Eco-friendly Spectrophotometric Methods for Assessment of Alfuzosin and Solifenacin in their new Pharmaceutical Formulation; Green Profile Evaluation via Eco-scale and GAPI Tools

Page: [1093 - 1103] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Alfuzosin is recently co-formulated with solifenacin for relieving two coincident urological diseases, namely; benign prostate hyperplasia and overactive bladder.

Objective: Herein, green, simple and rapid spectrophotometric methods were firstly developed for simultaneous determination of the two cited drugs in their co-formulated pharmaceutical capsule.

Methods: Alfuzosin, which is the major component in the dosage form, was directly assayed at its extended wavelength at 330.0 nm. The challenging spectrum of the minor component, solifenacin, was resolved by five spectrophotometric methods, namely; Dual Wavelength (DW) at 210.0 & 230.0 nm, first derivative (1D) at 222.0 nm, Ratio Difference (RD) at 217.0 - 271.0 nm , derivative ratio (1DD) at 223.0 and mean centering of ratio spectra (MC) at 217.0 nm.

Results: The proposed methods were successfully validated as per ICH guidelines. Alfuzosin showed linearity over the range of 4.0 - 70.0 μg/mL, while that of solifenacin were 4.0 - 50.0 μg/mL for DW, 2.0 - 70.0 μg/mL for 1D and RD methods, 1.0 - 70.0 μg/mL for 1DD and 4.0 - 70.0 μg/mL for MC method. Statistical comparison with their official ones showed no noticeable differences. The methods showed good applicability for assaying drugs in their newly combination. Besides the eco-scale, the greenness profile of the methods was assessed and compared with the reported spectrophotometric one via the newest metric tool; Green Analytical Procedure Index (GAPI).

Conclusion: The proposed methods are superior in not only being smart, accurate, selective, robust and time-saving, but also in using distilled water as an eco-friendly and cheap solvent.

Keywords: Alfuzosin, solifenacin, spectrophotometry, pharmaceutical analysis, eco-scale, green analytical procedure index (GAPI).

Graphical Abstract

[1]
Anastas, P.; Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[2]
Tobiszewski, M.; Marć, M.; Gałuszka, A.; Namieśnik, J. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry. Molecules, 2015, 20(6), 10928-10946.
[http://dx.doi.org/10.3390/molecules200610928] [PMID: 26076112]
[3]
Seema, S.; Priya, S.; Vinod, J.; Rajeshwari, R. Green Analytical Chemistry and Quality by Design: A Combined approach towards Robust and Sustainable Modern Analysis. Curr. Anal. Chem., 2018, 14(4), 367-381.
[http://dx.doi.org/10.2174/1573411013666170615140836]
[4]
Płotka-Wasylka, J. A new tool for the evaluation of the analytical procedure. Green Analytical Procedure Index. Talanta, 2018, 181, 204-209.
[http://dx.doi.org/10.1016/j.talanta.2018.01.013] [PMID: 29426502]
[5]
Baron, M.; Cornu, J.N. Medical Aspects of the Treatment of LUTS/BPH: Alpha-Blockers Lower Urinary Tract Symptoms and Benign Prostatic Hyperplasia, 1st ed.; Morgia, G.; Russo, G. I., Eds; Academic Press, 2018, pp. 177-188.
[6]
Hillary, C.J.; Chapple, C.R. Medical Aspects of the Treatment of LUTS/BPH: Antimuscarinic and β3-Agonists Lower Urinary Tract Symptoms and Benign Prostatic Hyperplasia, 1st ed.; Morgia, G.; Russo, G. I., Eds; Academic Press, 2018, pp. 207-215.
[7]
British Pharmacopoeia; The Stationary Office: London, UK, 2019, Vol. II, .
[8]
Farrell, B. French Merkley, V.; Ingar, N. Reducing pill burden and helping with medication awareness to improve adherence. Can. Pharm. J., 2013, 146(5), 262-269.
[http://dx.doi.org/10.1177/1715163513500208] [PMID: 24093037]
[9]
Knutson, T.; Edlund, C.; Fall, M.; Dahlstrand, C. BPH with coexisting overactive bladder dysfunction--an everyday urological dilemma. Neurourol. Urodyn., 2001, 20(3), 237-247.
[http://dx.doi.org/10.1002/nau.1001] [PMID: 11385690]
[10]
Nazarudheen, S.; Dey, S.; Kandhwal, K.; Arora, R.; Reyar, S.; Khuroo, A.H.; Monif, T.; Madan, S.; Arora, V. Combining benefits of an adrenergic and a muscarinic blocker in a single formulation - a pharmacokinetic evaluation. Regul. Toxicol. Pharmacol., 2013, 67(2), 226-231.
[http://dx.doi.org/10.1016/j.yrtph.2013.07.015] [PMID: 23933032]
[11]
Barkin, J.; Diles, D.; Franks, B.; Berner, T. Alpha blocker monotherapy versus combination therapy with antimuscarinics in men with persistent LUTS refractory to alpha-adrenergic treatment: patterns of persistence. Can. J. Urol., 2015, 22(4), 7914-7923.
[PMID: 26267031]
[12]
Fayed, A.S.; Shehata, M.A.; Hassan, N.Y.; Weshahy, S.A. Stability-indicating spectrophotometric and spectrofluorimetric methods for determination of alfuzosin hydrochloride in the presence of its degradation products. Pharmazie, 2007, 62(11), 830-835.
[PMID: 18065098]
[13]
Rawat, K.A.; Basu, H.; Singhal, R.K.; Kailasa, S.K. Simultaneous colorimetric detection of four drugs in their pharmaceutical formulations using unmodified gold nanoparticles as a probe. RSC Advances, 2015, 5(26), 19924-19932.
[http://dx.doi.org/10.1039/C4RA16109B]
[14]
Karasakal, A.; Ulu, S.T. Sensitive spectrofluorimetric determination of alfuzosin in pharmaceutical preparations and human urine using dansyl chloride. J. Anal. Chem., 2015, 70(6), 708-711.
[http://dx.doi.org/10.1134/S1061934815060040]
[15]
Hammad, M.A.; Omar, M.A.; Salman, B.I. Utility of Hantzsch reaction for development of highly sensitive spectrofluorimetric method for determination of alfuzosin and terazosin in bulk, dosage forms and human plasma. Luminescence, 2017, 32(6), 1066-1071.
[http://dx.doi.org/10.1002/bio.3292] [PMID: 28303653]
[16]
Omar, M.A.; Hammad, M.A.; Salman, B.I. Micellar enhanced spectrofluorimetric approach for nanogram detection of certain α1 -blocker drugs: Application in pharmaceutical preparations and human plasma. Luminescence, 2018, 33(7), 1226-1234.
[http://dx.doi.org/10.1002/bio.3539] [PMID: 30094938]
[17]
Omar, M.A.; Mohamed, A.I.; Derayea, S.M.; Hammad, M.A.; Mohamed, A.A. An efficient spectrofluorimetric method adopts doxazosin, terazosin and alfuzosin coupling with orthophthalaldehyde: Application in human plasma. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 195, 215-222.
[http://dx.doi.org/10.1016/j.saa.2018.01.077] [PMID: 29414581]
[18]
Salah Fayed, A.; Abdel-Aaty Shehata, M.; Yehia Hassan, N.; El-Weshahy, S.A. Validated HPLC and HPTLC stability-indicating methods for determination of alfuzosin hydrochloride in bulk powder and pharmaceutical formulations. J. Sep. Sci., 2006, 29(18), 2716-2724.
[http://dx.doi.org/10.1002/jssc.200600220] [PMID: 17305232]
[19]
Deshmukh, S.; Musale, V.; Bhusari, V.; Dhaneshwar, S. Validated HPTLC method for simultaneous analysis of alfuzosin hydrochloride and dutasteride in a pharmaceutical dosage form. J. Planar Chromatogr. Mod. TLC, 2011, 24(3), 218-221.
[http://dx.doi.org/10.1556/JPC.24.2011.3.8]
[20]
Belal, T.S.; Mahrous, M.S.; Abdel-Khalek, M.M.; Daabees, H.G.; Khamis, M.M. Validated HPTLC method for the simultaneous determination of alfuzosin, terazosin, prazosin, doxazosin and finasteride in pharmaceutical formulations. Anal. Chem. Res., 2014, 1, 23-31.
[http://dx.doi.org/10.1016/j.ancr.2014.06.004]
[21]
Guinebault, P.; Broquaire, M.; Colafranceschi, C.; Thénot, J.P. High-performance liquid chromatographic determination of alfuzosin in biological fluids with fluorimetric detection and large-volume injection. J. Chromatogr. A, 1986, 353, 361-369.
[http://dx.doi.org/10.1016/S0021-9673(01)87106-5] [PMID: 2871035]
[22]
Wiesner, J.L.; Sutherland, F.C.W.; van Essen, G.H.; Hundt, H.K.L.; Swart, K.J.; Hundt, A.F. Selective, sensitive and rapid liquid chromatography-tandem mass spectrometry method for the determination of alfuzosin in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2003, 788(2), 361-368.
[http://dx.doi.org/10.1016/S1570-0232(03)00064-3] [PMID: 12705976]
[23]
Wei, X.; Yin, J.; Yang, G.; He, C.; Chen, Y. On-line solid-phase extraction with a monolithic weak cation-exchange column and simultaneous screening of alpha1-adrenergic receptor antagonists in human plasma. J. Sep. Sci., 2007, 30(17), 2851-2857.
[http://dx.doi.org/10.1002/jssc.200700342] [PMID: 17960849]
[24]
Szulfer, J.; Plenis, A.; Bączek, T. Comparison of core-shell and totally porous ultra high performance liquid chromatographic stationary phases based on their selectivity towards alfuzosin compounds. J. Chromatogr. A, 2014, 1346, 69-77.
[http://dx.doi.org/10.1016/j.chroma.2014.04.046] [PMID: 24795236]
[25]
Walash, M.I.; Belal, F.; Fathy, M.; Zayed, S.; Borg, H. Simultaneous HPLC determination of alfuzosin, tamsulosin and vardenafil in human plasma and pharmaceutical formulations using time programmed fluorescence detection. Ann. Pharm. Fr., 2019, 77(1), 28-37.
[http://dx.doi.org/10.1016/j.pharma.2018.08.003] [PMID: 30172351]
[26]
Uslu, B. Voltammetric analysis of alfuzosin HCl in pharmaceuticals, human serum and simulated gastric juice. Electroanalysis, 2002, 14(12), 866-870.
[http://dx.doi.org/10.1002/1521-4109(200206)14:12<866:AID-ELAN866>3.0.CO;2-Y]
[27]
Rashedi, H.; Norouzi, P.; Ganjali, M.R. Determination of alfuzosin by hybrid of ionic liquid-graphene nano-composite film using coulometric FFT linear sweep voltammetry. Int. J. Electrochem. Sci., 2013, 8, 2479-2490.
[28]
Baezzat, M.R.; Banavand, F.; Fasihi, F. Electrooxidation study and highly sensitive voltammetric determination of alfuzosin employing multi-walled carbon nanotubes and the ionic liquid 1-hexylpyridinium hexafluorophosphate nanocomposite sensor. J. Mol. Liq., 2017, 233, 391-397.
[http://dx.doi.org/10.1016/j.molliq.2017.02.119]
[29]
Pourghobadi, Z.; Pourghobadi, R. Electrocatalytic alfuzosin oxidation on electrochemically oxidized glassy carbon modified with multiwalled carbon nanotubes and nickel oxide nanoparticles. J. Electrochem. Soc., 2019, 166, B76-B83.
[http://dx.doi.org/10.1149/2.0651902jes]
[30]
El-Kimary, E.I.; Khamis, E.F.; Belal, S.F.; Abdel Moneim, M.M. Enhanced spectrofluorimetric determination of two novel combination therapies for the treatment of benign prostatic hyperplasia containing tamsulosin hydrochloride. Luminescence, 2018, 33(4), 771-779.
[http://dx.doi.org/10.1002/bio.3475] [PMID: 29578287]
[31]
El-Kimary, E.I.; Khamis, E.F.; Belal, S.F.; Abdel Moneim, M.M. Novel Validated HPTLC Method for the Analysis of Two Binary Mixtures Containing Tamsulosin Hydrochloride with Antimuscarinic Agents. J. Chromatogr. Sci., 2018, 56(1), 81-91.
[http://dx.doi.org/10.1093/chromsci/bmx081] [PMID: 28977351]
[32]
Shah, D.A.; Tahilramani, P.J.; Patel, V.B.; Chhalotiya, U. High-performance thin-layer chromatographic method for the estimation of mirabegron and solifenacin succinate used in the treatment of overactive bladder syndrome. J. Planar Chromatogr. Mod. TLC, 2019, 32(4), 323-327.
[http://dx.doi.org/10.1556/1006.2019.32.4.7]
[33]
Yanagihara, T.; Aoki, T.; Soeishi, Y.; Iwatsubo, T.; Kamimura, H. Determination of solifenacin succinate, a novel muscarinic receptor antagonist, and its major metabolite in rat plasma by semi-micro high performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 859(2), 241-245.
[http://dx.doi.org/10.1016/j.jchromb.2007.10.005] [PMID: 17977808]
[34]
Macek, J.; Ptáček, P.; Klíma, J. Determination of solifenacin in human plasma by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(31), 3327-3330.
[http://dx.doi.org/10.1016/j.jchromb.2010.10.010] [PMID: 21071290]
[35]
Krishna, S.R.; Rao, B.M.; Rao, N.S. A validated rapid stability-indicating method for the determination of related substances in solifenacin succinate by ultra-fast liquid chromatography. J. Chromatogr. Sci., 2010, 48(10), 807-810.
[http://dx.doi.org/10.1093/chromsci/48.10.807] [PMID: 21044410]
[36]
Desai, D.; Patel, G.; Shukla, N.; Rajput, S. Development and validation of stability-indicating HPLC method for solifenacin succinate: Isolation and identification of major base degradation product. Acta Chromatogr., 2012, 24(3), 399-418.
[http://dx.doi.org/10.1556/AChrom.24.2012.3.5]
[37]
Puttagunta, S.B.; Shaik, R.P.; Bannoth, C.K.; Challa, B.S.R.; Awen, B.Z.S. Bioanalytical method for quantification of Solifenacin in rat plasma by LC-MS/MS and its application to pharmacokinetic study. J. Anal. Sci. Technol., 2014, 5(1), 35-42.
[http://dx.doi.org/10.1186/s40543-014-0035-0]
[38]
Singh, D.K.; Kurmi, M.; Handa, T.; Singh, S. LC–MS/TOF, LC–MS n and H/D exchange studies on solifenacin succinate targeted to characterize its forced degradation products. Chromatographia, 2016, 79(3-4), 159-168.
[http://dx.doi.org/10.1007/s10337-015-3007-7]
[39]
Tanaz, A.; Mahnaz, Q. Preconcentration and Determination of Solifenacin Using Hollow Fiber Microextraction Coupled with HPLC. Curr. Anal. Chem., 2016, 12(6), 594-601.
[http://dx.doi.org/10.2174/1573411012666160606170219]
[40]
Saiyed, N.; Patel, D.; Desai, S. Development and validation of first order derivative spectrophotometric method for estimation of alfuzosin hydrochloride and solifenacin succinate in combined dosage form. Inter. J. Pharmacy. Pharm. Res., 2015, 2, 175-183.
[41]
Mistri, H.N.; Jangid, A.G.; Pudage, A.; Rathod, D.M.; Shrivastav, P.S. Highly sensitive and rapid LC-ESI-MS/MS method for the simultaneous quantification of uroselective alpha1-blocker, alfuzosin and an antimuscarinic agent, solifenacin in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 876(2), 236-244.
[http://dx.doi.org/10.1016/j.jchromb.2008.10.050] [PMID: 19010093]
[42]
Tantawy, M.A.; Weshahy, S.A.; Wadie, M.; Rezk, M.R. Stability-indicating HPTLC method for the simultaneous detection and quantification of alfuzosin hydrochloride, solifenacin succinate along with four of their official impurities. Microchem. J., 2020, 157104905
[http://dx.doi.org/10.1016/j.microc.2020.104905]
[43]
Tantawy, M.A.; Weshahy, S.A.; Wadie, M.; Rezk, M.R. A novel HPLC-DAD method for simultaneous determination of alfuzosin and solifenacin along with their official impurities induced via a stress stability study; investigation of their degradation kinetics. Anal. Methods, in press
[http://dx.doi.org/10.1039/D0AY00822B]
[44]
Bindaiya, S.; Bankey, S.; Jain, D. Simultaneous determination of nitazoxanide and ofloxacin in tablet by ultraviolet spectrophotometry (dual wavelength method). Int. J. Chemtech Res., 2010, 2, 11-15.
[45]
Hayam Mahmoud, L.; Yasmin Mohamed, F.; Adel Magdy, M.; Christine Kamal, N. Evaluation of the Efficiency of Smart Stability-Indicating Spectrophotometric Methods Based on Mathematical and Statistical Processing of the Obtained Results Via Different Manipulating Pathways. Curr. Pharm. Anal., 2020, 16(2), 186-200.
[http://dx.doi.org/10.2174/1573412914666181017144323]
[46]
Traveset, J.; Such, V.; Gonzalo, R.; Gelpi, E. Derivative and graphical procedures for correction of irrelevant UV spectrophotometric absorption in changeable matrixes. J. Pharm. Sci., 1980, 69(6), 629-633.
[http://dx.doi.org/10.1002/jps.2600690605] [PMID: 7205570]
[47]
Aysegul, D.; Nursabah, E.B. x, Development and Validation of RP-HPLC and Ultraviolet Spectrophotometric Methods of Analysis for the Quantitative Determination of Chlorhexidine Gluconate and Benzydamine Hydrochloride in Pharmaceutical Dosage Forms. Curr. Pharm. Anal., 2011, 7(3), 167-175.
[http://dx.doi.org/10.2174/157341211796353228]
[48]
Mohamed, R.E.; Nancy, W.N.; Samah, S.A.; Azza, A.M. Determination of Aliskiren Hemifumarate and Amlodipine Besylate in their combined Dosage form by Different Spectrophotometric Methods. Curr. Pharm. Anal., 2016, 12(4), 391-398.
[http://dx.doi.org/10.2174/1573412912666160204005954]
[49]
Rezk, M.R.; Tantawy, M.A.; Wadie, M.; Weshahy, S.A. Smart spectrophotometric assessment of tamsulosin hydrochloride and tadalafil in their new pharmaceutical formulation for treatment of benign prostatic hyperplasia and erectile dysfunction. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 227117547
[http://dx.doi.org/10.1016/j.saa.2019.117547] [PMID: 31734571]
[50]
Lotfy, H.M.; Abdel-Monem Hagazy, M. Comparative study of novel spectrophotometric methods manipulating ratio spectra: an application on pharmaceutical ternary mixture of omeprazole, tinidazole and clarithromycin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 96, 259-270.
[http://dx.doi.org/10.1016/j.saa.2012.04.095] [PMID: 22683662]
[51]
Maissa Yacuob, S.; Nagiba Yehia, H.; Yasmin Mohamed, F.; Samah Abd, E.; Enas Shaaban, A. Simultaneous Determination of Hydrochlorothiazide in Combination with Some Antihypertensive Drugs in The Presence of Its Main Impurities in Pure Form and Pharmaceutical Formulations. Curr. Pharm. Anal., 2020, 16(1), 64-84.
[52]
Salinas, F.; Nevado, J.J.B.; Mansilla, A.E. A new spectrophotometric method for quantitative multicomponent analysis resolution of mixtures of salicylic and salicyluric acids. Talanta, 1990, 37(3), 347-351.
[http://dx.doi.org/10.1016/0039-9140(90)80065-N] [PMID: 18964949]
[53]
Mohamed, K.A.E-R.; Safaa, M.R.; Esraa, M.F.; Mostafa, A.S. Three Different Spectrophotometric Methods Exploiting Ratio Spectra for the Selective Determination of Iohexol in the Presence of its Acidic Degradate. Curr. Pharm. Anal., 2018, 14(6), 627-634.
[http://dx.doi.org/10.2174/1573412913666171016163544]
[54]
Boltia, S.A.; Abdelkawy, M.; Mohammed, T.A.; Mostafa, N.N. Validated stability-indicating spectrophotometric methods for the determination of Silodosin in the presence of its degradation products. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 202, 131-145.
[http://dx.doi.org/10.1016/j.saa.2018.04.046] [PMID: 29778706]
[55]
Afkhami, A.; Bahram, M. Mean centering of ratio spectra as a new spectrophotometric method for the analysis of binary and ternary mixtures. Talanta, 2005, 66(3), 712-720.
[http://dx.doi.org/10.1016/j.talanta.2004.12.004] [PMID: 18970043]
[56]
Yehia, A.M.; Arafa, R.M.; Abbas, S.S.; Amer, S.M. Ratio manipulating spectrophotometry versus chemometry as stability indicating methods for cefquinome sulfate determination. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 153, 231-240.
[http://dx.doi.org/10.1016/j.saa.2015.08.037] [PMID: 26318697]
[57]
ICH Guidelines, Validation of Analytical Procedures: Text and Methodology, Q2 (R1) 2005.
[58]
Gałuszka, A.; Migaszewski, Z.M.; Konieczka, P.; Namieśnik, J. Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC. Trends Analyt. Chem., 2012, 37, 61-72.
[http://dx.doi.org/10.1016/j.trac.2012.03.013]
[59]
Tantawy, M.A.; Weshahy, S.A.; Wadie, M.; Rezk, M.R. Novel HPTLC densitometric methods for determination of tamsulosin HCl and tadalafil in their newly formulated dosage form: Comparative study and green profile assessment Biomed; Chromatogr, 2020.
[60]
Mahrouse, M.A.; Lamie, N.T. Experimental design methodology for optimization and robustness determination in ion pair RP-HPLC method development: Application for the simultaneous determination of metformin hydrochloride, alogliptin benzoate and repaglinide in tablets. Microchem. J., 2019, 147, 691-706.
[http://dx.doi.org/10.1016/j.microc.2019.03.038]