Graphene-based Room Temperature Gas Sensing Materials

Page: [98 - 114] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Gas sensing materials essentially dominate the performances of the gas sensors which are widely applied in environmental monitoring, industrial production and medical diagnosis. However, most of the traditional gas sensing materials show excellent performances only at high operating temperatures, which are high energy consumptive and have potential issues in terms of reliability and safety of the sensors. Therefore, the development of Room Temperature (RT) gas sensing materials becomes a research hotspot in this field. In recent years, graphene-based materials have been studied as a class of promising RT gas sensing materials because graphene has a unique twodimensional (2D) structure with high electron mobility and superior feasibility of assembling with other “guest components” (mainly small organic molecules, macromolecules and nanoparticles). More interestingly, its electrical properties become even more sensitive toward gas molecules at RT after surface modification. In this review, we have summarized the recently reported graphenebased RT gas sensing materials for the detection of NO2, H2S, NH3, CO2, CO, SO2, Volatile Organic Compounds (VOCs) (i.e. formaldehyde, acetone, toluene, ethanol), as well as Liquefied Petroleum Gas (LPG) and highlighted the latest researches with respect to supramolecular modification of graphene for gas sensing. The corresponding structural features and gas sensing mechanisms of the graphene-based gas sensors have also been generalized.

Keywords: Gas sensor, graphene, room temperature, supramolecular assembly, composite, volatile organic compounds.

Graphical Abstract

[1]
(a) Varghese SS, Lonkar S, Singh KK, Swaminathan S, Abdala A. Recent advances in graphene based gas sensors. Sens Actuators B Chem 2015; 218: 160-83.
[http://dx.doi.org/10.1016/j.snb.2015.04.062;] ; (b) Wang T, Huang D, Yang Z, et al. A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett 2016; 8(2): 95-119.
[http://dx.doi.org/10.1007/s40820-015-0073-1] [PMID: 30460270] ; (c) Tripathi KM, Kim T, Losic D, Tung TT. Recent advances in engineered graphene and composites for detection of volatile organic compounds (VOCs) and non-invasive diseases diagnosis. Carbon 2016; 110: 97-129.
[http://dx.doi.org/10.1016/j.carbon.2016.08.040]
[2]
McCue JT, Ying JY. SnO2-In2O3 nanocomposites as semiconductor gas sensors for CO and NOx detection. Chem Mater 2007; 19(5): 1009-15.
[http://dx.doi.org/10.1021/cm0617283]
[3]
Wang W, Li Z, Jiang T, et al. Sulfonated poly(ether ether ketone)/polypyrrole core-shell nanofibers: a novel polymeric adsorbent/conducting polymer nanostructures for ultrasensitive gas sensors. ACS Appl Mater Interfaces 2012; 4(11): 6080-4.
[http://dx.doi.org/10.1021/am301712t] [PMID: 23088615]
[4]
Jeon JY, Kang BC, Byun YT, Ha TJ. High-performance gas sensors based on single-wall carbon nanotube random networks for the detection of nitric oxide down to the ppb-level. Nanoscale 2019; 11(4): 1587-94.
[http://dx.doi.org/10.1039/C8NR07393G] [PMID: 30543231]
[5]
Kim Y, Kang SK, Oh NC, et al. Improved sensitivity in schottky contacted two-dimensional MoS2 gas sensor. ACS Appl Mater Interfaces 2019; 11(42): 38902-9.
[http://dx.doi.org/10.1021/acsami.9b10861] [PMID: 31592637]
[6]
(a) Maeng S, Kim SW, Lee DH, Moon SE, Kim KC, Maiti A. SnO2 nanoslab as NO2 sensor: identification of the NO2 sensing mechanism on a SnO2 surface. ACS Appl Mater Interfaces 2014; 6(1): 357-63.
[http://dx.doi.org/10.1021/am404397f] [PMID: 24309131] ; (b) Choi SJ, Jang B-H, Lee S-J, Min BK, Rothschild A, Kim I-D. Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO(2) nanofibers functionalized with reduced graphene oxide nanosheets. ACS Appl Mater Interfaces 2014; 6(4): 2588-97.
[http://dx.doi.org/10.1021/am405088q] [PMID: 24456186]
[7]
(a) Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. A roadmap for graphene. Nature 2012; 490(7419): 192-200.
[http://dx.doi.org/10.1038/nature11458] [PMID: 23060189] ; (b) Huang X, Qi X, Boey F, Zhang H. Graphene-based composites. Chem Soc Rev . 2012; 41(2): 666-86.
[http://dx.doi.org/10.1039/C1CS15078B] [PMID: 21796314] ; (c) He Q, Wu S, Yin Z, Zhang H. Graphene-based electronic sensors. Chem Sci (Camb) 2012; 3(6): 1764.
[http://dx.doi.org/10.1039/c2sc20205k]
[8]
Schedin F, Geim AK, Morozov SV, et al. Detection of individual gas molecules adsorbed on graphene. Nat Mater 2007; 6(9): 652-5.
[http://dx.doi.org/10.1038/nmat1967] [PMID: 17660825]
[9]
(a) Yang Y, Li S, Yang W, Yuan W, Xu J, Jiang Y. In situ polymerization deposition of porous conducting polymer on reduced graphene oxide for gas sensor. ACS Appl Mater Interfaces 2014; 6(16): 13807-14.
[http://dx.doi.org/10.1021/am5032456] [PMID: 25073562] ; (b) Liu L, Yang M, Gao S, et al. Co3O4 hollow nanosphere-decorated graphene sheets for H2S sensing near room temperature. ACS Appl Nano Mater 2019; 2(9): 5409-19.
[http://dx.doi.org/10.1021/acsanm.9b01038]
[10]
(a) Lu G, Ocola LE, Chen J. Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 2009; 20(44)445502
[http://dx.doi.org/10.1088/0957-4484/20/44/445502] [PMID: 19809107] ; (b) Hu N, Yang Z, Wang Y, et al. Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology 2014; 25(2)025502
[http://dx.doi.org/10.1088/0957-4484/25/2/025502] [PMID: 24334417] ; (c) Yuan W, Liu A, Huang L, Li C, Shi G. High-performance NO2 sensors based on chemically modified graphene. Adv Mater 2013; 25(5): 766-71.
[http://dx.doi.org/10.1002/adma.201203172] [PMID: 23139053]
[11]
(a) Wang X, Li X, Zhao Y, Chen Y, Yu J, Wang J. The influence of oxygen functional groups on gas-sensing properties of reduced graphene oxide (rGO) at room temperature. RSC Advances 2016; 6(57): 52339-46.
[http://dx.doi.org/10.1039/C6RA05659H] ; (b) Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE. Reduced graphene oxide molecular sensors. Nano Lett 2008; 8(10): 3137-40.
[http://dx.doi.org/10.1021/nl8013007] [PMID: 18763832]
[12]
Mao S, Cui S, Lu G, Yu K, Wen Z, Chen J. Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals. J Mater Chem 2012; 22(22): 11009.
[http://dx.doi.org/10.1039/c2jm30378g]
[13]
Chen WY, Yen C-C, Xue S, Wang H, Stanciu LA. Surface functionalization of layered molybdenum disulfide for the selective detection of volatile organic compounds at room temperature. ACS Appl Mater Interfaces 2019; 11(37): 34135-43.
[http://dx.doi.org/10.1021/acsami.9b13827] [PMID: 31453680]
[14]
Kumar S, Kaushik S, Pratap R, Raghavan S. Graphene on paper: a simple, low-cost chemical sensing platform. ACS Appl Mater Interfaces 2015; 7(4): 2189-94.
[http://dx.doi.org/10.1021/am5084122] [PMID: 25597697]
[15]
Srivastava S, Jain SK, Gupta G, Senguttuvan TD, Gupta BK. Boron-doped few-layer graphene nanosheet gas sensor for enhanced ammonia sensing at room temperature. RSC Advances 2020; 10(2): 1007-14.
[http://dx.doi.org/10.1039/C9RA08707A]
[16]
(a) Li X, Wang J, Xie D, et al. Flexible room-temperature formaldehyde sensors based on rGO film and rGo/MoS2 hybrid film. Nanotechnology 2017; 28(32): 325501.
[http://dx.doi.org/10.1088/1361-6528/aa79e6] [PMID: 28617668] ; (b) Wang X, Gu D, Li X, et al. Reduced graphene oxide hybridized with WS2 nanoflakes based heterojunctions for selective ammonia sensors at room temperature. Sens Actuators B Chem 2019; 282: 290-9.
[http://dx.doi.org/10.1016/j.snb.2018.11.080] ; (c) Wang J, Deng H, Li X, Yang C, Xia Y. Visible-light photocatalysis enhanced room-temperature formaldehyde gas sensing by MoS2/rGO hybrids. Sens Actuators B Chem 2020.304127317
[http://dx.doi.org/10.1016/j.snb.2019.127317]
[17]
(a) Chen Z, Umar A, Wang S, et al. Supramolecular fabrication of multilevel graphene-based gas sensors with high NO2 sensibility. Nanoscale . 2015; 7(22): 10259-66.
[http://dx.doi.org/10.1039/C5NR01770J] [PMID: 25990644] ; (b) Pei W, Zhang T, Wang Y, et al. Enhancement of charge transfer between graphene and donor-π-acceptor molecule for ultrahigh sensing performance. Nanoscale 2017; 9(42): 16273-80.
[http://dx.doi.org/10.1039/C7NR04209D] [PMID: 29046916] ; (c) Chen Z, Wang J, Pan D, et al. Mimicking a dog’s nose: scrolling graphene nanosheets. ACS Nano 2018; 12(3): 2521-30.
[http://dx.doi.org/10.1021/acsnano.7b08294] [PMID: 29512386]
[18]
Niu F, Liu J-M, Tao L-M, Wang W, Song W-G. Nitrogen and silica co-doped graphene nanosheets for NO2 gas sensing. J Mater Chem A Mater Energy Sustain 2013; 1(20): 6130.
[http://dx.doi.org/10.1039/c3ta11070b]
[19]
(a) Xia Y, Wang J, Xu JL, et al. Confined formation of ultrathin ZnO nanorods/reduced graphene oxide mesoporous nanocomposites for high-performance room-temperature NO2 sensors. ACS Appl Mater Interfaces 2016; 8(51): 35454-63.
[http://dx.doi.org/10.1021/acsami.6b12501] [PMID: 27966870] ; (b) Zhang D, Liu A, Chang H, Xia B. Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Advances 2015; 5(4): 3016-22.
[http://dx.doi.org/10.1039/C4RA10942B] ; (c) Lee H-Y, Heish Y-C, Lee C-T. High sensitivity detection of nitrogen oxide gas at room temperature using zinc oxide-reduced graphene oxide sensing membrane. J Alloys Compd 2019; 773: 950-4.
[http://dx.doi.org/10.1016/j.jallcom.2018.09.290] ; (d) Tian Z, Song P, Yang Z, Wang Q. Reduced graphene oxide-porous In2O3 nanocubes hybrid nanocomposites for room-temperature NH3 sensing. Chin Chem Lett 2020; 31: 2067-70.
[http://dx.doi.org/10.1016/j.cclet.2020.01.025]
[20]
Li X, Wang J, Xie D, et al. Reduced graphene oxide/MoS2 hybrid films for room-temperature formaldehyde detection. Mater Lett 2017; 189: 42-5.
[http://dx.doi.org/10.1016/j.matlet.2016.11.046]
[21]
Chen Z, Wang J, Umar A, Wang Y, Li H, Zhou G. Three-dimensional crumpled graphene-based nanosheets with ultrahigh NO2 gas sensibility. ACS Appl Mater Interfaces 2017; 9(13): 11819-27.
[http://dx.doi.org/10.1021/acsami.7b01229] [PMID: 28299928]
[22]
Lipatov A, Varezhnikov A, Wilson P, Sysoev V, Kolmakov A, Sinitskii A. Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale 2013; 5(12): 5426-34.
[http://dx.doi.org/10.1039/c3nr00747b] [PMID: 23661278]
[23]
(a) Sun D, Luo Y, Debliquy M, Zhang C. Graphene-enhanced metal oxide gas sensors at room temperature: a review. Beilstein J Nanotechnol 2018; 9: 2832-44.
[http://dx.doi.org/10.3762/bjnano.9.264] [PMID: 30498655] ; (b) Joshi N, Hayasaka T, Liu Y, Liu H, Oliveira ON Jr, Lin L. A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Mikrochim Acta 2018; 185(4): 213.
[http://dx.doi.org/10.1007/s00604-018-2750-5] [PMID: 29594538] ; (c) Gupta Chatterjee S, Chatterjee S, Ray AK, Chakraborty AK. Graphene metal oxide nanohybrids for toxic gas sensor: a review. Sens Actuators B Chem 2015; 221: 1170-81.
[http://dx.doi.org/10.1016/j.snb.2015.07.070]
[24]
(a) Fairbrother A, Sanchez-Valencia JR, Lauber B, et al. High vacuum synthesis and ambient stability of bottom-up graphene nanoribbons. Nanoscale 2017; 9(8): 2785-92.
[http://dx.doi.org/10.1039/C6NR08975E] [PMID: 28155928] ; (b) Buzaglo M, Ruse E, Levy I, et al. Top-down, scalable graphene sheets production: it is all about the precipitate. Chem Mater 2017; 29(23): 9998-10006.
[http://dx.doi.org/10.1021/acs.chemmater.7b03428]
[25]
Poniatowska A, Trzaskowski M, Ciach T. Production and properties of top-down and bottom-up graphene oxide. Colloid Surf A 2019; 561: 315-24.
[http://dx.doi.org/10.1016/j.colsurfa.2018.10.049]
[26]
Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 2009; 9(1): 30-5.
[http://dx.doi.org/10.1021/nl801827v] [PMID: 19046078]
[27]
Losurdo M, Giangregorio MM, Capezzuto P, Bruno G. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys Chem Chem Phys 2011; 13(46): 20836-43.
[http://dx.doi.org/10.1039/c1cp22347j] [PMID: 22006173]
[28]
Wu J, Feng S, Li Z, et al. Boosted sensitivity of graphene gas sensor via nanoporous thin film structures. Sens Actuators B Chem 2017; 255: 1805-13.
[http://dx.doi.org/10.1016/j.snb.2017.08.202]
[29]
Yavari F, Castillo E, Gullapalli H, Ajayan PM. NikhilKoratkar. High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Appl Phys Lett 2012; 100(20)203120
[http://dx.doi.org/10.1063/1.4720074]
[30]
Choi SY. Flexible NO2 gas sensor using multilayer graphene films by chemical vapor deposition. Carbon Lett 2013; 14(3): 186-9.
[http://dx.doi.org/10.5714/CL.2013.14.3.186]
[31]
Deokar G, Casanova-Cháfer J, Rajput NS, et al. Wafer-scale few-layer graphene growth on Cu/Ni films for gas sensing applications. Sens Actuators B Chem 2020; 305127458
[http://dx.doi.org/10.1016/j.snb.2019.127458]
[32]
Bo Z, Yuan M, Mao S, Chen X, Yan J, Cen K. Decoration of vertical graphene with tin dioxide nanoparticles for highly sensitive room temperature formaldehyde sensing. Sens Actuators B Chem 2018; 256: 1011-20.
[http://dx.doi.org/10.1016/j.snb.2017.10.043]
[33]
Kumar R, Kushwaha N, Mittal J. Superior, rapid and reversible sensing activity of graphene-SnO hybrid film for low concentration of ammonia at room temperature. Sens Actuators B Chem 2017; 244: 243-51.
[http://dx.doi.org/10.1016/j.snb.2016.12.111]
[34]
Lin KL. The formation of electric circuits with carbon nanotubes and copper using tin solder. Carbon 2011; 49(13): 4385-91.
[http://dx.doi.org/10.1016/j.carbon.2011.06.029]
[35]
Mortazavi Zanjani SM, Sadeghi MM, Holt M, Chowdhury SF, Tao L, Akinwande D. Enhanced sensitivity of graphene ammonia gas sensors using molecular doping. Appl Phys Lett 2016; 108(3)033106
[http://dx.doi.org/10.1063/1.4940128]
[36]
Zhang YH, Chen YB, Zhou KG, et al. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 2009; 20(18)185504
[http://dx.doi.org/10.1088/0957-4484/20/18/185504] [PMID: 19420616]
[37]
Seekaew Y, Wisitsoraat A, Phokharatkul D, Wongchoosuk C. Room temperature toluene gas sensor based on TiO2 nanoparticles decorated 3D graphene-carbon nanotube nanostructures. Sens Actuators B Chem 2019; 279: 69-78.
[http://dx.doi.org/10.1016/j.snb.2018.09.095]
[38]
Dong L, Zheng P, Yang Y, et al. NO2 gas sensor based on graphene decorated with Ge quantum dots. Nanotechnology 2019; 30(7)074004
[http://dx.doi.org/10.1088/1361-6528/aaf3d7] [PMID: 30523993]
[39]
Yan X, Wu Y, Li R, et al. High-performance UV-assisted NO2 sensor based on chemical vapor deposition graphene at room temperature. ACS Omega 2019; 4(10): 14179-87.
[http://dx.doi.org/10.1021/acsomega.9b00935] [PMID: 31508539]
[40]
Fei H, Wu G, Cheng WY, et al. O. C.; Heng, C.; Chang, C. R.; Wu, H. C. Enhanced NO2 sensing at room temperature with graphene via monodisperse polystyrene bead decoration. ACS Omega 2019; 4(2): 3812-9.
[http://dx.doi.org/10.1021/acsomega.8b03540] [PMID: 31459592]
[41]
Rafiefard N. A graphene/TiS3 heterojunction for resistive sensing of polar vapors at room temperature Microchim. Acta 2020; 187(117)
[http://dx.doi.org/10.1007/s00604-019-4097-y]
[42]
He L, Lv H, Ma L, et al. Controllable synthesis of intercalated γ-Bi2MoO6/graphene nanosheet composites for high performance NO2 gas sensor at room temperature. Carbon 2020; 157: 22-32.
[http://dx.doi.org/10.1016/j.carbon.2019.10.011]
[43]
Wang Z, Han T, Fei T, Liu S, Zhang T. Investigation of microstructure effect on NO2 sensors based on SnO2 nanoparticles/reduced graphene oxide hybrids. ACS Appl Mater Interfaces 2018; 10(48): 41773-83.
[http://dx.doi.org/10.1021/acsami.8b15284] [PMID: 30419750]
[44]
(a) Choi SJ, Fuchs F, Demadrille R, et al. Fast responding exhaled-breath sensors using WO3 hemitubes functionalized by graphene-based electronic sensitizers for diagnosis of diseases. ACS Appl Mater Interf 2014; 6(12): 9061-70.
[http://dx.doi.org/10.1021/am501394r] [PMID: 24844154] ; (b) Singkammo S, Wisitsoraat A, Sriprachuabwong C, Tuantranont A, Phanichphant S, Liewhiran C. Electrolytically exfoliated graphene-loaded flame-made Ni-doped SnO2 composite film for acetone sensing. ACS Appl Mater Interfaces 2015; 7(5): 3077-92.
[http://dx.doi.org/10.1021/acsami.5b00161] [PMID: 25602118]
[45]
Wu J, Wu Z, Ding H, et al. Flexible, 3D SnS2/reduced graphene oxide heterostructured NO2 sensor. Sens Actuators B Chem 2020; 305127445
[http://dx.doi.org/10.1016/j.snb.2019.127445]
[46]
Acharyya D, Bhattacharyya P. Highly efficient room-temperature gas sensor based on TiO2 nanotube-reduced graphene-oxide hybrid device. IEEE Electron Device Lett 2016; 37(5): 656-9.
[http://dx.doi.org/10.1109/LED.2016.2544954]
[47]
Huang Y, Jiao W, Chu Z, et al. High sensitivity, humidity-independent, flexible NO2 and NH3 gas sensors based on SnS2 hybrid functional graphene ink. ACS Appl Mater Interfaces 2020; 12(1): 997-1004.
[http://dx.doi.org/10.1021/acsami.9b14952] [PMID: 31825202]
[48]
Gu F, Nie R, Han D, Wang Z. In2O3–graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature. Sens Actuators B Chem 2015; 219: 94-9.
[http://dx.doi.org/10.1016/j.snb.2015.04.119]
[49]
Li X, Zhao Y, Wang X, Wang J, Gaskov AM, Akbar SA. Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors. Sens Actuators B Chem 2016; 230: 330-6.
[http://dx.doi.org/10.1016/j.snb.2016.02.069]
[50]
Zhang B, Liu G, Cheng M, et al. The preparation of reduced graphene oxide-encapsulated α-Fe2O3 hybrid and its outstanding NO2 gas sensing properties at room temperature. Sens Actuators B Chem 2018; 261: 252-63.
[http://dx.doi.org/10.1016/j.snb.2018.01.143]
[51]
Zhu X, Zhou Y, Guo Y, Ren H, Gao C. Nitrogen dioxide sensing based on multiple-morphology cuprous oxide mixed structures anchored on reduced graphene oxide nanosheets at room temperature. Nanotechnology 2019; 30(45)455502
[http://dx.doi.org/10.1088/1361-6528/ab37ed] [PMID: 31370055]
[52]
Seekaew Y, Pon-On W, Wongchoosuk C. Ultrahigh selective room-temperature ammonia gas sensor based on tin-titanium dioxide/reduced graphene/carbon nanotube nanocomposites by the solvothermal method. ACS Omega 2019; 4(16): 16916-24.
[http://dx.doi.org/10.1021/acsomega.9b02185] [PMID: 31646238]
[53]
Zhang L, Zhang J, Huang Y, et al. Stability and sensing enhancement by nanocubic CeO2 with 100 polar facets on graphene for NO2 at room temperature. ACS Appl Mater Interfaces 2020; 12(4): 4722-31.
[http://dx.doi.org/10.1021/acsami.9b18155] [PMID: 31894961]
[54]
Ugale AD, Umarji GG, Jung SH, et al. ZnO decorated flexible and strong graphene fibers for sensing NO2 and H2S at room temperature. Sens Actuators B Chem 2020.308127690
[http://dx.doi.org/10.1016/j.snb.2020.127690]
[55]
Li D, Müller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 2008; 3(2): 101-5.
[http://dx.doi.org/10.1038/nnano.2007.451] [PMID: 18654470]
[56]
Su PG, Shieh HC. Flexible NO2 sensors fabricated by layer-by-layer covalent anchoring and in situ reduction of graphene oxide. Sens Actuators B Chem 2014; 190: 865-72.
[http://dx.doi.org/10.1016/j.snb.2013.09.078]
[57]
Srinivasan S, Je SH, Back S, et al. Ordered supramolecular gels based on graphene oxide and tetracationic cyclophanes. Adv Mater 2014; 26(17): 2725-617.
[http://dx.doi.org/10.1002/adma.201304334]
[58]
Yang Z, Chen Y, Deng J. Polyelectrolytes/reduced graphene oxide assembled film as a promising NO2 gas sensing material. Ceram Int 2020; 46(4): 5119-25.
[http://dx.doi.org/10.1016/j.ceramint.2019.10.255]
[59]
Lin; Hung-Hsiao. Characterizing well-ordered CuO nanofibrils synthesized through gas-solid reactions. J Appl Phys 2004; 95(10): 5889-94.
[http://dx.doi.org/10.1063/1.1690114]
[60]
Zhang D, Jiang C, Liu J, Cao Y. Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly. Sens Actuators B Chem 2017; 247: 875-82.
[http://dx.doi.org/10.1016/j.snb.2017.03.108]
[61]
Huang D, Yang Z, Li X, et al. Three-dimensional conductive networks based on stacked SiO2@graphene frameworks for enhanced gas sensing. Nanoscale 2017; 9(1): 109-18.
[http://dx.doi.org/10.1039/C6NR06465E] [PMID: 27763653]
[62]
Wang J, Rathi S, Singh B, et al. Dielectrophoretic assembly of Pt nanoparticle-reduced graphene oxide nanohybrid for highly-sensitive multiple gas sensor. Sens Actuators B Chem 2015; 220: 755-61.
[http://dx.doi.org/10.1016/j.snb.2015.05.133]
[63]
Li X, Wang J, Xie D, et al. Reduced graphene oxide/hierarchical flower-like zinc oxide hybrid films for room temperature formaldehyde detection. Sens Actuators B Chem 2015; 221: 1290-8.
[http://dx.doi.org/10.1016/j.snb.2015.07.102]
[64]
Bai S, Guo J, Sun J, et al. Enhancement of NO2-sensing performance at room temperature by graphene-modified polythiophene. Ind Eng Chem Res 2016; 55(19): 5788-94.
[http://dx.doi.org/10.1021/acs.iecr.6b00418]
[65]
Andre RS, Shimizu FM, Miyazaki CM, et al. Hybrid layer-by-layer (LBL) films of polyaniline, graphene oxide and zinc oxide to detect ammonia. Sens Actuators B Chem 2017; 238: 795-801.
[http://dx.doi.org/10.1016/j.snb.2016.07.099]
[66]
Wu J, Tao K, Guo Y, et al. A 3D chemically modified graphene hydrogel for fast, highly sensitive, and selective gas sensor. Adv Sci (Weinh) 2016; 4(3)1600319
[http://dx.doi.org/10.1002/advs.201600319] [PMID: 28331786]
[67]
Zhang D, Liu J, Jiang C, Li P, Sun YE. High-performance sulfur dioxide sensing properties of layer-by-layer self-assembled titania-modified graphene hybrid nanocomposite. Sens Actuators B Chem 2017; 245: 560-7.
[http://dx.doi.org/10.1016/j.snb.2017.01.200]
[68]
Zhang D, Liu J, Jiang C, Liu A, Xia B. Quantitative detection of formaldehyde and ammonia gas via metal oxide-modified graphene-based sensor array combining with neural network model. Sens Actuators B Chem 2017; 240: 55-65.
[http://dx.doi.org/10.1016/j.snb.2016.08.085]
[69]
Chi H, Xu Z, Duan X, Yang J, Wang F, Li Z. High-performance colorimetric room-temperature NO2 sensing using spin-coated graphene/polyelectrolyte reflecting film. ACS Appl Mater Interfaces 2019; 11(35): 32390-7.
[http://dx.doi.org/10.1021/acsami.9b09901] [PMID: 31390858]
[70]
Guo Z, Wang B, Wang X, et al. A high-sensitive room temperature gas sensor based on cobalt phthalocyanines and reduced graphene oxide nanohybrids for the ppb-levels of ammonia detection. RSC Advances 2019; 9(64): 37518-25.
[http://dx.doi.org/10.1039/C9RA08065A]
[71]
Wu J, Wei Y, Ding H, et al. Green synthesis of 3D chemically functionalized graphene hydrogel for high-performance NH3 and NO2 detection at room temperature. ACS Appl Mater Interfaces 2020; 12(18): 20623-32.
[http://dx.doi.org/10.1021/acsami.0c00578] [PMID: 32297738]
[72]
Feng Q, Li X, Wang J. Percolation effect of reduced graphene oxide (rGO) on ammonia sensing of rGO-SnO2 composite based sensor. Sens Actuators B Chem 2017; 243: 1115-26.
[http://dx.doi.org/10.1016/j.snb.2016.12.075]
[73]
Duy LT, Kim D-J, Trung TQ, et al. High performance three-dimensional chemical sensor platform using reduced graphene oxide formed on high aspect-ratio micro-pillars. Adv Funct Mater 2015; 25(6): 883-90.
[http://dx.doi.org/10.1002/adfm.201401992]
[74]
Tai H, Yuan Z, Zheng W, Ye Z, Liu C, Du X. ZnO nanoparticles/reduced graphene oxide bilayer thin films for improved NH3-sensing performances at room temperature. Nanoscale Res Lett 2016; 11(1): 130.
[http://dx.doi.org/10.1186/s11671-016-1343-7] [PMID: 26956599]
[75]
Li X. Humidity sensing behaviors of graphene oxide-silicon bilayer flexible structure. Sens Actuators B Chem 2012; 161(1): 1053-8.
[http://dx.doi.org/10.1016/j.snb.2011.12.007]
[76]
Lee SH, Eom W, Shin H, et al. Room-temperature, highly durable Ti3C2Tx MXene/graphene hybrid fibers for NH3 gas sensing. ACS Appl Mater Interfaces 2020; 12(9): 10434-42.
[http://dx.doi.org/10.1021/acsami.9b21765] [PMID: 32040289]
[77]
Song Z, Wei Z, Wang B, et al. Sensitive room-temperature H2S gas sensors employing SnO2 quantum wire/reduced graphene oxide nanocomposites. Chem Mater 2016; 28(4): 1205-12.
[http://dx.doi.org/10.1021/acs.chemmater.5b04850]
[78]
Ye Z, Tai H, Xie T, Yuan Z, Liu C, Jiang Y. Room temperature formaldehyde sensor with enhanced performance based on reduced graphene oxide/titanium dioxide. Sens Actuators B Chem 2016; 223: 149-56.
[http://dx.doi.org/10.1016/j.snb.2015.09.102]
[79]
Feng Q, Li X, Wang J, Gaskov AM. Reduced graphene oxide (rGO) encapsulated Co3O4 composite nanofibers for highly selective ammonia sensors. Sens Actuators B Chem 2016; 222: 864-70.
[http://dx.doi.org/10.1016/j.snb.2015.09.021]
[80]
Minh Triet N. Thai Duy L, Hwang BU, et al. High-performance schottky diode gas sensor based on the heterojunction of threedimensional nanohybrids of reduced graphene oxide-vertical ZnO nanorods on an AlGaN/GaN layer. ACS Appl Mater Interf 2017; 9(36): 30722-32.
[http://dx.doi.org/10.1021/acsami.7b06461] [PMID: 28825301]
[81]
Su P-G, Chen F-Y, Wei C-H. Simple one-pot polyol synthesis of Pd nanoparticles, TiO2 microrods and reduced graphene oxide ternary composite for sensing NH3 gas at room temperature. Sens Actuators B Chem 2018; 254: 1125-32.
[http://dx.doi.org/10.1016/j.snb.2017.07.199]
[82]
Ghule BG, Shaikh SF, Shinde NM, Sangale SS, Shinde PV, Mane RS. Promoted room-temperature LPG gas sensor activities of graphene oxide@Fe2O3 composite sensor over individuals. Mater Res Express 2018; 5(12)125001
[http://dx.doi.org/10.1088/2053-1591/aaddcc]
[83]
Goutham S, Bykkam S, Sadasivuni KK, et al. Room temperature LPG resistive sensor based on the use of a few-layer graphene/SnO2 nanocomposite. Mikrochim Acta 2017; 185(1): 69.
[http://dx.doi.org/10.1007/s00604-017-2537-0] [PMID: 29594642]
[84]
Goutham S, Jayarambabu N, Sandeep C, Sadasivuni KK, Kumar DS, Rao KV. Resistive room temperature LPG sensor based on a graphene/CdO nanocomposite. Mikrochim Acta 2019; 186(2): 62.
[http://dx.doi.org/10.1007/s00604-018-3170-2] [PMID: 30627873]
[85]
Feng Q, Zeng Y, Xu P, et al. Tuning electrical conductivity of amorphous carbon-reduced graphene oxide wrapped-Co3O4 ternary nanofibers for highlysensitive chemical sensors. J Mater Chem A Mater Energy Sustain 2019; 7(48): 27522-34.
[http://dx.doi.org/10.1039/C9TA11550A]
[86]
Tang X, Raskin J-P, Kryvutsa N, et al. An ammonia sensor composed of polypyrrole synthesized on reduced graphene oxide by electropolymerization. Sens Actuators B Chem 2020.305127423
[http://dx.doi.org/10.1016/j.snb.2019.127423]
[87]
Abdali H, Heli B, Ajji A. Stable and sensitive amino-functionalized graphene/polyaniline nanofiber composites for room-temperature carbon dioxide sensing. RSC Advances 2019; 9(70): 41240-7.
[http://dx.doi.org/10.1039/C9RA06223H]