Recent Advances on Cellulose Sulfuric Acid as Sustainable and Environmentally Benign Organocatalyst for Organic Transformations

Page: [72 - 92] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Cellulose sulfuric acid has proved its competence as a potential bio-compatible, non-toxic, and inexpensive heterogeneous solid acid catalyst in synthetic organic chemistry. Owing to its remarkable properties, such as non-hygroscopic nature, recyclability, superior catalytic activity and high stability, it has been actively explored as an efficient and biodegradable organocatalyst in diverse chemical transformations of synthetic relevance. This review attempts to summarize a significant advancement and catalytic applications of cellulose sulfuric acid for the synthesis of a plethora of biologically relevant organic molecules.

Keywords: Biodegradable catalyst, cellulose sulfuric acid, heterogeneous solid acid catalyst, non-toxic, recyclability and synthesis.

Graphical Abstract

[1]
Sheldon, R.A.; Arends, I.; Hanefeld, U. Green chemistry and catalysis; John Wiley & Sons, 2007.
[http://dx.doi.org/10.1002/9783527611003]
[2]
Lancaster, M. Green chemistry: An introductory text; Royal Society of Chemistry, 2010.
[3]
Anastas, P.T.; Kirchhoff, M.M. Origins, current status, and future challenges of green chemistry. Acc. Chem. Res., 2002, 35(9), 686-694.
[http://dx.doi.org/10.1021/ar010065m ] [PMID: 12234198]
[4]
Sheldon, R.A.; Downing, R.S. Heterogeneous catalytic transformations for environmentally friendly production. Appl. Catal. A Gen., 1999, 189, 163-183.
[http://dx.doi.org/10.1016/S0926-860X(99)00274-4]
[5]
Sheldon, R.A.; van Bekkum, H. Fine chemicals through heterogeneous catalysis; Wiley-VCH: Weinheim, 2011.
[6]
Knozinger, H.; Kochloefl, K. Heterogeneous Catalysis and Solid Catalysts; Wiley-VCH: Weinheim, 2005.
[7]
Clark, J.H. Solid acids for green chemistry. Acc. Chem. Res., 2002, 35(9), 791-797.
[http://dx.doi.org/10.1021/ar010072a ] [PMID: 12234209]
[8]
Leng, Y.; Zhao, J.; Jiang, P.; Lu, D. POSS-derived solid acid catalysts with excellent hydrophobicity for highly efficient transformations of glycerol. Catal. Sci. Technol., 2016, 6, 875-881.
[http://dx.doi.org/10.1039/C5CY01240F]
[9]
Modarresi-Alam, A.R.; Inaloo, I.D.; Kleinpeter, E. Synthesis of primary thiocarbamates by silica sulfuric acid as effective reagent under solid-state and solution conditions. J. Mol. Struct., 2012, 1024, 156-162.
[http://dx.doi.org/10.1016/j.molstruc.2012.05.033]
[10]
Yue, X.; Wu, Z.; Wang, G.; Liang, Y.; Sun, Y.; Song, M.; Zhan, H.; Bi, S.; Liu, W. High acidity cellulose sulfuric acid from sulfur trioxide: a highly efficient catalyst for the one step synthesis of xanthene and dihydroquinazolinone derivatives. RSC Advances, 2019, 9, 28718-28723.
[http://dx.doi.org/10.1039/C9RA05748J]
[11]
Sardarian, A.R.; Dindarloo Inaloo, I.; Modarresi-Alam, A.R.; Kleinpeter, E.; Schilde, U. Metal-free regioselective monocyanation of hydroxy, alkoxy, and benzyloxyarenes by potassium thiocyanate and silica sulfuric acid as a cyanating agent. J. Org. Chem., 2019, 84(4), 1748-1756.
[http://dx.doi.org/10.1021/acs.joc.8b02191 ] [PMID: 30624064]
[12]
Song, H.; Xing, C.; Li, B.; Shen, W. Spherical carbon with SO3H groups as an efficient solid acid catalyst for 2,4,5-triphenyl–imidazole synthesis. ChemistrySelect, 2016, 2, 301-308.
[http://dx.doi.org/10.1002/slct.201500013]
[13]
Xie, H.; Zou, Z.; Du, H.; Zhang, X.; Wang, X.; Yang, X.; Wang, H.; Li, G.; Li, L.; Si, C. Preparation of thermally stable and surface-functionalized cellulose nanocrystals via mixed H2SO4/Oxalic acid hydrolysis. Carbohydr. Polym., 2019, 223115116
[http://dx.doi.org/10.1016/j.carbpol.2019.115116 ] [PMID: 31427005]
[14]
Hattori, H. Solid acid catalysts: Roles in chemical industries and new concepts. Top. Catal., 2010, 53, 432-438.
[http://dx.doi.org/10.1007/s11244-010-9469-9]
[15]
Guibal, E. Heterogeneous catalysis on chitosan-based materials: a review. Prog. Polym. Sci., 2005, 30, 71-109.
[http://dx.doi.org/10.1016/j.progpolymsci.2004.12.001]
[16]
Huang, K.; Xue, L.; Hu, Y-C.; Huang, M-Y.; Jiang, Y-Y. Catalytic behaviors of silica-supported starch–polysulfosiloxane-Pt complexes in asymmetric hydrogenation of 4-methyl-2-pentanone. React. Funct. Polym., 2002, 50, 199-203.
[http://dx.doi.org/10.1016/S1381-5148(01)00103-1]
[17]
Wei, W-L.; Zhu, H-Y.; Zhao, C-L.; Huang, M-Y.; Jiang, Y-Y. Asymmetric hydrogenation of furfuryl alcohol catalyzed by a biopolymer-metal complex, silica-supported alginic acid-amino acid-Pt complex. React. Funct. Polym., 2004, 59, 33-39.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2003.10.004]
[18]
Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. Engl., 2005, 44(22), 3358-3393.
[http://dx.doi.org/10.1002/anie.200460587 ] [PMID: 15861454]
[19]
Brown, R.M.; Saxena, I.M. Cellulose: molecular and structural biology: selected articles on the synthesis, structure and application of cellulose; Springer: Netherlands, 2007.
[http://dx.doi.org/10.1007/978-1-4020-5380-1]
[20]
Shaabani, A.; Maleki, A. Cellulose sulfuric acid as a bio-supported and recyclable solid acid catalyst for the one-pot three-component synthesis of α-amino nitriles. Appl. Catal. A Gen., 2007, 331, 149-151.
[http://dx.doi.org/10.1016/j.apcata.2007.07.021]
[21]
Scala, F.; Fattorusso, E.; Menna, M.; Taglialatela-Scafati, O.; Tierney, M.; Kaiser, M.; Tasdemir, D. Bromopyrrole alkaloids as lead compounds against protozoan parasites. Mar. Drugs, 2010, 8(7), 2162-2174.
[http://dx.doi.org/10.3390/md8072162 ] [PMID: 20714430]
[22]
Wilkerson, W.W.; Copeland, R.A.; Covington, M.; Trzaskos, J.M. Antiinflammatory 4,5-diarylpyrroles. 2. Activity as a function of cyclooxygenase-2 inhibition. J. Med. Chem., 1995, 38(20), 3895-3901.
[http://dx.doi.org/10.1021/jm00020a002 ] [PMID: 7562922]
[23]
Jiang, S.; Lu, H.; Liu, S.; Zhao, Q.; He, Y.; Debnath, A.K. N-substituted pyrrole derivatives as novel human immunodeficiency virus type 1 entry inhibitors that interfere with the gp41 six-helix bundle formation and block virus fusion. Antimicrob. Agents Chemother., 2004, 48(11), 4349-4359.
[http://dx.doi.org/10.1128/AAC.48.11.4349-4359.2004 ] [PMID: 15504864]
[24]
Di Santo, R.; Tafi, A.; Costi, R.; Botta, M.; Artico, M.; Corelli, F.; Forte, M.; Caporuscio, F.; Angiolella, L.; Palamara, A.T. Antifungal agents. 11. N-substituted derivatives of 1-[(aryl)(4-aryl-1H-pyrrol-3-yl)methyl]-1H-imidazole: synthesis, anti-Candida activity, and QSAR studies. J. Med. Chem., 2005, 48(16), 5140-5153.
[http://dx.doi.org/10.1021/jm048997u ] [PMID: 16078834]
[25]
Rahmatpour, A. Cellulose sulfuric acid as a biodegradable and recoverable solid acid catalyst for one pot synthesis of substituted pyrroles under solvent-free conditions at room temperature. React. Funct. Polym., 2011, 71, 80-83.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2010.11.001]
[26]
Liu, B.; Zhang, Z.; Huang, K. Cellulose sulfuric acid as a bio-supported and recyclable solid acid catalyst for the synthesis of 5-hydroxymethylfurfural and 5-ethoxymethylfurfural from fructose. Cellulose, 2013, 20, 2081-2089.
[http://dx.doi.org/10.1007/s10570-013-9944-0]
[27]
Boyce, R.J.; Mulqueen, G.C.; Pattenden, G. Total synthesis of thiangazole, a novel inhibitor of HIV-1 from polyangium sp. Tetrahedron Lett., 1994, 35, 5705-5708.
[http://dx.doi.org/10.1016/S0040-4039(00)77284-4]
[28]
Vizi, E.S. Compounds acting on alpha 1- and alpha 2- adrenoceptors: agonists and antagonists. Med. Res. Rev., 1986, 6(4), 431-449.
[http://dx.doi.org/10.1002/med.2610060403 ] [PMID: 2877125]
[29]
Rondu, F.; Le Bihan, G.; Wang, X.; Lamouri, A.; Touboul, E.; Dive, G.; Bellahsene, T.; Pfeiffer, B.; Renard, P.; Guardiola-Lemaitre, B.; Manechez, D.; Penicaud, L.; Ktorza, A.; Godfroid, J.J. Design and synthesis of imidazoline derivatives active on glucose homeostasis in a rat model of type II diabetes. 1. Synthesis and biological activities of N-benzyl-N'-(arylalkyl)-2-(4′,5′-dihydro-1‘H-imidazol-2’-yl)piperazines. J. Med. Chem., 1997, 40(23), 3793-3803.
[http://dx.doi.org/10.1021/jm9608624 ] [PMID: 9371245]
[30]
Bousquet, P.; Feldman, J. Drugs acting on imidazoline receptors: a review of their pharmacology, their use in blood pressure control and their potential interest in cardioprotection. Drugs, 1999, 58(5), 799-812.
[http://dx.doi.org/10.2165/00003495-199958050-00003 ] [PMID: 10595861]
[31]
Desimoni, G.; Faita, G.; Jørgensen, K.A.C. (2)-symmetric chiral bis(oxazoline) ligands in asymmetric catalysis. Chem. Rev., 2006, 106(9), 3561-3651.
[http://dx.doi.org/10.1021/cr0505324 ] [PMID: 16967916]
[32]
Shaabani, A.; Seyyedhamzeh, M.; Maleki, A.; Rezazadeh, F. Cellulose sulfuric acid: an efficient biopolymer-based catalyst for the synthesis of oxazolines, imidazolines and thiazolines under solvent-free conditions. Appl. Catal. A, 2009, 358, 146-149.
[http://dx.doi.org/10.1016/j.apcata.2009.02.005]
[33]
Shelke, K.F.; Sapkal, S.B.; Kakade, G.K.; Shingate, B.B.; Shingare, M.S. Cellulose sulfuric acid as a bio-supported and recyclable solid acid catalyst for the one-pot synthesis of 2,4,5-triarylimidazoles under microwave irradiation. Green Chem. Lett. Rev., 2010, 3, 27-32.
[http://dx.doi.org/10.1080/17518250903505246]
[34]
Kuarm, B.S.; Madhav, J.V.; Rajitha, B.; Reddy, Y.T.; Reddy, P.N.; Crooks, P.A. Cellulose sulfuric acid: novel and efficient biodegradable and recyclable acid catalystfor the solid-state synthesis of thiadiazolo benzimidazoles. Synth. Commun., 2011, 41, 662-669.
[http://dx.doi.org/10.1080/00397911003632899]
[35]
Maruyama, Y.; Anami, K.; Terasawa, M.; Goto, K.; Imayoshi, T.; Kadobe, Y.; Mizushima, Y. Anti-inflammatory activity of an imidazopyridine derivative (miroprofen). Arzneimittelforschung, 1981, 31(7), 1111-1118.
[PMID: 7196760]
[36]
Sanfilippo, P.J.; Urbanski, M.; Press, J.B.; Dubinsky, B.; Moore, J.B. Jr Synthesis of (aryloxy)alkylamines. 2. Novel imidazo-fused heterocycles with calcium channel blocking and local anesthetic activity. J. Med. Chem., 1988, 31(11), 2221-2227.
[http://dx.doi.org/10.1021/jm00119a026 ] [PMID: 3184128]
[37]
Kaminski, J.J.; Wallmark, B.; Briving, C.; Andersson, B.M. Antiulcer agents. 5. Inhibition of gastric H+/K(+)-ATPase by substituted imidazo[1,2-a]pyridines and related analogues and its implication in modeling the high affinity potassium ion binding site of the gastric proton pump enzyme. J. Med. Chem., 1991, 34(2), 533-541.
[http://dx.doi.org/10.1021/jm00106a008 ] [PMID: 1847427]
[38]
Rival, Y.; Grassy, G.; Michel, G. Synthesis and antibacterial activity of some imidazo[1,2-a]pyrimidine derivatives. Chem. Pharm. Bull. (Tokyo), 1992, 40(5), 1170-1176.
[http://dx.doi.org/10.1248/cpb.40.1170 ] [PMID: 1394630]
[39]
Shaabani, A.; Maleki, A.; Moghimi Rad, J.; Soleimani, E. Cellulose sulfuric acid catalyzed one-pot three-component synthesis of imidazoazines. Chem. Pharm. Bull. (Tokyo), 2007, 55(6), 957-958.
[http://dx.doi.org/10.1248/cpb.55.957 ] [PMID: 17541205]
[40]
Ragavan, R.V.; Vijayakumar, V.; Kumari, N.S. Synthesis and antimicrobial activities of novel 1,5-diaryl pyrazoles. Eur. J. Med. Chem., 2010, 45(3), 1173-1180.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.042 ] [PMID: 20053480]
[41]
Keter, F.K.; Darkwa, J. Perspective: the potential of pyrazole-based compounds in medicine. Biometals, 2012, 25(1), 9-21.
[http://dx.doi.org/10.1007/s10534-011-9496-4 ] [PMID: 22002344]
[42]
Sánchez-Moreno, M.; Gómez-Contreras, F.; Navarro, P.; Marín, C.; Ramírez-Macías, I.; Olmo, F.; Sanz, A.M.; Campayo, L.; Cano, C.; Yunta, M.J. In vitro leishmanicidal activity of imidazole- or pyrazole-based benzo[g]phthalazine derivatives against Leishmania infantum and Leishmania braziliensis species. J. Antimicrob. Chemother., 2012, 67(2), 387-397.
[http://dx.doi.org/10.1093/jac/dkr480 ] [PMID: 22127582]
[43]
Sharon, A.; Pratap, R.; Tiwari, P.; Srivastava, A.; Maulik, P.R.; Ram, V.J. Synthesis and in vivo antihyperglycemic activity of 5-(1H-pyrazol-3-yl)methyl-1H-tetrazoles. Bioorg. Med. Chem. Lett., 2005, 15(8), 2115-2117.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.060 ] [PMID: 15808480]
[44]
Lin, R.; Chiu, G.; Yu, Y.; Connolly, P.J.; Li, S.; Lu, Y.; Adams, M.; Fuentes-Pesquera, A.R.; Emanuel, S.L.; Greenberger, L.M. Design, synthesis, and evaluation of 3,4-disubstituted pyrazole analogues as anti-tumor CDK inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(16), 4557-4561.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.092 ] [PMID: 17574416]
[45]
Nesseri, M.A.; Salimi, M.; Esmaeili, A.A. Cellulose sulfuric acid as a bio-supported and efficient solid acid catalyst for synthesis of pyrazoles in aqueous medium. RSC Advances, 2014, 4, 61193-61199.
[http://dx.doi.org/10.1039/C4RA11440J]
[46]
Mosaddegh, E.; Hassankhani, A.; Baghizadeh, M. Cellulose sulfuric acid as a new, biodegradable and environmentally friendly biopolymer for synthesis of 4,4′-(arylmethylene)bis(3-methyl-1-phenyl-1H-pyrazol-5-ols). J. Chil. Chem. Soc., 2010, 55, 419-420.
[http://dx.doi.org/10.4067/S0717-97072010000400001]
[47]
Siddiqui, Z.N.; Khan, T. An efficient synthesis of novel bis-chalcones and bis-pyrazolines in the presence of cellulose sulfuric acid as biodegradable catalyst under solvent-free conditions. J. Braz. Chem. Soc., 2014, 25, 1002-1011.
[http://dx.doi.org/10.5935/0103-5053.20140072]
[48]
Kamal, A.; Srikanth, Y.V.V.; Ramaiah, M.J.; Khan, M.N.A.; Kashi Reddy, M.; Ashraf, M.; Lavanya, A.; Pushpavalli, S.N.C.V.L.; Pal-Bhadra, M. Synthesis, anticancer activity and apoptosis inducing ability of bisindole linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates. Bioorg. Med. Chem. Lett., 2012, 22(1), 571-578.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.080 ] [PMID: 22104151]
[49]
Bharate, S.B.; Bharate, J.B.; Khan, S.I.; Tekwani, B.L.; Jacob, M.R.; Mudududdla, R.; Yadav, R.R.; Singh, B.; Sharma, P.R.; Maity, S.; Singh, B.; Khan, I.A.; Vishwakarma, R.A. Discovery of 3,3′-diindolylmethanes as potent antileishmanial agents. Eur. J. Med. Chem., 2013, 63, 435-443.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.024 ] [PMID: 23517732]
[50]
Sashidhara, K.V.; Kumar, A.; Kumar, M.; Srivastava, A.; Puri, A. Synthesis and antihyperlipidemic activity of novel coumarin bisindole derivatives. Bioorg. Med. Chem. Lett., 2010, 20(22), 6504-6507.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.055 ] [PMID: 20932744]
[51]
Sivaprasad, G.; Perumal, P.T.; Prabavathy, V.R.; Mathivanan, N. Synthesis and anti-microbial activity of pyrazolylbisindoles--promising anti-fungal compounds. Bioorg. Med. Chem. Lett., 2006, 16(24), 6302-6305.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.019 ] [PMID: 17029797]
[52]
Sujatha, K.; Perumal, P.T.; Muralidharan, D.; Rajendran, M. Synthesis, analgesic and anti-inflammatory activities of bis(indolyl)methanes. Indian J. Chem., 2009, 48B, 267-272.
[53]
Zeligs, A. Diet and estrogen status: The cruciferous connection. J. Med. Food, 1998, 1, 67-68.
[http://dx.doi.org/10.1089/jmf.1998.1.67]
[54]
Sashidhara, K.V.; Kumar, M.; Sonkar, R.; Singh, B.S.; Khanna, A.K.; Bhatia, G. Indole-based fibrates as potential hypolipidemic and antiobesity agents. J. Med. Chem., 2012, 55(6), 2769-2779.
[http://dx.doi.org/10.1021/jm201697v ] [PMID: 22339404]
[55]
Sadaphal, S.A.; Sonar, S.S.; Ware, M.N.; Shingare, M.S. Cellulose sulfuric acid: reusable catalyst for solvent-free synthesis of bis(indolyl)methanes at room temperature. Green Chem. Lett. Rev., 2008, 1, 191-196.
[http://dx.doi.org/10.1080/17518250802637819]
[56]
Gazivoda, T.; Plevnik, M.; Plavec, J.; Kraljević, S.; Kralj, M.; Pavelić, K.; Balzarini, J.; De Clercq, E.; Mintas, M.; Raić-Malić, S. The novel pyrimidine and purine derivatives of l-ascorbic acid: synthesis, one- and two-dimensional 1H and 13C NMR study, cytostatic and antiviral evaluation. Bioorg. Med. Chem., 2005, 13(1), 131-139.
[http://dx.doi.org/10.1016/j.bmc.2004.09.052 ] [PMID: 15582458]
[57]
Montgomery, J.A. Carroll, Jr.; T. Synthesis of potential anticancer agents. IX. 9-Ethyl-6-substituted-purine. J. Am. Chem. Soc., 1957, 79, 5238-5242.
[http://dx.doi.org/10.1021/ja01576a046]
[58]
Wang, Y.; Yang, X.; Zheng, X.; Li, J.; Ye, C.; Song, X. Theacrine, a purine alkaloid with anti-inflammatory and analgesic activities. Fitoterapia, 2010, 81(6), 627-631.
[http://dx.doi.org/10.1016/j.fitote.2010.03.008 ] [PMID: 20227468]
[59]
Joshi, P.C.; Keane, T.C. Investigation of riboflavin sensitized degradation of purine and pyrimidine derivatives of DNA and RNA under UVA and UVB. Biochem. Biophys. Res. Commun., 2010, 400(4), 729-733.
[http://dx.doi.org/10.1016/j.bbrc.2010.08.138 ] [PMID: 20816939]
[60]
Maddila, S.; Momin, M.; Lavanya, P.; Rao, C.V. An efficient and eco-friendly synthesis of 6-chloro-8-substituted-9H-purines using cellulose sulfuric acid as a reusable catalyst under solvent-free conditions. J. Saudi Chem. Soc., 2016, 20, 173-177.
[http://dx.doi.org/10.1016/j.jscs.2012.06.008]
[61]
Marganakop, S.B.; Kamble, R.R.; Hoskeri, J.; Prasad, D.J.; Meti, G.Y. Facile synthesis of novel quinoline derivatives as anticancer agents. Med. Chem. Res., 2014, 23, 2727-2735.
[http://dx.doi.org/10.1007/s00044-013-0855-2]
[62]
Kumar, A.; Srivastava, K.; Kumar, S.R.; Puri, S.K.; Chauhan, P.M.S. Synthesis of new 4-aminoquinolines and quinoline-acridine hybrids as antimalarial agents. Bioorg. Med. Chem. Lett., 2010, 20(23), 7059-7063.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.107 ] [PMID: 20951034]
[63]
Bekhit, A.A.; El-Sayed, O.A.; Aboulmagd, E.; Park, J.Y. Tetrazolo[1,5-a]quinoline as a potential promising new scaffold for the synthesis of novel anti-inflammatory and antibacterial agents. Eur. J. Med. Chem., 2004, 39(3), 249-255.
[http://dx.doi.org/10.1016/j.ejmech.2003.12.005 ] [PMID: 15051173]
[64]
Muruganantham, N.; Sivakumar, R.; Anbalagan, N.; Gunasekaran, V.; Leonard, J.T. Synthesis, anticonvulsant and antihypertensive activities of 8-substituted quinoline derivatives. Biol. Pharm. Bull., 2004, 27(10), 1683-1687.
[http://dx.doi.org/10.1248/bpb.27.1683 ] [PMID: 15467220]
[65]
Luchi, R.J.; Conn, H.L.; Helwig, J. Cardiovascular effects of a quinidine-related compound, 4-hydroxymethyl-6-methoxyquin-oline. Am. J. Cardiol., 1962, 10, 252-260.
[http://dx.doi.org/10.1016/0002-9149(62)90304-1]
[66]
Nevin, R.L. Idiosyncratic quinoline central nervous system toxicity: Historical insights into the chronic neurological sequelae of mefloquine. Int. J. Parasitol. Drugs Drug Resist., 2014, 4(2), 118-125.
[http://dx.doi.org/10.1016/j.ijpddr.2014.03.002 ] [PMID: 25057461]
[67]
Całus, S.; Gondek, E.; Danel, A.; Jarosz, B.; Pokładko, M.; Kityk, A.V. Electroluminescence of 6-R-1,3-diphenyl-1H-pyrazolo[3,4-b]quinoline-based organic light-emitting diodes (R = F, Br, Cl, CH3, C2H3 and N(C6H5)2). Mater. Lett., 2007, 61, 3292-3295.
[http://dx.doi.org/10.1016/j.matlet.2006.11.055]
[68]
Hu, H-Y.; Chen, C-F. A new fluorescent chemosensor for anion based on an artificial cyclictetrapeptide. Tetrahedron Lett., 2006, 47, 175-179.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.162]
[69]
Aly, M.R.E.; Ibrahim, M.M.; Okael, A.M.; Gherbawy, Y.A.M.H. Synthesis, insecticidal, and fungicidal screening of some new synthetic quinoline derivatives. Bioorg. Khim., 2014, 40(2), 234-247.
[http://dx.doi.org/10.7868/S013234231402002X ] [PMID: 25895344]
[70]
Shaabani, A.; Rahmati, A.; Badri, Z. Sulfonated cellulose and starch: new biodegradable and renewable solid acid catalyst for efficient synthesis of quinolones. Catal. Commun., 2008, 9, 13-16.
[http://dx.doi.org/10.1016/j.catcom.2007.05.021]
[71]
Seitz, L.E.; Suling, W.J.; Reynolds, R.C. Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives. J. Med. Chem., 2002, 45(25), 5604-5606.
[http://dx.doi.org/10.1021/jm020310n ] [PMID: 12459027]
[72]
Sarges, R.; Howard, H.R.; Browne, R.G.; Lebel, L.A.; Seymour, P.A.; Koe, B.K. 4-Amino[1,2,4]triazolo[4,3-a]quinoxalines. A novel class of potent adenosine receptor antagonists and potential rapid-onset antidepressants. J. Med. Chem., 1990, 33(8), 2240-2254.
[http://dx.doi.org/10.1021/jm00170a031 ] [PMID: 2374150]
[73]
Gomtsyan, A.; Bayburt, E.K.; Schmidt, R.G.; Zheng, G.Z.; Perner, R.J.; Didomenico, S.; Koenig, J.R.; Turner, S.; Jinkerson, T.; Drizin, I.; Hannick, S.M.; Macri, B.S.; McDonald, H.A.; Honore, P.; Wismer, C.T.; Marsh, K.C.; Wetter, J.; Stewart, K.D.; Oie, T.; Jarvis, M.F.; Surowy, C.S.; Faltynek, C.R.; Lee, C.H. Novel transient receptor potential vanilloid 1 receptor antagonists for the treatment of pain: structure-activity relationships for ureas with quinoline, isoquinoline, quinazoline, phthalazine, quinoxaline, and cinnoline moieties. J. Med. Chem., 2005, 48(3), 744-752.
[http://dx.doi.org/10.1021/jm0492958 ] [PMID: 15689158]
[74]
Jaso, A.; Zarranz, B.; Aldana, I.; Monge, A. Synthesis of new quinoxaline-2-carboxylate 1,4-dioxide derivatives as anti-Mycobacterium tuberculosis agents. J. Med. Chem., 2005, 48(6), 2019-2025.
[http://dx.doi.org/10.1021/jm049952w ] [PMID: 15771444]
[75]
Dell, A.; Williams, D.H.; Morris, H.R.; Smith, G.A.; Feeney, J.; Roberts, G.C.K. Structure revision of the antibiotic echinomycin. J. Am. Chem. Soc., 1975, 97(9), 2497-2502.
[http://dx.doi.org/10.1021/ja00842a029 ] [PMID: 1133418]
[76]
Brien, D.O.; Weaver, M.S.; Lidzey, D.G.; Bradley, D.D.C. Use of poly(phenyl quinoxaline) as an electron transport material in polymer light emitting diodes. Appl. Phys. Lett., 1996, 69, 881-883.
[http://dx.doi.org/10.1063/1.117975]
[77]
Crossley, M.J.; Johnston, L.A. Laterally-extended porphyrin systems incorporating a switchable unit. Chem. Commun. (Camb.), 2002, (10), 1122-1123.
[http://dx.doi.org/10.1039/b111655j ] [PMID: 12122695]
[78]
Mizuno, T.; Wei, W.H.; Eller, L.R.; Sessler, J.L. Phenanthroline complexes bearing fused dipyrrolylquinoxaline anion recognition sites: efficient fluoride anion receptors. J. Am. Chem. Soc., 2002, 124(7), 1134-1135.
[http://dx.doi.org/10.1021/ja017298t ] [PMID: 11841258]
[79]
Patra, A.K.; Dhar, S.; Nethaji, M.; Chakravarty, A.R. Metal-assisted red light-induced DNA cleavage by ternary L-methionine copper(II) complexes of planar heterocyclic bases. Dalton Trans., 2005, 34(5), 896-902.
[http://dx.doi.org/10.1039/b416711b ] [PMID: 15726142]
[80]
Shaabani, A.; Rezayan, A.H.; Behnam, M.; Heidary, M. Green chemistry approaches for the synthesis of quinoxalinederivatives: Comparison of ethanol and water in the presence of the reusable catalyst cellulose sulfuric acid. C. R. Chim., 2009, 12, 1249-1252.
[http://dx.doi.org/10.1016/j.crci.2009.01.006]
[81]
Kuarm, B.S.; Crooks, P.A.; Rajitha, B. An expeditious synthesis of quinoxalines by using biodegradable cellulose sulfuric acid as a solid acid catalyst. Green Chem. Lett. Rev., 2013, 6, 228-232.
[http://dx.doi.org/10.1080/17518253.2012.752041]
[82]
Cavettos, G.; Nano, G.M.; Palmisano, G.; Tagliapietra, S. An asymmetric approach to coumarin anticoagulants via hetero-Diels–Alder cycloaddition. Tetrahedron Asymmetry, 2001, 12, 707-709.
[http://dx.doi.org/10.1016/S0957-4166(01)00124-0]
[83]
Kirkiacharian, S.; Thuy, D.T.; Sicsic, S.; Bakhchinian, R.; Kurkjian, R.; Tonnaire, T. Structure-activity relationships of some 3-substituted-4-hydroxycoumarins as HIV-1 protease inhibitors. Farmaco, 2002, 57(9), 703-708.
[http://dx.doi.org/10.1016/S0014-827X(02)01264-8 ] [PMID: 12385519]
[84]
Wang, C.J.; Hsieh, Y.J.; Chu, C.Y.; Lin, Y.L.; Tseng, T.H. Inhibition of cell cycle progression in human leukemia HL-60 cells by esculetin. Cancer Lett., 2002, 183(2), 163-168.
[http://dx.doi.org/10.1016/S0304-3835(02)00031-9 ] [PMID: 12065091]
[85]
Kayser, O.; Kolodziej, H. Antibacterial activity of extracts and constituents of Pelargonium sidoides and Pelargonium reniforme. Planta Med., 1997, 63(6), 508-510.
[http://dx.doi.org/10.1055/s-2006-957752 ] [PMID: 9434601]
[86]
Fan, G.; Mar, W.; Park, M.K.; Choi, E.W.; Kim, K.; Kim, S. A novel class of inhibitors for steroid 5α-reductase: synthesis and evaluation of umbelliferone derivatives. Bioorg. Med. Chem. Lett., 2001, 11(17), 2361-2363.
[http://dx.doi.org/10.1016/S0960-894X(01)00429-2 ] [PMID: 11527731]
[87]
Kuarm, B.S.; Madhav, J.V.; Laxmi, S.V.; Rajitha, B.; Reddy, Y.T.; Reddy, P.N.; Crooks, P.A. Expeditious pechmann condensation by using biodegradable cellulose sulfuric acid as a solid acid catalyst. Synth. Commun., 2010, 40, 3358-3364.
[http://dx.doi.org/10.1080/00397910903419860]
[88]
Mofakham, H.; Hezarkhani, Z.; Shaabani, A. Cellulose-SO3H as a biodegradable solid acid catalyzed one-pot three-component Ugi reaction: Synthesis of α-amino amide, 3,4-dihydroquinoxalin-2-amine, 4H-benzo[b][1,4]thiazin-2-amine and 1,6-dihydropyrazine-2,3-dicarbonitrile derivatives. J. Mol. Catal. Chem., 2012, 360, 26-34.
[http://dx.doi.org/10.1016/j.molcata.2012.04.002]
[89]
Reddy, P.N.; Reddy, Y.T.; Reddy, M.N.; Rajitha, B.; Crooks, P.A. Cellulose sulfuric acid: An efficient biodegradable and recyclable solid acid catalyst for the one-pot synthesis of 3,4-dihydropyrimidine-2(1H)-ones. Synth. Commun., 2009, 39, 1257-1263.
[http://dx.doi.org/10.1080/00397910802517871]
[90]
Rajack, A.; Yuvaraju, K.; Praveen, C.; Murthy, Y.L.N. A facile synthesis of 3,4-dihydropyrimidinones/thiones and novel N-dihydropyrimidinone-decahydroacridine-1,8-diones catalyzed by cellulose sulfuric acid. J. Mol. Catal. Chem., 2013, 370, 197-204.
[http://dx.doi.org/10.1016/j.molcata.2013.01.003]
[91]
Nikoofar, K.; Heidari, H.; Shahedi, Y. Investigation the catalytic activity of nanofibrillated and nanobacterial cellulose sulfuric acid in synthesis of dihydropyrimidoquinolinetriones. Res. Chem. Intermed., 2018, 44, 4533-4546.
[http://dx.doi.org/10.1007/s11164-018-3402-4]
[92]
Fassihi, A.; Azadpour, Z.; Delbari, N.; Saghaie, L.; Memarian, H.R.; Sabet, R.; Alborzi, A.; Miri, R.; Pourabbas, B.; Mardaneh, J.; Mousavi, P.; Moeinifard, B.; Sadeghi-Aliabadi, H. Synthesis and antitubercular activity of novel 4-substituted imidazolyl-2,6-dimethyl-N3,N5-bisaryl-1,4-dihydropyridine-3,5-dicarboxamides. Eur. J. Med. Chem., 2009, 44(8), 3253-3258.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.027 ] [PMID: 19371979]
[93]
Hilgeroth, A.; Lilie, H. Structure-activity relationships of first bishydroxymethyl-substituted cage dimeric 4-aryl-1,4-dihydropyridines as HIV-1 protease inhibitors. Eur. J. Med. Chem., 2003, 38(5), 495-499.
[http://dx.doi.org/10.1016/S0223-5234(03)00060-6 ] [PMID: 12767599]
[94]
Singh, B.K.; Mishra, M.; Saxena, N.; Yadav, G.P.; Maulik, P.R.; Sahoo, M.K.; Gaur, R.L.; Murthy, P.K.; Tripathi, R.P. Synthesis of 2-sulfanyl-6-methyl-1,4-dihydropyrimidines as a new class of antifilarial agents. Eur. J. Med. Chem., 2008, 43(12), 2717-2723.
[http://dx.doi.org/10.1016/j.ejmech.2008.01.038 ] [PMID: 18339456]
[95]
Huber, I.; Wappl, E.; Herzog, A.; Mitterdorfer, J.; Glossmann, H.; Langer, T.; Striessnig, J. Conserved Ca2+-antagonist-binding properties and putative folding structure of a recombinant high-affinity dihydropyridine-binding domain. Biochem. J., 2000, 347(Pt 3), 829-836.
[http://dx.doi.org/10.1042/bj3470829 ] [PMID: 10769189]
[96]
Murthy, Y.L.N.; Rajack, A.; Moturu, T.R. Jeson babu, J.; Praveen, Ch.; Aruna Lakshmi, K. Design, solvent free synthesis, and antimicrobial evaluation of 1,4 dihydropyridines. Bioorg. Med. Chem. Lett., 2012, 22(18), 6016-6023.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.003 ] [PMID: 22901391]
[97]
Safari, J.; Banitaba, S.H.; Khalili, S.D. Cellulose sulfuric acid catalyzed multicomponent reaction for efficient synthesis of 1,4-dihydropyridines via unsymmetrical Hantzsch reaction in aqueous media. J. Mol. Catal. Chem., 2011, 335, 46-50.
[http://dx.doi.org/10.1016/j.molcata.2010.11.012]
[98]
Mamaghani, M.; Tabatabaeian, K.; Mohammadi, M.; Khorshidi, A. Cellulose-sulfuric acid as an efficient biosupported catalyst in one-pot synthesis of novel heteroaryl substituted 1,4-dihydropyridines. J. Chem., 2013.Article ID 490972
[99]
Nikoofar, K.; Heidari, H.; Shahedi, Y. Nano crystalline cellulose sulfuric acid (s-NCC): a novel green nanocatalyst for the synthesis of polyhydroxy pyrimidine-fused heterocyclic compounds (PPFHs). Cellulose, 2018.
[http://dx.doi.org/10.1007/s10570-018-1942-9]
[100]
Hafez, H.N.; Hegab, M.I.; Ahmed-Farag, I.S.; el-Gazzar, A.B.A. A facile regioselective synthesis of novel spiro-thioxanthene and spiro-xanthene-9′,2-[1,3,4]thiadiazole derivatives as potential analgesic and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2008, 18(16), 4538-4543.
[http://dx.doi.org/10.1016/j.bmcl.2008.07.042 ] [PMID: 18667305]
[101]
Omolo, J.J.; Johnson, M.M.; van Vuuren, S.F.; de Koning, C.B. The synthesis of xanthones, xanthenediones, and spirobenzofurans: their antibacterial and antifungal activity. Bioorg. Med. Chem. Lett., 2011, 21(23), 7085-7088.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.088 ] [PMID: 22014830]
[102]
Zelefack, F.; Guilet, D.; Fabre, N.; Bayet, C.; Chevalley, S.; Ngouela, S.; Lenta, B.N.; Valentin, A.; Tsamo, E.; Dijoux-Franca, M.G. Cytotoxic and antiplasmodial xanthones from Pentadesma butyracea. J. Nat. Prod., 2009, 72(5), 954-957.
[http://dx.doi.org/10.1021/np8005953 ] [PMID: 19296616]
[103]
Iniyavan, P.; Sarveswari, S.; Vijayakumar, V. Synthesis and antioxidant studies of novel bi-, tri-, and tetrapodal 9-aryl-1,8-dioxo-octahydroxanthenes. Tetrahedron Lett., 2015, 56, 1401-1406.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.162]
[104]
Chibale, K.; Visser, M.; van Schalkwyk, D.; Smith, P.J.; Saravanamuthu, A.; Fairlamb, A.H. Exploring the potential of xanthene derivatives as trypanothionereductase inhibitors and chloroquine potentiating agents. Tetrahedron, 2003, 59, 2289-2296.
[http://dx.doi.org/10.1016/S0040-4020(03)00240-0]
[105]
Maddhav, J.V.; Reddy, Y.N.; Reddy, P.N.; Reddy, M.N.; Kuarm, S.; Crooks, P.A.; Rajitha, B. An efficient biodegradable and recyclable solid acid catalyst for the one-pot synthesis of aryl-14H-dibenzo[a,j]xanthenes under solvent-free conditions. J. Mol. Catal. Chem., 2009, 304, 85-87.
[http://dx.doi.org/10.1016/j.molcata.2009.01.028]
[106]
Kuarm, B.S.; Madhav, J.V.; Laxmi, S.V.; Rajitha, B.; Reddy, Y.T.; Reddy, P.N.; Crooks, P.A. Cellulose sulfuric acid: An efficient biodegradable and recyclable solid acid catalyst for the synthesis of 1-oxo-hexahydroxanthene. Synth. Commun., 2011, 1, 1719-1724.
[http://dx.doi.org/10.1080/00397911.2010.492076]
[107]
Azimi, S.C.; Kefayati, H. Cellulose sulfuric acid: an efficient biopolymer-based catalyst for the synthesis of 5H-dibenzo[b,i]xanthene-tetraones and spiro[dibenzo[b,i]xanthene-13,3'indoline]-pentaones under solvent free conditions. Iran. J. Catal., 2013, 3, 123-128.
[108]
Gomha, S.M.; Riyadh, S.M. Cellulose sulfuric acid as an eco-friendly catalyst for novel synthesis of pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidin-5-ones. J. Braz. Chem. Soc., 2015, 26, 916-923.
[http://dx.doi.org/10.5935/0103-5053.20150052]
[109]
Mokrosz, J.L.; Psluchowska, M.H.; Szneler, E.; Drozdz, B. Arch. Chem., 1989, 322, 231.
[110]
Cope, A.C.; Kovacic, P.; Burg, M. Spiro barbituric acids containing a six-membered carbocyclic ring. J. Am. Chem. Soc., 1949, 71, 3658-3662.
[http://dx.doi.org/10.1021/ja01179a023]
[111]
Kuramoto, M.; Tong, C.; Yamada, K.; Chiba, T.; Hayashi, Y.; Uemura, D. Halichlorine, an inhibitor of VCAM-1 induction from the marine sponge Halichondriaokadai Kadata. Tetrahedron Lett., 1996, 37, 3867-3870.
[http://dx.doi.org/10.1016/0040-4039(96)00703-4]
[112]
Foye, W.O. Principle of Medicinal Chemistry; Lea and Febiger: London, 1989, p. 159.
[113]
Goodman, L.S.; Gilman, A. The Pharmacological Basis of Therapeutics; McGraw-Hill: New Delhi, 1991, p. 358.
[114]
Montazeri, N.; Pourshamsian, K.; Bayazi, M.; Kabiri, S. Synthesis of spiroheterobicyclic rings using cellulose sulfuric acid under solvent free conditions. Asian J. Chem., 2013, 25, 3373-3375.
[http://dx.doi.org/10.14233/ajchem.2013.13774]
[115]
Zonouzi, A.; Izakian, Z.; Abdi, K.; Ng, S.W. Synthesis of fluorescent 2,6-dicyano-3,5-disubstituted anilines using cellulose sulfuric acid in aqueous media. Helv. Chim. Acta, 2016, 99, 355-360.
[http://dx.doi.org/10.1002/hlca.201500242]
[116]
Mansoor, S.S.; Aswin, K.; Logaiya, K.; Sudhan, P.N.; Malik, S. Aqueous media preparation of 2-amino-4,6-diphenylnicoti-nonitriles using cellulose sulfuric acid as an efficient catalyst. Res. Chem. Intermed., 2014, 40, 871-885.
[http://dx.doi.org/10.1007/s11164-012-1008-9]
[117]
Duthaler, R.O. Recent developments in the stereoselective synthesis of α-aminoacids. Tetrahedron, 1994, 50, 1539-1650.
[http://dx.doi.org/10.1016/S0040-4020(01)80840-1]
[118]
Oskooie, H.A.; Heravi, M.M.; Tahershamsi, L.; Tajbakhsh, S.S.M. Synthesis of new β-acetamido carbonyl derivatives using cellulose sulfuric acid as an efficient catalyst. Synth. Commun., 2010, 40, 1772-1777.
[http://dx.doi.org/10.1080/00397910903161777]
[119]
Nemati, F.; Fakhaei, A.S.; Amoozadeh, A.; Hayeniaz, Y.S. Highly stereoselective synthesis of β-amino ketones via a Mannich reaction catalyzed by cellulose sulfuric acid as a biodegradable, efficient, and recyclable heterogeneous catalyst. Synth. Commun., 2011, 41, 3695-3702.
[http://dx.doi.org/10.1080/00397911.2010.520101]
[120]
Shaterian, H.R.; Rigi, F.; Arman, M. cellulose sulfuric acid: an efficient and recyclable solid acid catalyst for the protection of hydroxyl groups using HMDS under mild conditions. Chem. Sci. Trans., 2012, 1, 155-161.
[http://dx.doi.org/10.7598/cst2012.137]
[121]
Shaterian, H.R.; Rigi, F. Acetalization of carbonyl compounds as pentaerythritol diacetals and diketals in the presence of cellulose sulfuric acid as an efficient, biodegradable and reusable catalyst. Chin. J. Chem., 2012, 30, 695-698.
[http://dx.doi.org/10.1002/cjoc.201280002]
[122]
Nemati, F.; Elhampour, A. Cellulose sulphuric acid as a biodegradable catalyst for conversion of aryl amines into azides at room temperature under mild conditions. J. Chem. Sci., 2012, 124, 889-892.
[http://dx.doi.org/10.1007/s12039-012-0261-1]
[123]
Nemati, F.; Elhampour, A. Green and efficient diazotizatiom-ioddination of aryl amines using Cellulose sulfuric acid as a biodegradable and recyclable proton source under solvent-free conditions. Scientia Iranica C, 2012, 19, 1594-1596.
[http://dx.doi.org/10.1016/j.scient.2012.10.015]
[124]
Shaabani, A.; Ganji, N.; Seyyedhamzeh, M.; Mofakham, H. Cellulose sulfuric acid: as an efficient bio polymer based catalyst for the selective oxidation of sulfides and thiols by hydrogen peroxide. Iran. J. Chem. Chem. Eng., 2014, 33, 1-7.
[125]
Savaliya, M.L.; Dholakiya, B.Z. Cellulose sulfuric acid catalyzed esterification of biodiesel derived raw glycerol to medium chain triglyceride: The dual advantage. Catal. Lett., 2014, 144, 1399-1406.
[http://dx.doi.org/10.1007/s10562-014-1275-8]