, M.A. Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat. Med., 2007, 13(12), 1467-1475.
[http://dx.doi.org/10.1038/nm1671] [PMID: 18037896]
[128]
Weeks, K.L.; Gao, X.; Du, X.J.; Boey, E.J.; Matsumoto, A.; Bernardo, B.C.; Kiriazis, H.; Cemerlang, N.; Tan, J.W.; Tham, Y.K.; Franke, T.F.; Qian, H.; Bogoyevitch, M.A.; Woodcock, E.A.; Febbraio, M.A.; Gregorevic, P.; McMullen, J.R. Phosphoinositide 3-kinase p110α is a master regulator of exercise-induced cardioprotection and PI3K gene therapy rescues cardiac dysfunction. Circ Heart Fail, 2012, 5(4), 523-534.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.112.966622] [PMID: 22705768]
[129]
Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov., 2017, 16(3), 203-222.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[130]
Navickas, R.; Gal, D.; Laucevičius, A.; Taparauskaitė, A.; Zdanytė, M.; Holvoet, P. Identifying circulating microRNAs as biomarkers of cardiovascular disease: a systematic review. Cardiovasc. Res., 2016, 111(4), 322-337.
[http://dx.doi.org/10.1093/cvr/cvw174] [PMID: 27357636]
[131]
Rooij, E.v.; Purcell, A.L.; Levin, A.A. Developing microRNA therapeutics. Circ. Res., 2012, 110(3), 496-507.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.247916] [PMID: 22302756]
[132]
Weber, C. MicroRNAs: from basic mechanisms to clinical application in cardiovascular medicine. Arterioscler. Thromb. Vasc. Biol., 2013, 33(2), 168-169.
[http://dx.doi.org/10.1161/ATVBAHA.112.300920] [PMID: 23325472]