Synthesis and Characterization of Quinoline-3-Carboxamide Derivatives as Inhibitors of the ATM Kinase

Page: [2070 - 2079] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: The importance of inhibiting the kinases of the DDR pathway for radiosensitizing cancer cells is well established. Cancer cells exploit these kinases for their survival, which leads to the development of resistance towards DNA damaging therapeutics.

Objective: In this article, the focus is on targeting the key mediator of the DDR pathway, the ATM kinase. A new set of quinoline-3-carboxamides, as potential inhibitors of ATM, is reported.

Methods: Quinoline-3-carboxamide derivatives were synthesized and cytotoxicity assay was performed to analyze the effect of molecules on different cancer cell lines like HCT116, MDA-MB-468, and MDA-MB-231.

Results: Three of the synthesized compounds showed promising cytotoxicity towards a selected set of cancer cell lines. Western Blot analysis was also performed by pre-treating the cells with quercetin, a known ATM upregulator, by causing DNA double-strand breaks. SAR studies suggested the importance of the electron-donating nature of the R group for the molecule to be toxic. Finally, Western-Blot analysis confirmed the down-regulation of ATM in the cells. Additionally, the PTEN negative cell line, MDA-MB-468, was more sensitive towards the compounds in comparison with the PTEN positive cell line, MDA-MB-231. Cytotoxicity studies against 293T cells showed that the compounds were at least three times less toxic when compared with HCT116.

Conclusion: In conclusion, these experiments will lay the groundwork for the evolution of potent and selective ATM inhibitors for the radio- and chemo-sensitization of cancer cells.

Keywords: DDR pathway, ATM kinase, Small molecule inhibitors, Quinoline derivatives, Cancer, Cytotoxicity.

Graphical Abstract

[1]
Cheung-Ong, K.; Giaever, G.; Nislow, C. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem. Biol., 2013, 20(5), 648-659.
[http://dx.doi.org/10.1016/j.chembiol.2013.04.007] [PMID: 23706631]
[2]
Derheimer, F.A.; Kastan, M.B. Multiple roles of ATM in monitoring and maintaining DNA integrity. FEBS Lett., 2010, 584(17), 3675-3681.
[http://dx.doi.org/10.1016/j.febslet.2010.05.031] [PMID: 20580718]
[3]
Pike, K.G.; Barlaam, B.; Cadogan, E.; Campbell, A.; Chen, Y.; Colclough, N.; Davies, N.L.; De-Almeida, C.; Degorce, S.L.; Didelot, M.; Dishington, A.; Ducray, R.; Durant, S.T.; Hassall, L.A.; Holmes, J.; Hughes, G.D.; Macfaul, P.A.; Mulholland, K.R.; McGuire, T.M.; Ouvry, G.; Pass, M.; Robb, G.; Stratton, N.; Wang, Z.; Wilson, J.; Zhai, B.; Zhao, K.; Al-Huniti, N. The identification of potent, selective, and orally available inhibitors of ataxia telangiectasia mutated (atm) kinase: the discovery of azd0156 (8-6-[3-(dimethylamino)propoxy]pyridin-3-yl-3-methyl-1-(tetrahydro-2 h-pyran-4-yl)-1,3-dihydro-2 h-imidazo[4. J. Med. Chem., 2018, 61, 3823-3841.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01896] [PMID: 29683659]
[4]
Curtin, N.J. Inhibiting the DNA damage response as a therapeutic manoeuvre in cancer. Br. J. Pharmacol., 2013, 169(8), 1745-1765.
[http://dx.doi.org/10.1111/bph.12244] [PMID: 23682925]
[5]
Falck, J.; Coates, J.; Jackson, S.P. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature, 2005, 434(7033), 605-611.
[http://dx.doi.org/10.1038/nature03442] [PMID: 15758953]
[6]
Blackford, A.N.; Jackson, S.P. ATM, ATR, and DNA-PK: the trinity at the heart of the dna damage response. Mol. Cell, 2017, 66(6), 801-817.
[http://dx.doi.org/10.1016/j.molcel.2017.05.015] [PMID: 28622525]
[7]
Velic, D.; Couturier, A.M.; Ferreira, M.T.; Rodrigue, A.; Poirier, G.G.; Fleury, F.; Masson, J.Y. DNA Damage signalling and repair inhibitors: the long-sought-after achilles’ heel of cancer. Biomolecules, 2015, 5(4), 3204-3259.
[http://dx.doi.org/10.3390/biom5043204] [PMID: 26610585]
[8]
Begg, A.C.; Stewart, F.A.; Vens, C. Strategies to improve radiotherapy with targeted drugs. Nat. Rev. Cancer, 2011, 11(4), 239-253.
[http://dx.doi.org/10.1038/nrc3007] [PMID: 21430696]
[9]
Gavande, N.S.; VanderVere-Carozza, P.S.; Hinshaw, H.D.; Jalal, S.I.; Sears, C.R.; Pawelczak, K.S.; Turchi, J.J. DNA repair targeted therapy: The past or future of cancer treatment? Pharmacol. Ther., 2016, 160, 65-83.
[http://dx.doi.org/10.1016/j.pharmthera.2016.02.003] [PMID: 26896565]
[10]
Weber, A.M.; Ryan, A.J. ATM and ATR as therapeutic targets in cancer. Pharmacol. Ther., 2015, 149, 124-138.
[http://dx.doi.org/10.1016/j.pharmthera.2014.12.001] [PMID: 25512053]
[11]
Kurz, E.U.; Lees-Miller, S.P. DNA damage-induced activation of ATM and ATM-dependent signaling pathways. DNA Repair (Amst.), 2004, 3(8-9), 889-900.
[http://dx.doi.org/10.1016/j.dnarep.2004.03.029] [PMID: 15279774]
[12]
Guleria, A.; Chandna, S. ATM kinase: Much more than a DNA damage responsive protein. DNA Repair (Amst.), 2016, 39, 1-20.
[http://dx.doi.org/10.1016/j.dnarep.2015.12.009] [PMID: 26777338]
[13]
Ashwell, S.; Zabludoff, S. DNA damage detection and repair pathways--recent advances with inhibitors of checkpoint kinases in cancer therapy. Clin. Cancer Res., 2008, 14(13), 4032-4037.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-5138] [PMID: 18593978]
[14]
Cremona, C.A.; Behrens, A. ATM signalling and cancer. Oncogene, 2014, 33(26), 3351-3360.
[http://dx.doi.org/10.1038/onc.2013.275] [PMID: 23851492]
[15]
Min, J.; Guo, K.; Suryadevara, P.K.; Zhu, F.; Holbrook, G.; Chen, Y.; Feau, C.; Young, B.M.; Lemoff, A.; Connelly, M.C.; Kastan, M.B.; Guy, R.K. Optimization of a novel series of ataxia-telangiectasia mutated kinase inhibitors as potential radiosensitizing agents. J. Med. Chem., 2016, 59(2), 559-577.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01092] [PMID: 26632965]
[16]
McCabe, N.; Hanna, C.; Walker, S.M.; Gonda, D.; Li, J.; Wikstrom, K.; Savage, K.I.; Butterworth, K.T.; Chen, C.; Harkin, D.P.; Prise, K.M.; Kennedy, R.D. Mechanistic rationale to target pten-deficient tumor cells with inhibitors of the dna damage response kinase ATM. Cancer Res., 2015, 75(11), 2159-2165.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3502] [PMID: 25870146]
[17]
Li, K.; Yan, H.; Guo, W.; Tang, M.; Zhao, X.; Tong, A.; Peng, Y.; Li, Q.; Yuan, Z. ATM inhibition induces synthetic lethality and enhances sensitivity of PTEN-deficient breast cancer cells to cisplatin. Exp. Cell Res., 2018, 366(1), 24-33.
[http://dx.doi.org/10.1016/j.yexcr.2018.03.006] [PMID: 29522753]
[18]
Chen, C-C.; Kass, E.M.; Yen, W-F.; Ludwig, T.; Moynahan, M.E.; Chaudhuri, J.; Jasin, M. ATM loss leads to synthetic lethality in BRCA1 BRCT mutant mice associated with exacerbated defects in homology-directed repair. Proc. Natl. Acad. Sci. USA, 2017, 114(29), 7665-7670.
[http://dx.doi.org/10.1073/pnas.1706392114] [PMID: 28659469]
[19]
Liu, Q.; Xu, C.; Kirubakaran, S.; Zhang, X.; Hur, W.; Liu, Y.; Kwiatkowski, N.P.; Wang, J.; Westover, K.D.; Gao, P.; Ercan, D.; Niepel, M.; Thoreen, C.C.; Kang, S.A.; Patricelli, M.P.; Wang, Y.; Tupper, T.; Altabef, A.; Kawamura, H.; Held, K.D.; Chou, D.M.; Elledge, S.J.; Janne, P.A.; Wong, K.K.; Sabatini, D.M.; Gray, N.S. Characterization of Torin2, an ATP-competitive inhibitor of mTOR, ATM, and ATR. Cancer Res., 2013, 73(8), 2574-2586.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1702] [PMID: 23436801]
[20]
Durant, S.T.; Zheng, L.; Wang, Y.; Chen, K.; Zhang, L.; Zhang, T.; Yang, Z.; Riches, L.; Trinidad, A.G.; Fok, J.H.L.; Hunt, T.; Pike, K.G.; Wilson, J.; Smith, A.; Colclough, N.; Reddy, V.P.; Sykes, A.; Janefeldt, A.; Johnström, P.; Varnäs, K.; Takano, A.; Ling, S.; Orme, J.; Stott, J.; Roberts, C.; Barrett, I.; Jones, G.; Roudier, M.; Pierce, A.; Allen, J.; Kahn, J.; Sule, A.; Karlin, J.; Cronin, A.; Chapman, M.; Valerie, K.; Illingworth, R.; Pass, M. The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models. Sci. Adv.,, 2018, 4(6) eaat1719
[http://dx.doi.org/10.1126/sciadv.aat1719] [http://dx.doi.org/29938225]
[21]
Degorce, S.L.; Barlaam, B.; Cadogan, E.; Dishington, A.; Ducray, R.; Glossop, S.C.; Hassall, L.A.; Lach, F.; Lau, A.; McGuire, T.M.; Nowak, T.; Ouvry, G.; Pike, K.G.; Thomason, A.G. Discovery of novel 3-quinoline carboxamides as potent, selective, and orally bioavailable inhibitors of ataxia telangiectasia mutated (atm) kinase. J. Med. Chem., 2016, 59(13), 6281-6292.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00519] [PMID: 27259031]
[22]
Andersson, M.I.; MacGowan, A.P. Development of the quinolones. J. Antimicrob. Chemother., 2003, 51(Suppl. 1), 1-11.
[http://dx.doi.org/10.1093/jac/dkg212] [PMID: 12702698]
[23]
Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem., 2015, 97, 871-910.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.044] [PMID: 25073919]
[24]
Ahmed, D.; Eide, P.W.; Eilertsen, I.A.; Danielsen, S.A.; Eknæs, M.; Hektoen, M.; Lind, G.E.; Lothe, R.A. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis, 2013, 2, e71.
[http://dx.doi.org/10.1038/oncsis.2013.35] [PMID: 24042735]
[25]
McCabe, N.; Walker, S.M.; Kennedy, R.D. When the guardian becomes the enemy: Targeting ATM in PTEN-deficient cancers. Mol. Cell. Oncol., 2015, 3(1), e1053595.
[http://dx.doi.org/10.1080/23723556.2015.1053595] [PMID: 27308567]
[26]
Hitomi, M.; Yang, K.; Stacey, A.W.; Stacey, D.W. Phosphorylation of cyclin D1 regulated by ATM or ATR controls cell cycle progression. Mol. Cell. Biol., 2008, 28(17), 5478-5493.
[http://dx.doi.org/10.1128/MCB.02047-07] [PMID: 18606783]
[27]
Janku, F.; Kaseb, A.O.; Tsimberidou, A.M.; Wolff, R.A.; Kurzrock, R. Identification of novel therapeutic targets in the PI3K/AKT/MTOR pathway in hepatocellular carcinoma using targeted next generation sequencing. Oncotarget, 2015, 5(10), 3012-3022.
[PMID: 24931142]
[28]
Ye, R.; Goodarzi, A.A.; Kurz, E.U.; Saito, S.; Higashimoto, Y.; Lavin, M.F.; Appella, E.; Anderson, C.W.; Lees-Miller, S.P. The isoflavonoids genistein and quercetin activate different stress signaling pathways as shown by analysis of site-specific phosphorylation of ATM, p53 and histone H2AX. DNA Repair (Amst.), 2004, 3(3), 235-244.
[http://dx.doi.org/10.1016/j.dnarep.2003.10.014] [PMID: 15177039]
[29]
O’Prey, J.; Brown, J.; Fleming, J.; Harrison, P.R. Effects of dietary flavonoids on major signal transduction pathways in human epithelial cells. Biochem. Pharmacol., 2003, 66(11), 2075-2088.
[http://dx.doi.org/10.1016/j.bcp.2003.07.007] [PMID: 14609732]
[30]
Liu, Q.; Wang, J.; Kang, S.A.; Thoreen, C.C.; Hur, W.; Ahmed, T.; Sabatini, D.M.; Gray, N.S. Discovery of 9-(6-aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2) as a potent, selective, and orally available mammalian target of rapamycin (mTOR) inhibitor for treatment of cancer. J. Med. Chem., 2011, 54(5), 1473-1480.
[http://dx.doi.org/10.1021/jm101520v] [PMID: 21322566]
[31]
Záletová, J.; Dzurilla, M.; Kutschy, P.; Pazdera, P.; Kováčik, V.; Aldölfi, J.; Bekešová, S. Synthesis of 4,6-Disubstituted-2-(1H-Indol-3-Yl). Benzothiazoles. Collect. Czechoslov. Chem. Commun., 2004, 69, 453-460.
[http://dx.doi.org/10.1135/cccc20040453]
[32]
Ghinet, A.; Moise, I.M.; Rigo, B.; Homerin, G.; Farce, A.; Dubois, J.; Bîcu, E. Studies on phenothiazines: New microtubule-interacting compounds with phenothiazine A-ring as potent antineoplastic agents. Bioorg. Med. Chem., 2016, 24(10), 2307-2317.
[http://dx.doi.org/10.1016/j.bmc.2016.04.001] [PMID: 27073050]
[33]
John, J.M.; Loorthuraja, R.; Antoniuk, E.; Bergens, S.H. Catalytic hydrogenation of functionalized amides under basic and neutral conditions. Catal. Sci. Technol., 2015, 5, 1181-1186.
[http://dx.doi.org/10.1039/C4CY01227E]
[34]
Carroll, T.X.; Thomas, T.D.; Bergersen, H.; Børve, K.J.; Saethre, L.J. Fluorine as a π donor. Carbon 1s photoelectron spectroscopy and proton affinities of fluorobenzenes. J. Org. Chem., 2006, 71(5), 1961-1968.
[http://dx.doi.org/10.1021/jo0523417] [PMID: 16496981]
[35]
Zannini, L.; Delia, D.; Buscemi, G. CHK2 kinase in the DNA damage response and beyond. J. Mol. Cell Biol., 2014, 6(6), 442-457.
[http://dx.doi.org/10.1093/jmcb/mju045] [PMID: 25404613]