Endocrine, Metabolic & Immune Disorders - Drug Targets

Author(s): Mohammed Ajebli, Ayoub Amssayef and Mohamed Eddouks*

DOI: 10.2174/1871530320666200729151133

Assessment of Antihyperglycemic Effect and Acute Toxicity of the Aqueous Scorzonera undulata Extract in Rats

Page: [1130 - 1141] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Aim: The current study was carried out in order to assess the antihyperglycemic effect of Scorzonera undulata (S. undulata).

Backgroud: Scorzonera undulata subsp. deliciosa (DC.) Maire is used in the Moroccan pharmacopeia for managing diabetes.

Objective: The objective of the study was to evaluate the anithyperglycemic activity in normal and streptozotocin (STZ)-induced diabetic rats as well as the acute toxicity of the aqueous extract of the roots of Scorzonera undulata (S. undulata).

Methods: This study investigated the effects of the root aqueous extract of Scorzonera undulata (AERSU) at a dose of 20 mg/kg on blood glucose levels in normal and streptozotocin(STZ)-induced diabetic rats and the acute toxicity of AERSU was examined. Histopathological examination, preliminary phytochemical investigation, determination of glycogen content and evaluation of α-amylase were also performed.

Results: Both single and repeated oral doses of AERSU (20 mg/kg) produced a significant reduction in blood glucose levels in normal and diabetic rats. Furthermore, repeated oral administration of AERSU during 15 days increased the glycogen content in the liver in both normal and diabetic rats, inhibited α- amylase activity and improved the histological architecture of the liver and pancreas in treated diabetic rats and ameliorated some biochemical parameters such as ALT and AST. In addition, the preliminary phytochemical investigation showed the richness of the roots of S. undulata in certain phytochemicals particularly in polyphenols.

Conclusion: AERSU exhibits an evident antihyperglycemic activity. This pharmacological effect may be due to the protection of surviving pancreatic β cells and hepatocytes, effect of α-amylase and the improvement of glycogen storage in the liver. The dose used in this study seems to be free of any toxicity.

Keywords: Scorzonera undulata, hypoglycemic, diabetes, toxicity, α-amylase, glycogen, streptozotocin, medicinal plant.

Graphical Abstract

[1]
Care, A.D.A. Preventive foot care in diabetes. Diabetes Care, 2004, 27(Suppl. 1), s63-s64.
[http://dx.doi.org/10.2337/diacare.27.2007.S63]
[2]
Baradaran, A.; Madihi, Y.; Merrikhi, A.; Rafieian-Kopaei, M.; Nasri, H. Serum lipoprotein (a) in diabetic patients with various renal function not yet on dialysis. Pak. J. Med. Sci., 2013, 29((1)Suppl.), 354-357.
[http://dx.doi.org/10.12669/pjms.291(Suppl).3533]
[3]
Etxeberria, U.; de la Garza, A.L.; Campión, J.; Martínez, J.A.; Milagro, F.I. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opin. Ther. Targets, 2012, 16(3), 269-297.
[http://dx.doi.org/10.1517/14728222.2012.664134] [PMID: 22360606]
[4]
Mentz, L.; Schenkel, E. A coerência e a confiabilidade das indicações terapêuticas. Porto Alegre, RS., 1989, Vol. 5(n. 1/2), 93-119.
[5]
Kar, A.; Choudhary, B.K.; Bandyopadhyay, N.G. Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats. J. Ethnopharmacol., 2003, 84(1), 105-108.
[http://dx.doi.org/10.1016/S0378-8741(02)00144-7] [PMID: 12499084]
[6]
Cohen, P.; Goedert, M. GSK3 inhibitors: development and therapeutic potential. Nat. Rev. Drug Discov., 2004, 3(6), 479-487.
[http://dx.doi.org/10.1038/nrd1415] [PMID: 15173837]
[7]
Rebbas, K.; Bounar, R.; Gharzouli, R.; Ramdani, M.; Djellouli, Y.; Alatou, D. Plantes d’intérêt médicinale et écologique dans la région d’Ouanougha (M’sila, Algérie). Phytotherapie, 2012, 10(2), 131-142.
[http://dx.doi.org/10.1007/s10298-012-0701-6]
[8]
Beniston, N.T.; Beniston, W.S. Fleurs d’Algérie. Entreprise Nationale du Livre, cop; Alger: Algeria, 1984.
[9]
Barkaoui, M.; Katiri, A.; Boubaker, H.; Msanda, F. Ethnobotanical survey of medicinal plants used in the traditional treatment of diabetes in Chtouka Ait Baha and Tiznit (Western Anti-Atlas), Morocco. J. Ethnopharmacol., 2017, 198, 338-350.
[http://dx.doi.org/10.1016/j.jep.2017.01.023] [PMID: 28109915]
[10]
Ajebli, M.; El Ouady, F.; Eddouks, M. Study of Antihyperglycemic, Antihyperlipidemic and Antioxidant Activities of Tannins Extracted from Warionia saharae Benth. &. Coss. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(2), 189-198.
[http://dx.doi.org/10.2174/1871530318666181029160539] [PMID: 30370866]
[11]
Ajebli, M.; Eddouks, M. Pharmacological and Phytochemical Study of Mentha suaveolens Ehrh in Normal and Streptozotocin-induced Diabetic Rats. Nat. Prod. J., 2018, 8(3), 213-227.
[http://dx.doi.org/10.2174/2210315508666180327120434]
[12]
Hebi, M.; Eddouks, M. Leaf Aqueous Extract of Argania spiniosa Exhibits Antihyperglycemic Effect in Diabetic Rats. Cardiovasc. Hematol. Agents Med. Chem., 2019, 17(1), 64-71.
[http://dx.doi.org/10.2174/1871525717666190611143514] [PMID: 31187714]
[13]
Srivastava, L.M. Essentials of practical biochemistry, 1st ed.; CBS Publishers & Distributors Pvt. Ltd.: Delhi, 2014.
[14]
Schumann, G.; Klauke, R. New IFCC reference procedures for the determination of catalytic activity concentrations of five enzymes in serum: preliminary upper reference limits obtained in hospitalized subjects. Clin. Chim. Acta, 2003, 327(1-2), 69-79.
[http://dx.doi.org/10.1016/S0009-8981(02)00341-8] [PMID: 12482620]
[15]
Morris, S. The estimation of glycogen with anthrone reagent. Science, 1948, 107(2775), 254.
[http://dx.doi.org/10.1126/science.107.2775.254] [PMID: 17814729]
[16]
Evans, W. Trease and Evans Pharmacognosy, 14th ed.; WB Saunders Company Limited: Philadelphia, 1998.
[17]
Farnsworth, N.R. Biological and phytochemical screening of plants. J. Pharm. Sci., 1966, 55(3), 225-276.
[http://dx.doi.org/10.1002/jps.2600550302] [PMID: 5335471]
[18]
Khandelwal, K.R. Practical pharmacognosy; Pragati Books Pvt. Ltd.: Pune, 2008.
[19]
Wall, M.E.; Wani, M.C.; Brown, D.M.; Fullas, F.; Olwald, J.B.; Josephson, F.F.; Thornton, N.M.; Pezzuto, J.M.; Beecher, C.W.; Farnsworth, N.R.; Cordell, G.A.; Kinghorn, A.D. Effect of tannins on screening of plant extracts for enzyme inhibitory activity and techniques for their removal. Phytomedicine, 1996, 3(3), 281-285.
[http://dx.doi.org/10.1016/S0944-7113(96)80067-5] [PMID: 23195084]
[20]
Shoppee, C.W.J.C.s. Chemistry of the steroids, 2nd ed.; , 1964.
[21]
Stahl, E.; Dumont, E. Drug analysis by chromatography and microscopy, 1st ed.; Ann Arbor Science Publishers: Ann Arbor, 1973.
[22]
Makkar, H.P. Quantification of tannins in tree and shrub foliage: a laboratory manual; Springer Science & Business Media, 2003.
[http://dx.doi.org/10.1007/978-94-017-0273-7]
[23]
Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem., 1999, 64(4), 555-559.
[http://dx.doi.org/10.1016/S0308-8146(98)00102-2]
[24]
Broadhurst, R.B.; Jones, W.T. Agriculture. Analysis of condensed tannins using acidified vanillin. J. Sci. Food Agric., 1978, 29(9), 788-794.
[http://dx.doi.org/10.1002/jsfa.2740290908]
[25]
Ajebli, M.; Eddouks, M. Effect of aglycon and glycoside flavonoid-enriched extracts obtained from Buxus sempervirens L. on glucose and lipid metabolism in diabetic rats. Cardiovasc. Hematol. Agents Med. Chem., 2020, 18(1), 55-69.
[http://dx.doi.org/10.2174/1871525718666200109102241] [PMID: 31916521]
[26]
Athmouni, K.; Belghith, T.; Bellassouad, K.; Feki, A.E.; Ayadi, H. Effect of extraction solvents on the biomolecules and antioxidant properties of Scorzonera undulata (Asteraceae): Application of factorial design optimization phenolic extraction. Acta Sci. Pol. Technol. Aliment., 2015, 14(4), 313-330.
[http://dx.doi.org/10.17306/J.AFS.2015.4.32] [PMID: 28068038]
[27]
Tripathy, B.; Chandalia, H.B.; Das, A.K. RSSDI textbook of diabetes mellitus, 3rd ed.; JP Medical Ltd.: Delhi, 2012.
[http://dx.doi.org/10.5005/jp/books/11487]
[28]
Shahjahan, M.; Sabitha, K.E.; Jainu, M.; Shyamala Devi, C.S. Effect of Solanum trilobatum against carbon tetrachloride induced hepatic damage in albino rats. Indian J. Med. Res., 2004, 120(3), 194-198.
[PMID: 15489557]
[29]
Feldman, M.D.; Friedman, L.S.; Brandt, L.J. Sleisenger and Fordtran’s gastrointestinal and liver disease E-book: pathophysiology, diagnosis, management, 10th ed.; Saunders: Philadelphia, 2015.
[30]
Adisakwattana, S.; Lerdsuwankij, O.; Poputtachai, U.; Minipun, A.; Suparpprom, C. Inhibitory activity of cinnamon bark species and their combination effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase. Plant Foods Hum. Nutr., 2011, 66(2), 143-148.
[http://dx.doi.org/10.1007/s11130-011-0226-4] [PMID: 21538147]
[31]
Krane, E.J. Diabetic ketoacidosis. Biochemistry, physiology, treatment, and prevention. Pediatr. Clin. North Am., 1987, 34(4), 935-960.
[http://dx.doi.org/10.1016/S0031-3955(16)36296-4] [PMID: 3112717]
[32]
Devarajan, S.; Venugopal, S. Antioxidant and α-amylase inhibition activities of phenolic compounds in the extracts of Indian honey. Chin. J. Nat. Med., 2012, 10(4), 255-259.
[http://dx.doi.org/10.3724/SP.J.1009.2012.00255]
[33]
Ikarashi, N.; Sato, W.; Toda, T.; Ishii, M.; Ochiai, W.; Sugiyama, K.; Medicine, A. Inhibitory effect of polyphenol-rich fraction from the bark of Acacia mearnsii on itching associated with allergic dermatitis. Evid. Based Complement. Alternat. Med., 2012, 2012, 120389.
[http://dx.doi.org/10.1155/2012/120389] [PMID: 22315629]
[34]
Miao, M.; Jiang, B.; Jiang, H.; Zhang, T.; Li, X. Interaction mechanism between green tea extract and human α-amylase for reducing starch digestion. Food Chem., 2015, 186, 20-25.
[http://dx.doi.org/10.1016/j.foodchem.2015.02.049] [PMID: 25976786]
[35]
Bera, T.K.; Ali, K.M.; Jana, K.; Ghosh, A.; Ghosh, D. Protective effect of aqueous extract of seed of Psoralea corylifolia (Somraji) and seed of Trigonella foenum-graecum L. (Methi) in streptozotocin-induced diabetic rat: A comparative evaluation. Pharmacognosy Res., 2013, 5(4), 277-285.
[http://dx.doi.org/10.4103/0974-8490.118840] [PMID: 24174822]
[36]
Bhat, G.A.; Sharma, P.; Singh, R. Therapeutic Effects of Trigonella foenumgraecum Extract on fasting blood glucose, tissue glycogen, glycosylated haemoglobin, plasma concentrations of insulin and GLP-1 in healthy and diabetic subjects. Int. J. Biol. Med. Res., 2018, 9(1), 6205-6211.
[37]
Kondeti, V.K.; Badri, K.R.; Maddirala, D.R.; Thur, S.K.M.; Fatima, S.S.; Kasetti, R.B.; Rao, C.A. Effect of Pterocarpus santalinus bark, on blood glucose, serum lipids, plasma insulin and hepatic carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats. Food Chem. Toxicol., 2010, 48(5), 1281-1287.
[http://dx.doi.org/10.1016/j.fct.2010.02.023] [PMID: 20178824]
[38]
Moller, D.E. New drug targets for type 2 diabetes and the metabolic syndrome. Nature, 2001, 414(6865), 821-827.
[http://dx.doi.org/10.1038/414821a] [PMID: 11742415]
[39]
Chakravarthy, B.; Saroj, G.; Gambhir, S.; Gode, K. Pancreatic beta cell regeneration–a novel antidiabetic mechanism of Pterocarpus marsupium roxb. Indian J. Pharmacol., 1980, 12(2), 123-127.
[40]
Bahmani, M.; Golshahi, H.; Saki, K.; Rafieian-Kopaei, M.; Delfan, B.; Mohammadi, T. Medicinal plants and secondary metabolites for diabetes mellitus control. Asian Pac. J. Trop. Dis., 2014, 4, S687-S692.
[http://dx.doi.org/10.1016/S2222-1808(14)60708-8]
[41]
Singab, A.N.; Youssef, F.S.; Ashour, M.L. Medicinal plants with potential antidiabetic activity and their assessment. Med. Aromat. Plants, 2014, 3(1)
[http://dx.doi.org/10.4172/2167-0412.1000151]