203/212Pb Theranostic Radiopharmaceuticals for Image-guided Radionuclide Therapy for Cancer

Page: [7003 - 7031] Pages: 29

  • * (Excluding Mailing and Handling)

Abstract

Receptor-targeted image-guided Radionuclide Therapy (TRT) is increasingly recognized as a promising approach to cancer treatment. In particular, the potential for clinical translation of receptor-targeted alpha-particle therapy is receiving considerable attention as an approach that can improve outcomes for cancer patients. Higher Linear-energy Transfer (LET) of alpha-particles (compared to beta particles) for this purpose results in an increased incidence of double-strand DNA breaks and improved-localized cancer-cell damage. Recent clinical studies provide compelling evidence that alpha-TRT has the potential to deliver a significantly more potent anti-cancer effect compared with beta-TRT. Generator-produced 212Pb (which decays to alpha emitters 212Bi and 212Po) is a particularly promising radionuclide for receptor-targeted alpha-particle therapy. A second attractive feature that distinguishes 212Pb alpha-TRT from other available radionuclides is the possibility to employ elementallymatched isotope 203Pb as an imaging surrogate in place of the therapeutic radionuclide. As direct non-invasive measurement of alpha-particle emissions cannot be conducted using current medical scanner technology, the imaging surrogate allows for a pharmacologically-inactive determination of the pharmacokinetics and biodistribution of TRT candidate ligands in advance of treatment. Thus, elementally-matched 203Pb labeled radiopharmaceuticals can be used to identify patients who may benefit from 212Pb alpha-TRT and apply appropriate dosimetry and treatment planning in advance of the therapy. In this review, we provide a brief history on the use of these isotopes for cancer therapy; describe the decay and chemical characteristics of 203/212Pb for their use in cancer theranostics and methodologies applied for production and purification of these isotopes for radiopharmaceutical production. In addition, a medical physics and dosimetry perspective is provided that highlights the potential of 212Pb for alpha-TRT and the expected safety for 203Pb surrogate imaging. Recent and current preclinical and clinical studies are presented. The sum of the findings herein and observations presented provide evidence that the 203Pb/212Pb theranostic pair has a promising future for use in radiopharmaceutical theranostic therapies for cancer.

Keywords: Radiopharmaceuticals, radiochemistry, theranostics, Lead-212, Lead-203, Pb-203, Pb-212, dosimetry, cancer, radionuclide therapy, SPECT imaging, MIRD, voxel-based dosimetry.

[1]
Bartlett, M. From the inside out: radionuclide radiation therapy. Australas. Phys. Eng. Sci. Med., 2016, 39(2), 357-359.
[http://dx.doi.org/10.1007/s13246-016-0455-9] [PMID: 27317024]
[2]
Hardiansyah, D.; Guo, W.; Kletting, P.; Mottaghy, F.M.; Glatting, G. Time-integrated activity coefficient estimation for radionuclide therapy using PET and a pharmacokinetic model: a simulation study on the effect of sampling schedule and noise. Med. Phys., 2016, 43(9), 5145.
[http://dx.doi.org/10.1118/1.4961012] [PMID: 27587044]
[3]
Iagaru, A.H.; Mittra, E.; Colletti, P.M.; Jadvar, H. Bone-targeted imaging and radionuclide therapy in prostate cancer. J. Nucl. Med., 2016, 57(Suppl. 3), 19S-24S.
[http://dx.doi.org/10.2967/jnumed.115.170746] [PMID: 27694165]
[4]
Jin, Z.H.; Furukawa, T.; Degardin, M.; Sugyo, A.; Tsuji, A.B.; Yamasaki, T.; Kawamura, K.; Fujibayashi, Y.; Zhang, M.R.; Boturyn, D.; Dumy, P.; Saga, T. αvβ3 integrin-targeted radionuclide therapy with 64Cu-cyclam-RAFT-c(-RGDfK-)4. Mol. Cancer Ther., 2016, 15(9), 2076-2085.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0040] [PMID: 27422811]
[5]
Kratochwil, C.; Giesel, F.L.; Stefanova, M.; Benešová, M.; Bronzel, M.; Afshar-Oromieh, A.; Mier, W.; Eder, M.; Kopka, K.; Haberkorn, U. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-labeled PSMA-617. J. Nucl. Med., 2016, 57(8), 1170-1176.
[http://dx.doi.org/10.2967/jnumed.115.171397] [PMID: 26985056]
[6]
Kwekkeboom, D.J.; Krenning, E.P. Peptide receptor radionuclide therapy in the treatment of neuroendocrine tumors. Hematol. Oncol. Clin. North Am., 2016, 30(1), 179-191.
[http://dx.doi.org/10.1016/j.hoc.2015.09.009] [PMID: 26614376]
[7]
Li, W.; Liu, Z.; Li, C.; Li, N.; Fang, L.; Chang, J.; Tan, J. Radionuclide therapy using 131I-labeled anti-epidermal growth factor receptor-targeted nanoparticles suppresses cancer cell growth caused by EGFR overexpression. J. Cancer Res. Clin. Oncol., 2016, 142(3), 619-632.
[http://dx.doi.org/10.1007/s00432-015-2067-2] [PMID: 26573511]
[8]
Lo Russo, G.; Pusceddu, S.; Prinzi, N.; Imbimbo, M.; Proto, C.; Signorelli, D.; Vitali, M.; Ganzinelli, M.; Maccauro, M.
Buzzoni, R.; Seregni, E.; de Braud, F.; Garassino, M.C. Peptide receptor radionuclide therapy: focus on bronchial neuroendocrine tu-mors. Tumour Biol., 2016, 37(10), 12991-13003.
[http://dx.doi.org/10.1007/s13277-016-5258-9] [PMID: 27460087]
[9]
Nonnekens, J.; van Kranenburg, M.; Beerens, C.E.; Suker, M.; Doukas, M.; van Eijck, C.H.; de Jong, M.; van Gent, D.C. Potentiation of peptide receptor radionuclide therapy by the PARP inhibitor Olaparib. Theranostics, 2016, 6(11), 1821-1832.
[http://dx.doi.org/10.7150/thno.15311] [PMID: 27570553]
[10]
Norain, A.; Dadachova, E. Targeted radionuclide therapy of melanoma. Semin. Nucl. Med., 2016, 46(3), 250-259.
[http://dx.doi.org/10.1053/j.semnuclmed.2015.12.005] [PMID: 27067506]
[11]
Otte, A. Neuroendocrine tumors: peptide receptors radionuclide therapy (PRRT). Hell. J. Nucl. Med., 2016, 19(2), 182.
[http://dx.doi.org/10.1967/s0024499100378] [PMID: 27331218]
[12]
Takahashi, A.; Miwa, K.; Sasaki, M.; Baba, S. A Monte Carlo study on (223)Ra imaging for unsealed radionuclide therapy. Med. Phys., 2016, 43(6), 2965-2974.
[http://dx.doi.org/10.1118/1.4948682] [PMID: 27277045]
[13]
Weber, W.A.; Morris, M.J. Molecular imaging and targeted radionuclide therapy of prostate cancer. J. Nucl. Med., 2016, 57(Suppl. 3), 3S-5S.
[http://dx.doi.org/10.2967/jnumed.116.175497] [PMID: 27694170]
[14]
Werner, R.A.; Lapa, C.; Ilhan, H.; Higuchi, T.; Buck, A.K.; Lehner, S.; Bartenstein, P.; Bengel, F.; Schatka, I.; Muegge, D.O.; Papp, L.; Zsoter, N.; Grosse-Ophoff, T.; Essler, M.; Bundschuh, R.A. Survival prediction in patients undergoing radionuclide therapy based on intratumoral somatostatin-receptor heterogeneity. Oncotarget, 2017, 8(4), 7039-7049.
[http://dx.doi.org/10.18632/oncotarget.12402] [PMID: 27705948]
[15]
Zukotynski, K.; Jadvar, H.; Capala, J.; Fahey, F. Targeted radionuclide therapy: practical applications and future prospects. Biomark. Cancer, 2016, 8(Suppl. 2), 35-38.
[http://dx.doi.org/10.4137/BIC.S31804] [PMID: 27226737]
[16]
Kratochwil, C.; Bruchertseifer, F.; Giesel, F.L.; Weis, M.; Verburg, F.A.; Mottaghy, F.; Kopka, K.; Apostolidis, C.; Haberkorn, U.; Morgenstern, A. 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J. Nucl. Med., 2016, 57(12), 1941-1944.
[http://dx.doi.org/10.2967/jnumed.116.178673] [PMID: 27390158]
[17]
Wild, D.; Frischknecht, M.; Zhang, H.; Morgenstern, A.; Bruchertseifer, F.; Boisclair, J.; Provencher-Bolliger, A.; Reubi, J.C.; Maecke, H.R. Alpha- versus beta-particle radiopeptide therapy in a human prostate cancer model (213Bi-DOTA-PESIN and 213Bi-AMBA versus 177Lu-DOTA-PESIN). Cancer Res., 2011, 71(3), 1009-1018.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1186] [PMID: 21245097]
[18]
Hobbs, R.F.; Howell, R.W.; Song, H.; Baechler, S.; Sgouros, G. Redefining relative biological effectiveness in the context of the EQDX formalism: implications for alpha-particle emitter therapy. Radiat. Res., 2014, 181(1), 90-98.
[http://dx.doi.org/10.1667/RR13483.1] [PMID: 24502376]
[19]
Sgouros, G. Alpha-particles for targeted therapy. Adv. Drug Deliv. Rev., 2008, 60(12), 1402-1406.
[http://dx.doi.org/10.1016/j.addr.2008.04.007] [PMID: 18541332]
[20]
Sgouros, G.; Hobbs, R.F.; Song, H. Modelling and dosimetry for alpha-particle therapy. Curr. Radiopharm., 2011, 4(3), 261-265.
[http://dx.doi.org/10.2174/1874471011104030261] [PMID: 22201712]
[21]
Sgouros, G.; Roeske, J.C.; McDevitt, M.R.; Palm, S.; Allen, B.J.; Fisher, D.R.; Brill, A.B.; Song, H.; Howell, R.W.; Akabani, G.; Bolch, W.E.; Brill, A.B.; Fisher, D.R.; Howell, R.W.; Meredith, R.F.; Sgouros, G.; Wessels, B.W.; Zanzonico, P.B. SNM MIRD Committee. MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy. J. Nucl. Med., 2010, 51(2), 311-328.
[http://dx.doi.org/10.2967/jnumed.108.058651] [PMID: 20080889]
[22]
Akabani, G.; Kennel, S.J.; Zalutsky, M.R. Microdosimetric analysis of alpha-particle-emitting targeted radiotherapeutics using histo-logical images. J. Nucl. Med., 2003, 44(5), 792-805.
[PMID: 12732682]
[23]
Behr, T.M.; Béhé, M.; Jungclas, H.; Jungclas, H.; Becker, W.; Sgouros, G. Higher relative biological efficiency of alpha-particles: in vitro veritas, in vitro vanitas? Eur. J. Nucl. Med., 2001, 28(9), 1435-1436.
[http://dx.doi.org/10.1007/s002590100569] [PMID: 11585306]
[24]
Behr, T.M.; Béhé, M.; Stabin, M.G.; Wehrmann, E.; Apostolidis, C.; Molinet, R.; Strutz, F.; Fayyazi, A.; Wieland, E.; Gratz, S.; Koch, L.; Goldenberg, D.M.; Becker, W. High-linear energy transfer (LET) alpha versus low-LET beta emitters in radioimmunotherapy of solid tumors: therapeutic efficacy and dose-limiting toxicity of 213Bi- versus 90Y-labeled CO17-1A Fab’ fragments in a human colonic cancer model. Cancer Res., 1999, 59(11), 2635-2643.
[PMID: 10363986]
[25]
Elgqvist, J.; Frost, S.; Pouget, J.P.; Albertsson, P. The potential and hurdles of targeted alpha therapy-clinical trials and beyond. Front. Oncol., 2014, 3, 324.
[http://dx.doi.org/10.3389/fonc.2013.00324] [PMID: 24459634]
[26]
Hauck, M.L.; Larsen, R.H.; Welsh, P.C.; Zalutsky, M.R. Cytotoxicity of alpha-particle-emitting astatine-211-labelled antibody in tumour spheroids: no effect of hyperthermia. Br. J. Cancer, 1998, 77(5), 753-759.
[http://dx.doi.org/10.1038/bjc.1998.123] [PMID: 9514054]
[27]
Humm, J.L.; Chin, L.M. A model of cell inactivation by alpha-particle internal emitters. Radiat. Res., 1993, 134(2), 143-150.
[http://dx.doi.org/10.2307/3578453] [PMID: 8488249]
[28]
Jurcic, J.G.; Larson, S.M.; Sgouros, G.; McDevitt, M.R.; Finn, R.D.; Divgi, C.R.; Ballangrud, A.M.; Hamacher, K.A.; Ma, D.; Humm, J.L.; Brechbiel, M.W.; Molinet, R.; Scheinberg, D.A. Targeted alpha particle immunotherapy for myeloid leukemia. Blood, 2002, 100(4), 1233-1239.
[http://dx.doi.org/10.1182/blood.V100.4.1233.h81602001233_1233_1239] [PMID: 12149203]
[29]
Kim, Y.S.; Brechbiel, M.W. An overview of targeted alpha therapy. Tumour Biol., 2012, 33(3), 573-590.
[http://dx.doi.org/10.1007/s13277-011-0286-y] [PMID: 22143940]
[30]
Kratochwil, C.; Giesel, F.L.; Bruchertseifer, F.; Mier, W.; Apostolidis, C.; Boll, R.; Murphy, K.; Haberkorn, U.; Morgenstern, A. 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(11), 2106-2119.
[http://dx.doi.org/10.1007/s00259-014-2857-9] [PMID: 25070685]
[31]
Macklis, R.M.; Kinsey, B.M.; Kassis, A.I.; Ferrara, J.L.; Atcher, R.W.; Hines, J.J.; Coleman, C.N.; Adelstein, S.J.; Burakoff, S.J. Ra-dioimmunotherapy with alpha-particle-emitting immunoconjugates. Science, 1988, 240(4855), 1024-1026.
[http://dx.doi.org/10.1126/science.2897133] [PMID: 2897133]
[32]
McDevitt, M.R.; Sgouros, G.; Finn, R.D.; Humm, J.L.; Jurcic, J.G.; Larson, S.M.; Scheinberg, D.A. Radioimmunotherapy with alpha-emitting nuclides. Eur. J. Nucl. Med., 1998, 25(9), 1341-1351.
[http://dx.doi.org/10.1007/s002590050306] [PMID: 9724387]
[33]
Miao, Y.; Hylarides, M.; Fisher, D.R.; Shelton, T.; Moore, H.; Wester, D.W.; Fritzberg, A.R.; Winkelmann, C.T.; Hoffman, T.; Quinn, T.P. Melanoma therapy via peptide-targeted alpha-radiation. Clin. Cancer Res., 2005, 11(15), 5616-5621.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0619] [PMID: 16061880]
[34]
Sgouros, G.; Song, H. Cancer stem cell targeting using the alpha-particle emitter, 213Bi: mathematical modeling and feasibility analysis. Cancer Biother. Radiopharm., 2008, 23(1), 74-81.
[http://dx.doi.org/10.1089/cbr.2007.0408] [PMID: 18298331]
[35]
Wadas, T.J.; Pandya, D.N.; Solingapuram Sai, K.K.; Mintz, A. Molecular targeted α-particle therapy for oncologic applications. AJR Am. J. Roentgenol., 2014, 203(2), 253-260.
[http://dx.doi.org/10.2214/AJR.14.12554] [PMID: 25055256]
[36]
Zalutsky, M.R. Targeted alpha-particle therapy of microscopic disease: providing a further rationale for clinical investigation. J. Nucl. Med., 2006, 47(8), 1238-1240.
[PMID: 16882999]
[37]
Miao, Y.; Figueroa, S.D.; Fisher, D.R.; Moore, H.A.; Testa, R.F.; Hoffman, T.J.; Quinn, T.P. 203Pb-labeled alpha-melanocyte-stimulating hormone peptide as an imaging probe for melanoma detection. J. Nucl. Med., 2008, 49(5), 823-829.
[http://dx.doi.org/10.2967/jnumed.107.048553] [PMID: 18413404]
[38]
Miao, Y.; Quinn, T.P. Peptide-targeted radionuclide therapy for melanoma. Crit. Rev. Oncol. Hematol., 2008, 67(3), 213-228.
[http://dx.doi.org/10.1016/j.critrevonc.2008.02.006] [PMID: 18387816]
[39]
Martin, M.E.; Sue O’Dorisio, M.; Leverich, W.M.; Kloepping, K.C.; Walsh, S.A.; Schultz, M.K. “Click”-cyclized 68Ga-labeled peptides for molecular imaging and therapy: synthesis and preliminary in vitro and in vivo evaluation in a melanoma model system. Recent Results Cancer Res., 2013, 194, 149-175.
[http://dx.doi.org/10.1007/978-3-642-27994-2_9] [PMID: 22918759]
[40]
Fani, M.; Maecke, H.R. Radiopharmaceutical development of radiolabelled peptides. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(Suppl. 1), S11-S30.
[http://dx.doi.org/10.1007/s00259-011-2001-z] [PMID: 22388624]
[41]
Hermanne, A.; Walravens, N.; Cicchelli, O. In Optimization of Isotope Production by Cross Section Determination. Nuclear Data for Sci and Tech. Res Rep in Phy; Springer: Berlin, Heidelberg, 1992, pp. 616-618.
[http://dx.doi.org/10.1007/978-3-642-58113-7_176 ]
[42]
Li, M.; Zhang, X.; Quinn, T.P.; Lee, D.; Liu, D.; Kunkel, F.; Zimmerman, B.E.; McAlister, D.; Olewein, K.; Menda, Y.; Mirzadeh, S.; Copping, R.; Johnson, F.L.; Schultz, M.K. Automated cassette-based production of high specific activity [203/212Pb]peptide-based theranostic radiopharmaceuticals for image-guided radionuclide therapy for cancer. Appl. Radiat. Isot., 2017, 127, 52-60.
[http://dx.doi.org/10.1016/j.apradiso.2017.05.006] [PMID: 28521118]
[43]
DeGraffenreid, A.J.; Olewine, K.; Parker, J.; Barbin, G. Production of Radiochemical Products for Research and Industry. 17th Inter-national Workshop on Targetry and Target Chemistry, Coimbria, Portugal2018.
[44]
Farzanefar, S.; Etemadi, R.; Shirkhoda, M.; Mahmoodzadeh, H.; Erfani, M.; Fallahi, B.; Abbasi, M.; Ayati, N.; Hassanzadeh-Rad, A.; Eftekhari, M.; Beiki, D. The value of technetium-99m labeled alpha-melanocyte-stimulating hormone (99mTc-α-MSH) in diagnosis of primary and metastatic lesions of malignant melanoma. Asia Ocean. J. Nucl. Med. Biol., 2018, 6(2), 155-160.
[http://dx.doi.org/10.22038/aojnmb.2018.30101.1204] [PMID: 29998149]
[45]
Khan, N.U.H.; Naqvi, S.A.R.; Roohi, S.; Sherazi, T.A.; Khan, Z.A.; Zahoor, A.F. Technetium-99m radiolabeling and biological study of epirubicin for in vivo imaging of multi-drug-resistant Staphylococcus aureus infections via single photon emission computed tomography. Chem. Biol. Drug Des., 2019, 93(2), 154-162.
[http://dx.doi.org/10.1111/cbdd.13393] [PMID: 30216686]
[46]
Lou, K.; Gu, Y.; Hu, Y.; Wang, S.; Shi, H. Technetium-99m-pertechnetate whole-body SPET/CT scan in thyroidectomized differentiated thyroid cancer patients is a useful imaging modality in detecting remnant thyroid tissue, nodal and distant metastases before 131I therapy. A study of 416 patients. Hell. J. Nucl. Med., 2018, 21(2), 121-124.
[PMID: 30089313]
[47]
Sanders, V.A.; Iskhakov, D.; Abdel-Atti, D.; Devany, M.; Neary, M.C.; Czerwinski, K.R.; Francesconi, L.C. Synthesis, characterization and biological studies of rhenium, technetium-99m and rhenium-188 pentapeptides. Nucl. Med. Biol., 2019, 68-69, 1-13.
[http://dx.doi.org/10.1016/j.nucmedbio.2018.11.001] [PMID: 30578134]
[48]
Skliarova, H.; Cisternino, S.; Cicoria, G.; Marengo, M.; Palmieri, V. Innovative target for Production of Technetium-99m by Biomedical Cyclotron. Molecules, 2018, 24(1)E25
[http://dx.doi.org/10.3390/molecules24010025] [PMID: 30577612]
[49]
van der Velden, S.; Dietze, M.M.A.; Viergever, M.A.; de Jong, H.W.A.M. Fast technetium-99m liver SPECT for evaluation of the pretreatment procedure for radioembolization dosimetry. Med. Phys., 2019, 46(1), 345-355.
[http://dx.doi.org/10.1002/mp.13253] [PMID: 30347130]
[50]
Antunes, P.; Ginj, M.; Zhang, H.; Waser, B.; Baum, R.P.; Reubi, J.C.; Maecke, H. Are radiogallium-labelled DOTA-conjugated soma-tostatin analogues superior to those labelled with other radiometals? Eur. J. Nucl. Med. Mol. Imaging, 2007, 34(7), 982-993.
[http://dx.doi.org/10.1007/s00259-006-0317-x] [PMID: 17225119]
[51]
Maecke, H.R.; Hofmann, M.; Haberkorn, U. 68Ga-labeled peptides in tumor imaging. J. Nucl. Med., 2005, 46(Suppl. 1), 172S-178S.
[PMID: 15653666]
[52]
Velikyan, I.; Maecke, H.; Langstrom, B. Convenient preparation of 68Ga-based PET-radiopharmaceuticals at room temperature. Bioconjug. Chem., 2008, 19(2), 569-573.
[http://dx.doi.org/10.1021/bc700341x] [PMID: 18205327]
[53]
Menda, Y.; Ponto, L.L.; Schultz, M.K.; Zamba, G.K.; Watkins, G.L.; Bushnell, D.L.; Madsen, M.T.; Sunderland, J.J.; Graham, M.M.; O’Dorisio, T.M.; O’Dorisio, M.S. Repeatability of gallium-68 DOTATOC positron emission tomographic imaging in neuroendocrine tumors. Pancreas, 2013, 42(6), 937-943.
[http://dx.doi.org/10.1097/MPA.0b013e318287ce21] [PMID: 23587853]
[54]
Mueller, D.; Breeman, W.A.; Klette, I.; Gottschaldt, M.; Odparlik, A.; Baehre, M.; Tworowska, I.; Schultz, M.K. Radiolabeling of DOTA-like conjugated peptides with generator-produced 68Ga and using NaCl-based cationic elution method. Nat. Protoc., 2016, 11(6), 1057-1066.
[http://dx.doi.org/10.1038/nprot.2016.060] [PMID: 27172166]
[55]
Mueller, D.; Klette, I.; Baum, R.P.; Gottschaldt, M.; Schultz, M.K.; Breeman, W.A. Simplified NaCl based 68Ga concentration and labeling procedure for rapid synthesis of 68Ga radiopharmaceuticals in high radiochemical purity. Bioconjug. Chem., 2012, 23(8), 1712-1717.
[http://dx.doi.org/10.1021/bc300103t] [PMID: 22755505]
[56]
Schultz, M.K.; Mueller, D.; Baum, R.P.; Leonard Watkins, G.; Breeman, W.A. A new automated NaCl based robust method for routine production of gallium-68 labeled peptides. Appl. Radiat. Isot., 2013, 76, 46-54.
[http://dx.doi.org/10.1016/j.apradiso.2012.08.011] [PMID: 23026223]
[57]
Gibson, W.M. The Radiochemistry of Lead; National Academy of Sciences, National Research Council, 1961, p. 3040.
[58]
Faris, J.P.; Buchanan, R.F. Anion exchange characteristics of the elements in nitric acid and nitrate solutions and application in trace element analysis. Argonne National Laboratory Report, 1964, ANL-681
[http://dx.doi.org/10.2172/4012440]
[59]
Saito, N. Selected data on ion exchange separations in radioanalytical chemistry. Pure Appl. Chem., 1984, 56(4), 523-539.
[http://dx.doi.org/10.1351/pac198456040523]
[60]
Strelow, F.W.E. An ion exchange selectivity scale based on equilibrium distribution coefficients. Anal. Chem., 1960, 32(9), 1185-1188.
[http://dx.doi.org/10.1021/ac60165a042]
[61]
Strelow, F.W.E.; Rethemeyer, R.; Bothma, C.J.C. Ion selectivity scales for cations in nitric acid and sulfuric acid media with a sulfonated polystyrene resin. Anal. Chem., 1965, 37(1), 106-111.
[http://dx.doi.org/10.1021/ac60220a027]
[62]
Strelow, F.W.E. Distribution coefficients and ion exchange behavior of 46 elements with a macroreticular cation exchange resin in hydrochloric acid. Anal. Chem., 1984, 56, 1053-1056.
[http://dx.doi.org/10.1021/ac00270a045]
[63]
Horwitz, E.P.; Chiarizia, R.; Dietz, M.L. A novel strontium-selective extraction chromatographic resin. Solvent Extr. Ion Exch., 1992, 10(2), 313-336.
[http://dx.doi.org/10.1080/07366299208918107]
[64]
Horwitz, E.P.; Dietz, M.L.; Fisher, D.E. Separation and preconcentration of strontium from biological, environmental, and nuclear waste samples by extraction chromatography using a crown ether. Anal. Chem., 1991, 63(5), 522-525.
[http://dx.doi.org/10.1021/ac00005a027] [PMID: 1829590]
[65]
Goldman, I.; Degraffenreid, A.J.; Olewine, K.; Parker, J.; Barbin, G. Production of Pb-203. Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging Anaheim, California2019, pp. 22-25.
[66]
van der Walt, T.N.; Coetzee, P.P. Separation of 203Pb by ion-exchange chromatography on chelex 100 after production of 203Pb by the Pb(p, xn) 203Bi--> EC.β+ 203Pb nuclear reaction. Talanta, 1989, 36(4), 451-455.
[http://dx.doi.org/10.1016/0039-9140(89)80227-9] [PMID: 18964737]
[67]
Atcher, R.W.; Friedman, A.M.; Hines, J.J. An improved generator for the production of 212Pb and 212Bi from 224Ra. Int. J. Rad. Appl. Instrum. [A], 1988, 39(4), 283-286.
[http://dx.doi.org/10.1016/0883-2889(88)90016-0] [PMID: 2838433]
[68]
Westrøm, S.; Generalov, R.; Bønsdorff, T.B.; Larsen, R.H. Preparation of 212Pb-labeled monoclonal antibody using a novel 224Ra-based generator solution. Nucl. Med. Biol., 2017, 51, 1-9.
[http://dx.doi.org/10.1016/j.nucmedbio.2017.04.005] [PMID: 28486098]
[69]
Parker, C.; Nilsson, S.; Heinrich, D.; Helle, S.I.; O’Sullivan, J.M.; Fosså, S.D.; Chodacki, A.; Wiechno, P.; Logue, J.; Seke, M.; Wid-mark, A.; Johannessen, D.C.; Hoskin, P.; Bottomley, D.; James, N.D.; Solberg, A.; Syndikus, I.; Kliment, J.; Wedel, S.; Boehmer, S.; Dall’Oglio, M.; Franzén, L.; Coleman, R.; Vogelzang, N.J.; O’Bryan-Tear, C.G.; Staudacher, K.; Garcia-Vargas, J.; Shan, M.; Bruland, O.S.; Sartor, O.; Investigators, A. ALSYMPCA Investigators. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med., 2013, 369(3), 213-223.
[http://dx.doi.org/10.1056/NEJMoa1213755] [PMID: 23863050]
[70]
Jurcic, J.G. Targeted alpha-particle therapy for hematologic malignancies. Semin. Nucl. Med., 2020, 50(2), 152-161.
[http://dx.doi.org/10.1053/j.semnuclmed.2019.09.002] [PMID: 32172800]
[71]
Kratochwil, C.; Schmidt, K.; Afshar-Oromieh, A.; Bruchertseifer, F.; Rathke, H.; Morgenstern, A.; Haberkorn, U.; Giesel, F.L. Targeted alpha therapy of mCRPC: Dosimetry estimate of 213Bismuth-PSMA-617. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(1), 31-37.
[http://dx.doi.org/10.1007/s00259-017-3817-y] [PMID: 28891033]
[72]
Kratochwil, C.; Bruchertseifer, F.; Rathke, H.; Bronzel, M.; Apostolidis, C.; Weichert, W.; Haberkorn, U.; Giesel, F.L.; Morgenstern, A. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: dosimetry estimate and empiric dose finding. J. Nucl. Med., 2017, 58(10), 1624-1631.
[http://dx.doi.org/10.2967/jnumed.117.191395] [PMID: 28408529]
[73]
Kratochwil, C.; Bruchertseifer, F.; Rathke, H.; Hohenfellner, M.; Giesel, F.L.; Haberkorn, U.; Morgenstern, A. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor control. J. Nucl. Med., 2018, 59(5), 795-802.
[http://dx.doi.org/10.2967/jnumed.117.203539] [PMID: 29326358]
[74]
Zalutsky, M.R.; Reardon, D.A.; Akabani, G.; Coleman, R.E.; Friedman, A.H.; Friedman, H.S.; McLendon, R.E.; Wong, T.Z.; Bigner, D.D. Clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric an-titenascin monoclonal antibody 81C6. J. Nucl. Med., 2008, 49(1), 30-38.
[http://dx.doi.org/10.2967/jnumed.107.046938] [PMID: 18077533]
[75]
Andersson, H.; Cederkrantz, E.; Bäck, T.; Divgi, C.; Elgqvist, J.; Himmelman, J.; Horvath, G.; Jacobsson, L.; Jensen, H.; Lindegren, S.; Palm, S.; Hultborn, R. Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of (211)At-MX35 F(ab’)2--a phase I study. J. Nucl. Med., 2009, 50(7), 1153-1160.
[http://dx.doi.org/10.2967/jnumed.109.062604] [PMID: 19525452]
[76]
Cederkrantz, E.; Andersson, H.; Bernhardt, P.; Bäck, T.; Hultborn, R.; Jacobsson, L.; Jensen, H.; Lindegren, S.; Ljungberg, M.; Mag-nander, T.; Palm, S.; Albertsson, P. Absorbed doses and risk estimates of 211At-MX35 F(ab’)2 in intraperitoneal therapy of ovarian cancer patients. Int. J. Radiat. Oncol. Biol. Phys., 2015, 93(3), 569-576.
[http://dx.doi.org/10.1016/j.ijrobp.2015.07.005] [PMID: 26460999]
[77]
Hallqvist, A.; Bergmark, K.; Bäck, T.; Andersson, H.; Dahm-Kähler, P.; Johansson, M.; Lindegren, S.; Jensen, H.; Jacobsson, L.; Hultborn, R.; Palm, S.; Albertsson, P. Intraperitoneal α-emitting radioimmunotherapy with 211at in relapsed ovarian cancer: long-term follow-up with individual absorbed dose estimations. J. Nucl. Med., 2019, 60(8), 1073-1079.
[http://dx.doi.org/10.2967/jnumed.118.220384] [PMID: 30683761]
[78]
Wilbur, D.S. Enigmatic astatine. Nat. Chem., 2013, 5(3), 246.
[http://dx.doi.org/10.1038/nchem.1580] [PMID: 23422568]
[79]
Dahle, J.; Borrebaek, J.; Jonasdottir, T.J.; Hjelmerud, A.K.; Melhus, K.B.; Bruland, O.S.; Press, O.W.; Larsen, R.H. Targeted cancer therapy with a novel low-dose rate alpha-emitting radioimmunoconjugate. Blood, 2007, 110(6), 2049-2056.
[http://dx.doi.org/10.1182/blood-2007-01-066803] [PMID: 17536011]
[80]
Müller, C.; Vermeulen, C.; Köster, U.; Johnston, K.; Türler, A.; Schibli, R.; van der Meulen, N.P. Alpha-PET with terbium-149: evi-dence and perspectives for radiotheragnostics. EJNMMI Radiopharm. Chem., 2017, 1(1), 5.
[http://dx.doi.org/10.1186/s41181-016-0008-2] [PMID: 29564382]
[81]
Müller, C.; Zhernosekov, K.; Köster, U.; Johnston, K.; Dorrer, H.; Hohn, A.; van der Walt, N.T.; Türler, A.; Schibli, R. A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for α- and β- radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative. J. Nucl. Med., 2012, 53(12), 1951-1959.
[http://dx.doi.org/10.2967/jnumed.112.107540] [PMID: 23139086]
[82]
Syed, I.B. Letter: 203Pb for bone scanning. J. Nucl. Med., 1974, 15(10), 910-912.
[PMID: 4420139]
[83]
Victery, W.; Miller, C.R.; Fowler, B.A. Lead accumulation by rat renal brush border membrane vesicles. J. Pharmacol. Exp. Ther., 1984, 231(3), 589-596.
[PMID: 6502515]
[84]
Deane, R.; Bradbury, M.W. Transport of lead-203 at the blood-brain barrier during short cerebrovascular perfusion with saline in the rat. J. Neurochem., 1990, 54(3), 905-914.
[http://dx.doi.org/10.1111/j.1471-4159.1990.tb02337.x] [PMID: 2106011]
[85]
Lever, S.Z.; Scheffel, U. Regional distribution of 203PbCl2 in the mouse after intravenous injection. Neurotoxicology, 1998, 19(2), 197-207.
[PMID: 9553956]
[86]
Ando, A.; Shaolin, L.; Ando, I.; Sanada, S.; Hiraki, T.; Hisada, K.; Inoue, T.; Kurosaki, H.; Nitta, K.; Ogawa, H. Tumour affinity of 203Pb-chloride: comparison with 67Ga-citrate and 201Tl-chloride. Nucl. Med. Commun., 1994, 15(1), 39-46.
[http://dx.doi.org/10.1097/00006231-199401000-00008] [PMID: 8152692]
[87]
Taylor, A.; Hagan, P.; Alazraki, N.; Hall, P. Tissue distribution of 203Pb-acetate: comparison with 67Ga-citrate as an abscess-localizing agent. J. Nucl. Med., 1976, 17(9), 800-804.
[PMID: 956894]
[88]
Rotmensch, J.; Atcher, R.W.; Hines, J.; Grdina, D.; Schwartz, J.S.; Toohill, M.; Herbst, A.L. The development of alpha-emitting radi-onuclide lead 212 for the potential treatment of ovarian carcinoma. Am. J. Obstet. Gynecol., 1989, 160(4), 789-797.
[http://dx.doi.org/10.1016/0002-9378(89)90293-7] [PMID: 2712112]
[89]
Rotmensch, J.; Atcher, R.W.; Schlenker, R.; Hines, J.; Grdina, D.; Block, B.S.; Press, M.F.; Herbst, A.L.; Weichselbaum, R.R. The effect of the alpha-emitting radionuclide lead-212 on human ovarian carcinoma: a potential new form of therapy. Gynecol. Oncol., 1989, 32(2), 236-239.
[http://dx.doi.org/10.1016/S0090-8258(89)80040-X] [PMID: 2910786]
[90]
Hassfjell, S.P.; Bruland, O.S.; Hoff, P. 212Bi-DOTMP: an alpha particle emitting bone-seeking agent for targeted radiotherapy. Nucl. Med. Biol., 1997, 24(3), 231-237.
[http://dx.doi.org/10.1016/S0969-8051(97)00059-0] [PMID: 9228657]
[91]
Juzeniene, A.; Bernoulli, J.; Suominen, M.; Halleen, J.; Larsen, R.H. Antitumor activity of novel bone-seeking, α-emitting 224Ra-solution in a breast cancer skeletal metastases model. Anticancer Res., 2018, 38(4), 1947-1955.
[http://dx.doi.org/10.21873/anticanres.12432] [PMID: 29599310]
[92]
McKeage, K.; Perry, C.M. Trastuzumab: a review of its use in the treatment of metastatic breast cancer overexpressing HER2. Drugs, 2002, 62(1), 209-243.
[http://dx.doi.org/10.2165/00003495-200262010-00008] [PMID: 11790161]
[93]
Slamon, D.J.; Godolphin, W.; Jones, L.A.; Holt, J.A.; Wong, S.G.; Keith, D.E.; Levin, W.J.; Stuart, S.G.; Udove, J.; Ullrich, A. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science, 1989, 244(4905), 707-712.
[http://dx.doi.org/10.1126/science.2470152] [PMID: 2470152]
[94]
Chappell, L.L.; Dadachova, E.; Milenic, D.E.; Garmestani, K.; Wu, C.; Brechbiel, M.W. Synthesis, characterization, and evaluation of a novel bifunctional chelating agent for the lead isotopes 203Pb and 212Pb. Nucl. Med. Biol., 2000, 27(1), 93-100.
[http://dx.doi.org/10.1016/S0969-8051(99)00086-4] [PMID: 10755652]
[95]
Milenic, D.E.; Garmestani, K.; Brady, E.D.; Albert, P.S.; Ma, D.; Abdulla, A.; Brechbiel, M.W. Alpha-particle radioimmunotherapy of disseminated peritoneal disease using a 212Pb-labeled radioimmunoconjugate targeting HER2. Cancer Biother. Radiopharm., 2005, 20(5), 557-568.
[http://dx.doi.org/10.1089/cbr.2005.20.557] [PMID: 16248771]
[96]
Montironi, R.; Mazzucchelli, R.; Barbisan, F.; Stramazzotti, D.; Santinelli, A.; Scarpelli, M.; Lòpez Beltran, A. HER2 expression and gene amplification in pT2a Gleason score 6 prostate cancer incidentally detected in cystoprostatectomies: comparison with clinically detected androgen-dependent and androgen-independent cancer. Hum. Pathol., 2006, 37(9), 1137-1144.
[http://dx.doi.org/10.1016/j.humpath.2006.04.004] [PMID: 16938518]
[97]
Tan, Z.; Chen, P.; Schneider, N.; Glover, S.; Cui, L.; Torgue, J.; Rixe, O.; Spitz, H.B.; Dong, Z. Significant systemic therapeutic effects of high-LET immunoradiation by 212Pb-trastuzumab against prostatic tumors of androgen-independent human prostate cancer in mice. Int. J. Oncol., 2012, 40(6), 1881-1888.
[http://dx.doi.org/10.3892/ijo.2012.1357] [PMID: 22322558]
[98]
Jaggi, J.S.; Seshan, S.V.; McDevitt, M.R.; Sgouros, G.; Hyjek, E.; Scheinberg, D.A. Mitigation of radiation nephropathy after internal α-particle irradiation of kidneys. Int. J. Radiat. Oncol. Biol. Phys., 2006, 64(5), 1503-1512.
[http://dx.doi.org/10.1016/j.ijrobp.2005.11.036] [PMID: 16503385]
[99]
Jaggi, J.S.; Seshan, S.V.; McDevitt, M.R.; LaPerle, K.; Sgouros, G.; Scheinberg, D.A. Renal tubulointerstitial changes after internal irradiation with α-particle-emitting actinium daughters. J. Am. Soc. Nephrol., 2005, 16(9), 2677-2689.
[http://dx.doi.org/10.1681/ASN.2004110945] [PMID: 15987754]
[100]
Boudousq, V.; Bobyk, L.; Busson, M.; Garambois, V.; Jarlier, M.; Charalambatou, P.; Pèlegrin, A.; Paillas, S.; Chouin, N.; Quenet, F.; Maquaire, P.; Torgue, J.; Navarro-Teulon, I.; Pouget, J.P. Comparison between internalizing anti-HER2 mAbs and non-internalizing anti-CEA mAbs in alpha-radioimmunotherapy of small volume peritoneal carcinomatosis using 212Pb. PLoS One, 2013, 8(7)e69613
[http://dx.doi.org/10.1371/journal.pone.0069613] [PMID: 23922757]
[101]
Yong, K.; Brechbiel, M.W. Towards translation of 212Pb as a clinical therapeutic; getting the lead in! Dalton Trans., 2011, 40(23), 6068-6076.
[http://dx.doi.org/10.1039/c0dt01387k] [PMID: 21380408]
[102]
Meredith, R.F.; Torgue, J.; Azure, M.T.; Shen, S.; Saddekni, S.; Banaga, E.; Carlise, R.; Bunch, P.; Yoder, D.; Alvarez, R. Pharmaco-kinetics and imaging of 212Pb-TCMC-trastuzumab after intraperitoneal administration in ovarian cancer patients. Cancer Biother. Radiopharm., 2014, 29(1), 12-17.
[http://dx.doi.org/10.1089/cbr.2013.1531] [PMID: 24229395]
[103]
Meredith, R.; Torgue, J.; Shen, S.; Fisher, D.R.; Banaga, E.; Bunch, P.; Morgan, D.; Fan, J.; Straughn, J.M. Jr Dose escalation and dosimetry of first-in-human α radioimmunotherapy with 212Pb-TCMC-trastuzumab. J. Nucl. Med., 2014, 55(10), 1636-1642.
[http://dx.doi.org/10.2967/jnumed.114.143842] [PMID: 25157044]
[104]
Meredith, R.F.; Torgue, J.J.; Rozgaja, T.A.; Banaga, E.P.; Bunch, P.W.; Alvarez, R.D.; Straughn, J.M., Jr; Dobelbower, M.C.; Lowy, A.M. Safety and Outcome Measures of First-in-Human Intraperitoneal α Radioimmunotherapy With 212Pb-TCMC-Trastuzumab. Am. J. Clin. Oncol., 2018, 41(7), 716-721.
[http://dx.doi.org/10.1097/COC.0000000000000353] [PMID: 27906723]
[105]
Silver, D.A.; Pellicer, I.; Fair, W.R.; Heston, W.D.; Cordon-Cardo, C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res., 1997, 3(1), 81-85.
[PMID: 9815541]
[106]
Bostwick, D.G.; Pacelli, A.; Blute, M.; Roche, P.; Murphy, G.P. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer, 1998, 82(11), 2256-2261.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19980601)82:11<2256:AID-CNCR22>3.0.CO;2-S] [PMID: 9610707]
[107]
Mannweiler, S.; Amersdorfer, P.; Trajanoski, S.; Terrett, J.A.; King, D.; Mehes, G. Heterogeneity of prostate-specific membrane antigen (PSMA) expression in prostate carcinoma with distant metastasis. Pathol. Oncol. Res., 2009, 15(2), 167-172.
[http://dx.doi.org/10.1007/s12253-008-9104-2] [PMID: 18802790]
[108]
Eiber, M.; Fendler, W.P.; Rowe, S.P.; Calais, J.; Hofman, M.S.; Maurer, T.; Schwarzenboeck, S.M.; Kratowchil, C.; Herrmann, K.; Giesel, F.L. Prostate-specific membrane antigen ligands for imaging and therapy. J. Nucl. Med., 2017, 58(Suppl. 2), 67S-76S.
[http://dx.doi.org/10.2967/jnumed.116.186767] [PMID: 28864615]
[109]
Haberkorn, U.; Eder, M.; Kopka, K.; Babich, J.W.; Eisenhut, M. New strategies in prostate cancer: prostate-specific membrane antigen (PSMA) ligands for diagnosis and therapy. Clin. Cancer Res., 2016, 22(1), 9-15.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0820] [PMID: 26728408]
[110]
Wüstemann, T.; Bauder-Wüst, U.; Schäfer, M.; Eder, M.; Benesova, M.; Leotta, K.; Kratochwil, C.; Haberkorn, U.; Kopka, K.; Mier, W. Design of internalizing PSMA-specific Glu-ureido-based radiotherapeuticals. Theranostics, 2016, 6(8), 1085-1095.
[http://dx.doi.org/10.7150/thno.13448] [PMID: 27279903]
[111]
Wirtz, M.; Schmidt, A.; Schottelius, M.; Robu, S.; Günther, T.; Schwaiger, M.; Wester, H-J. Synthesis and in vitro and in vivo evaluation of urea-based PSMA inhibitors with increased lipophilicity. EJNMMI Res., 2018, 8(1), 84.
[http://dx.doi.org/10.1186/s13550-018-0440-2] [PMID: 30136051]
[112]
Kuo, H-T.; Pan, J.; Zhang, Z.; Lau, J.; Merkens, H.; Zhang, C.; Colpo, N.; Lin, K-S.; Bénard, F. Effects of linker modification on tumor-to-kidney contrast of 68Ga-Labeled PSMA-targeted imaging probes. Mol. Pharm., 2018, 15(8), 3502-3511.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00499] [PMID: 29920108]
[113]
Banerjee, S.R.; Minn, I.L.; Kumar, V.; Josefsson, A.; Lisok, A.; Brummet, M.; Chen, J.; Kiess, A.; Baidoo, K.; Brayton, C.; Mease, R.C.; Brechbiel, M.; Sgouros, G.; Hobbs, R.F.; Pomper, M.G. Preclinical evaluation of 203/212Pb-labeled low-molecular-weight com-pounds for targeted radiopharmaceutical therapy of prostate cancer. J. Nucl. Med., 2019, 61(1), 80-88.
[http://dx.doi.org/10.2967/jnumed.119.229393] [PMID: 31253744]
[114]
Dos Santos, J.C.; Schäfer, M.; Bauder-Wüst, U.; Lehnert, W.; Leotta, K.; Morgenstern, A.; Kopka, K.; Haberkorn, U.; Mier, W.; Kratochwil, C. Development and dosimetry of 203Pb/212Pb-labelled PSMA ligands: bringing “the lead” into PSMA-targeted alpha ther-apy? Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(5), 1081-1091.
[http://dx.doi.org/10.1007/s00259-018-4220-z] [PMID: 30603987]
[115]
Wolf Horrell, E.M.; Boulanger, M.C.; D’Orazio, J.A. Melanocortin 1 receptor: structure, function, and regulation. Front. Genet., 2016, 7, 95.
[http://dx.doi.org/10.3389/fgene.2016.00095] [PMID: 27303435]
[116]
Ghanem, G.E.; Comunale, G.; Libert, A.; Vercammen-Grandjean, A.; Lejeune, F.J. Evidence for alpha-melanocyte-stimulating hormone (alpha-MSH) receptors on human malignant melanoma cells. Int. J. Cancer, 1988, 41(2), 248-255.
[http://dx.doi.org/10.1002/ijc.2910410216] [PMID: 2828246]
[117]
Siegrist, W.; Solca, F.; Stutz, S.; Giuffrè, L.; Carrel, S.; Girard, J.; Eberle, A.N. Characterization of receptors for alpha-melanocyte-stimulating hormone on human melanoma cells. Cancer Res., 1989, 49(22), 6352-6358.
[PMID: 2804981]
[118]
Tatro, J.B.; Atkins, M.; Mier, J.W.; Hardarson, S.; Wolfe, H.; Smith, T.; Entwistle, M.L.; Reichlin, S. Melanotropin receptors demon-strated in situ in human melanoma. J. Clin. Invest., 1990, 85(6), 1825-1832.
[http://dx.doi.org/10.1172/JCI114642] [PMID: 2347915]
[119]
Yang, J.; Xu, J.; Gonzalez, R.; Lindner, T.; Kratochwil, C.; Miao, Y. 68Ga-DOTA-GGNle-CycMSHhex targets the melanocortin-1 re-ceptor for melanoma imaging. Sci. Transl. Med., 2018, 10(466)eaau4445
[http://dx.doi.org/10.1126/scitranslmed.aau4445] [PMID: 30404861]
[120]
Yang, J.; Xu, J.; Cheuy, L.; Gonzalez, R.; Fisher, D.R.; Miao, Y. Evaluation of a novel Pb-203-labeled lactam-cyclized alpha-melanocyte-stimulating hormone peptide for melanoma targeting. Mol. Pharm., 2019, 16(4), 1694-1702.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00025] [PMID: 30763112]
[121]
de Herder, W.W.; Hofland, L.J.; van der Lely, A-J.; Lamberts, S.W. Somatostatin receptors in gastroentero-pancreatic neuroendocrine tumours. Endocr. Relat. Cancer, 2003, 10(4), 451-458.
[http://dx.doi.org/10.1677/erc.0.0100451] [PMID: 14713257]
[122]
Anthony, L.; Freda, P.U. From somatostatin to octreotide LAR: evolution of a somatostatin analogue. Curr. Med. Res. Opin., 2009, 25(12), 2989-2999.
[http://dx.doi.org/10.1185/03007990903328959] [PMID: 19842996]
[123]
Stallons, T.A.R.; Saidi, A.; Tworowska, I.; Delpassand, E.S.; Torgue, J.J. Preclinical investigation of 212Pb-DOTAMTATE for peptide receptor radionuclide therapy in a neuroendocrine tumor model. Mol. Cancer Ther., 2019, 18(5), 1012-1021.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1103] [PMID: 30926632]
[124]
Delpassand, E.; Tworowska, I.; Shanoon, F.; Nunez, R.; Ii, L.F.; Muzammil, A.; Stallons, T.; Saidi, A.; Torgue, J. First clinical experi-ence using targeted alpha-emitter therapy with Pb-212-DOTAMTATE (AlphaMedix TM) in patients SSTR(+) neuroendocrine tumors. J. Nucl. Med., 2019, 60(Suppl. 1), 559.
[125]
Serres, S.; Soto, M.S.; Hamilton, A.; McAteer, M.A.; Carbonell, W.S.; Robson, M.D.; Ansorge, O.; Khrapitchev, A.; Bristow, C.; Balathasan, L.; Weissensteiner, T.; Anthony, D.C.; Choudhury, R.P.; Muschel, R.J.; Sibson, N.R. Molecular MRI enables early and sensitive detection of brain metastases. Proc. Natl. Acad. Sci. USA, 2012, 109(17), 6674-6679.
[http://dx.doi.org/10.1073/pnas.1117412109] [PMID: 22451897]
[126]
Liu, C.; Zhang, X.; Song, Y.; Wang, Y.; Zhang, F.; Zhang, Y.; Zhang, Y.; Lan, X. SPECT and fluorescence imaging of vulnerable atherosclerotic plaque with a vascular cell adhesion molecule 1 single-chain antibody fragment. Atherosclerosis, 2016, 254, 263-270.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.09.005] [PMID: 27680307]
[127]
Broisat, A.; Hernot, S.; Toczek, J.; De Vos, J.; Riou, L.M.; Martin, S.; Ahmadi, M.; Thielens, N.; Wernery, U.; Caveliers, V.; Muyl-dermans, S.; Lahoutte, T.; Fagret, D.; Ghezzi, C.; Devoogdt, N. Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ. Res., 2012, 110(7), 927-937.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.265140] [PMID: 22461363]
[128]
Nahrendorf, M.; Keliher, E.; Panizzi, P.; Zhang, H.; Hembrador, S.; Figueiredo, J-L.; Aikawa, E.; Kelly, K.; Libby, P.; Weissleder, R. 18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis. JACC Cardiovasc. Imaging, 2009, 2(10), 1213-1222.
[http://dx.doi.org/10.1016/j.jcmg.2009.04.016] [PMID: 19833312]
[129]
Dimastromatteo, J.; Broisat, A.; Perret, P.; Ahmadi, M.; Boturyn, D.; Dumy, P.; Fagret, D.; Riou, L.M.; Ghezzi, C. In vivo molecular imaging of atherosclerotic lesions in ApoE-/- mice using VCAM-1-specific, 99mTc-labeled peptidic sequences. J. Nucl. Med., 2013, 54(8), 1442-1449.
[http://dx.doi.org/10.2967/jnumed.112.115675] [PMID: 23719858]
[130]
Bala, G.; Blykers, A.; Xavier, C.; Descamps, B.; Broisat, A.; Ghezzi, C.; Fagret, D.; Van Camp, G.; Caveliers, V.; Vanhove, C.; La-houtte, T.; Droogmans, S.; Cosyns, B.; Devoogdt, N.; Hernot, S. Targeting of vascular cell adhesion molecule-1 by 18F-labelled nano-bodies for PET/CT imaging of inflamed atherosclerotic plaques. Eur. Heart J. Cardiovasc. Imaging, 2016, 17(9), 1001-1008.
[http://dx.doi.org/10.1093/ehjci/jev346] [PMID: 26800768]
[131]
Zhang, X.; Liu, C.; Hu, F.; Zhang, Y.; Wang, J.; Gao, Y.; Jiang, Y.; Zhang, Y.; Lan, X. PET imaging of VCAM-1 expression and monitoring therapy response in tumor with a 68Ga-labeled single chain variable fragment. Mol. Pharm., 2018, 15(2), 609-618.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00961] [PMID: 29308904]
[132]
Corroyer-Dulmont, A.; Valable, S.; Falzone, N.; Frelin-Labalme, A.M.; Tietz, O.; Toutain, J.; Sarmiento Soto, M.; Divoux, D.; Chazaviel, L.; Peres, E.A.; Sibson, N.R.; Vallis, K.A.; Myriam, B. VCAM-1 targeted alpha-particle therapy for early brain metastases. Neuro-oncol., 2019, 22(3), 357-368.
[http://dx.doi.org/10.1093/neuonc/noz169] [PMID: 31538194]
[133]
Frelin-Labalme, A.M.; Roger, T.; Falzone, N.; Lee, B.Q.; Sibson, N.R.; Vallis, K.A.; Bernaudin, M.; Valable, S.; Corroyer-Dulmont, A. Radionuclide spatial distribution and dose deposition for in vitro assessments of 212Pb-alphaVCAM-1 targeted alpha therapy. Med. Phys., 2019, 47(3), 1317-1326.
[http://dx.doi.org/10.1002/mp.13969] [PMID: 31838744]
[134]
Gugger, M.; Reubi, J.C. Gastrin-releasing peptide receptors in non-neoplastic and neoplastic human breast. Am. J. Pathol., 1999, 155(6), 2067-2076.
[http://dx.doi.org/10.1016/S0002-9440(10)65525-3] [PMID: 10595936]
[135]
Markwalder, R.; Reubi, J.C. Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res., 1999, 59(5), 1152-1159.
[PMID: 10070977]
[136]
Rogers, B.E.; Bigott, H.M.; McCarthy, D.W.; Della Manna, D.; Kim, J.; Sharp, T.L.; Welch, M.J. MicroPET imaging of a gastrin-releasing peptide receptor-positive tumor in a mouse model of human prostate cancer using a 64Cu-labeled bombesin analogue. Bioconjug. Chem., 2003, 14(4), 756-763.
[http://dx.doi.org/10.1021/bc034018l] [PMID: 12862428]
[137]
Zhang, H.; Chen, J.; Waldherr, C.; Hinni, K.; Waser, B.; Reubi, J.C.; Maecke, H.R. Synthesis and evaluation of bombesin derivatives on the basis of pan-bombesin peptides labeled with indium-111, lutetium-177, and yttrium-90 for targeting bombesin receptor-expressing tumors. Cancer Res., 2004, 64(18), 6707-6715.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3845] [PMID: 15374988]
[138]
Garrison, J.C.; Rold, T.L.; Sieckman, G.L.; Figueroa, S.D.; Volkert, W.A.; Jurisson, S.S.; Hoffman, T.J. In vivo evaluation and small-animal PET/CT of a prostate cancer mouse model using 64Cu bombesin analogs: side-by-side comparison of the CB-TE2A and DOTA chelation systems. J. Nucl. Med., 2007, 48(8), 1327-1337.
[http://dx.doi.org/10.2967/jnumed.107.039487] [PMID: 17631556]
[139]
Abiraj, K.; Mansi, R.; Tamma, M-L.; Fani, M.; Forrer, F.; Nicolas, G.; Cescato, R.; Reubi, J.C.; Maecke, H.R. Bombesin antagonist-based radioligands for translational nuclear imaging of gastrin-releasing peptide receptor-positive tumors. J. Nucl. Med., 2011, 52(12), 1970-1978.
[http://dx.doi.org/10.2967/jnumed.111.094375] [PMID: 22080443]
[140]
Honer, M.; Mu, L.; Stellfeld, T.; Graham, K.; Martic, M.; Fischer, C.R.; Lehmann, L.; Schubiger, P.A.; Ametamey, S.M.; Dinkelborg, L.; Srinivasan, A.; Borkowski, S. 18F-labeled bombesin analog for specific and effective targeting of prostate tumors expressing gastrin-releasing peptide receptors. J. Nucl. Med., 2011, 52(2), 270-278.
[http://dx.doi.org/10.2967/jnumed.110.081620] [PMID: 21233180]
[141]
Stoykow, C.; Erbes, T.; Maecke, H.R.; Bulla, S.; Bartholomä, M.; Mayer, S.; Drendel, V.; Bronsert, P.; Werner, M.; Gitsch, G.; Weber, W.A.; Stickeler, E.; Meyer, P.T. Gastrin-releasing peptide receptor imaging in breast cancer using the receptor antagonist 68Ga-RM2 and PET. Theranostics, 2016, 6(10), 1641-1650.
[http://dx.doi.org/10.7150/thno.14958] [PMID: 27446498]
[142]
Okoye, N.; Rold, T.; Berendzen, A.; Zhang, X.; White, R.; Schultz, M.; Li, M.; Dresser, T.; Jurisson, S.; Quinn, T. Targeting the BB2 receptor in prostate cancer using a Pb-203 labeled peptide. J. Nucl. Med., 2017, 58(Suppl. 1), 321-321.
[143]
Okoye, N.C. Synthesis and preclinical evaluation of peptide receptor-targeted diagnostic and therapeutic radiopharmaceuticals for prostate cancer.. Thesis Dissertation., University of Missouri: Columbia, 2019.
[144]
Zang, X.; Thompson, R.H.; Al-Ahmadie, H.A.; Serio, A.M.; Reuter, V.E.; Eastham, J.A.; Scardino, P.T.; Sharma, P.; Allison, J.P. B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc. Natl. Acad. Sci. USA, 2007, 104(49), 19458-19463.
[http://dx.doi.org/10.1073/pnas.0709802104] [PMID: 18042703]
[145]
Crispen, P.L.; Sheinin, Y.; Roth, T.J.; Lohse, C.M.; Kuntz, S.M.; Frigola, X.; Thompson, R.H.; Boorjian, S.A.; Dong, H.; Leibovich, B.C.; Blute, M.L.; Kwon, E.D. Tumor cell and tumor vasculature expression of B7-H3 predict survival in clear cell renal cell carcinoma. Clin. Cancer Res., 2008, 14(16), 5150-5157.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0536] [PMID: 18694993]
[146]
Zang, X.; Sullivan, P.S.; Soslow, R.A.; Waitz, R.; Reuter, V.E.; Wilton, A.; Thaler, H.T.; Arul, M.; Slovin, S.F.; Wei, J.; Spriggs, D.R.; Dupont, J.; Allison, J.P. Tumor associated endothelial expression of B7-H3 predicts survival in ovarian carcinomas. Mod. Pathol., 2010, 23(8), 1104-1112.
[http://dx.doi.org/10.1038/modpathol.2010.95] [PMID: 20495537]
[147]
Zhao, X.; Li, D-C.; Zhu, X-G.; Gan, W-J.; Li, Z.; Xiong, F.; Zhang, Z-X.; Zhang, G-B.; Zhang, X-G.; Zhao, H. B7-H3 overexpression in pancreatic cancer promotes tumor progression. Int. J. Mol. Med., 2013, 31(2), 283-291.
[http://dx.doi.org/10.3892/ijmm.2012.1212] [PMID: 23242015]
[148]
Chapoval, A.I.; Ni, J.; Lau, J.S.; Wilcox, R.A.; Flies, D.B.; Liu, D.; Dong, H.; Sica, G.L.; Zhu, G.; Tamada, K.; Chen, L. B7-H3: a costimulatory molecule for T cell activation and IFN-γ production. Nat. Immunol., 2001, 2(3), 269-274.
[http://dx.doi.org/10.1038/85339] [PMID: 11224528]
[149]
Luo, L.; Chapoval, A.I.; Flies, D.B.; Zhu, G.; Hirano, F.; Wang, S.; Lau, J.S.; Dong, H.; Tamada, K.; Flies, A.S.; Liu, Y.; Chen, L. B7-H3 enhances tumor immunity in vivo by costimulating rapid clonal expansion of antigen-specific CD8+ cytolytic T cells. J. Immunol., 2004, 173(9), 5445-5450.
[http://dx.doi.org/10.4049/jimmunol.173.9.5445] [PMID: 15494491]
[150]
Lupu, C.M.; Eisenbach, C.; Kuefner, M.A.; Schmidt, J.; Lupu, A.D.; Stremmel, W.; Encke, J. An orthotopic colon cancer model for studying the B7-H3 antitumor effect in vivo. J. Gastrointest. Surg., 2006, 10(5), 635-645.
[http://dx.doi.org/10.1007/BF03239969] [PMID: 16713537]
[151]
Suh, W-K.; Gajewska, B.U.; Okada, H.; Gronski, M.A.; Bertram, E.M.; Dawicki, W.; Duncan, G.S.; Bukczynski, J.; Plyte, S.; Elia, A.; Wakeham, A.; Itie, A.; Chung, S.; Da Costa, J.; Arya, S.; Horan, T.; Campbell, P.; Gaida, K.; Ohashi, P.S.; Watts, T.H.; Yoshinaga, S.K.; Bray, M.R.; Jordana, M.; Mak, T.W. The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated im-mune responses. Nat. Immunol., 2003, 4(9), 899-906.
[http://dx.doi.org/10.1038/ni967] [PMID: 12925852]
[152]
Castriconi, R.; Dondero, A.; Augugliaro, R.; Cantoni, C.; Carnemolla, B.; Sementa, A.R.; Negri, F.; Conte, R.; Corrias, M.V.; Moretta, L.; Moretta, A.; Bottino, C. Identification of 4Ig-B7-H3 as a neuroblastoma-associated molecule that exerts a protective role from an NK cell-mediated lysis. Proc. Natl. Acad. Sci. USA, 2004, 101(34), 12640-12645.
[http://dx.doi.org/10.1073/pnas.0405025101] [PMID: 15314238]
[153]
Prasad, D.V.; Nguyen, T.; Li, Z.; Yang, Y.; Duong, J.; Wang, Y.; Dong, C. Murine B7-H3 is a negative regulator of T cells. J. Immunol., 2004, 173(4), 2500-2506.
[http://dx.doi.org/10.4049/jimmunol.173.4.2500] [PMID: 15294965]
[154]
Fukushima, A.; Sumi, T.; Fukuda, K.; Kumagai, N.; Nishida, T.; Yamazaki, T.; Akiba, H.; Okumura, K.; Yagita, H.; Ueno, H. B7-H3 regulates the development of experimental allergic conjunctivitis in mice. Immunol. Lett., 2007, 113(1), 52-57.
[http://dx.doi.org/10.1016/j.imlet.2007.07.011] [PMID: 17825429]
[155]
Kasten, B.B.; Arend, R.C.; Katre, A.A.; Kim, H.; Fan, J.; Ferrone, S.; Zinn, K.R.; Buchsbaum, D.J. B7-H3-targeted 212Pb radioim-munotherapy of ovarian cancer in preclinical models. Nucl. Med. Biol., 2017, 47, 23-30.
[http://dx.doi.org/10.1016/j.nucmedbio.2017.01.003] [PMID: 28104527]
[156]
Kasten, B.B.; Gangrade, A.; Kim, H.; Fan, J.; Ferrone, S.; Ferrone, C.R.; Zinn, K.R.; Buchsbaum, D.J. 212Pb-labeled B7-H3-targeting antibody for pancreatic cancer therapy in mouse models. Nucl. Med. Biol., 2018, 58, 67-73.
[http://dx.doi.org/10.1016/j.nucmedbio.2017.12.004] [PMID: 29413459]
[157]
Wang, X.; Osada, T.; Wang, Y.; Yu, L.; Sakakura, K.; Katayama, A.; McCarthy, J.B.; Brufsky, A.; Chivukula, M.; Khoury, T.; Hsu, D.S.; Barry, W.T.; Lyerly, H.K.; Clay, T.M.; Ferrone, S. CSPG4 protein as a new target for the antibody-based immunotherapy of triple-negative breast cancer. J. Natl. Cancer Inst., 2010, 102(19), 1496-1512.
[http://dx.doi.org/10.1093/jnci/djq343] [PMID: 20852124]
[158]
Ilieva, K.M.; Cheung, A.; Mele, S.; Chiaruttini, G.; Crescioli, S.; Griffin, M.; Nakamura, M.; Spicer, J.F.; Tsoka, S.; Lacy, K.E.; Tutt, A.N.J.; Karagiannis, S.N. Chondroitin sulfate proteoglycan 4 and its potential as an antibody immunotherapy target across different tumor types. Front. Immunol., 2018, 8, 1911.
[http://dx.doi.org/10.3389/fimmu.2017.01911] [PMID: 29375561]
[159]
Kasten, B.; Fan, J.; Ferrone, S.; Zinn, K.; Buchsbaum, D. Targeted radioimmunotherapy of triple negative breast cancer with CSPG4-specific 212Pb-labeled monoclonal antibody. J. Nucl. Med., 2016, 57(Suppl. 2), 114-114.
[160]
Kasten, B.B.; Oliver, P.G.; Kim, H.; Fan, J.; Ferrone, S.; Zinn, K.R.; Buchsbaum, D.J. 212Pb-Labeled Antibody 225.28 Targeted to Chondroitin Sulfate Proteoglycan 4 for Triple-Negative Breast Cancer Therapy in Mouse Models. Int. J. Mol. Sci., 2018, 19(4)E925
[http://dx.doi.org/10.3390/ijms19040925] [PMID: 29561763]
[161]
Kozak, R.W.; Atcher, R.W.; Gansow, O.A.; Friedman, A.M.; Hines, J.J.; Waldmann, T.A. Bismuth-212-labeled anti-Tac monoclonal antibody: alpha-particle-emitting radionuclides as modalities for radioimmunotherapy. Proc. Natl. Acad. Sci. USA, 1986, 83(2), 474-478.
[http://dx.doi.org/10.1073/pnas.83.2.474] [PMID: 3079913]
[162]
Hartmann, F.; Horak, E.M.; Garmestani, K.; Wu, C.; Brechbiel, M.W.; Kozak, R.W.; Tso, J.; Kosteiny, S.A.; Gansow, O.A.; Nelson, D.L. Radioimmunotherapy of nude mice bearing a human interleukin 2 receptor α-expressing lymphoma utilizing the α-emitting ra-dionuclide-conjugated monoclonal antibody 212Bi-anti-Tac. Cancer Res., 1994, 54(16), 4362-4370.
[PMID: 8044783]
[163]
Quelven, I.; Monteil, J.; Sage, M.; Saidi, A.; Mounier, J.; Bayout, A.; Garrier, J.; Cogne, M.; Durand-Panteix, S. 212Pb Alpha-Radioimmunotherapy targeting CD38 in Multiple Myeloma: a preclinical study. J. Nucl. Med., 2020, 61(7), 1058-1065.
[http://dx.doi.org/10.2967/jnumed.119.239491] [PMID: 31862796]
[164]
Milenic, D.E.; Garmestani, K.; Brady, E.D.; Baidoo, K.E.; Albert, P.S.; Wong, K.J.; Flynn, J.; Brechbiel, M.W. Multimodality therapy: potentiation of high linear energy transfer radiation with paclitaxel for the treatment of disseminated peritoneal disease. Clin. Cancer Res., 2008, 14(16), 5108-5115.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0256] [PMID: 18698028]
[165]
Yong, K.J.; Milenic, D.E.; Baidoo, K.E.; Brechbiel, M.W. 212Pb-radioimmunotherapy potentiates paclitaxel-induced cell killing efficacy by perturbing the mitotic spindle checkpoint. Br. J. Cancer, 2013, 108(10), 2013-2020.
[http://dx.doi.org/10.1038/bjc.2013.189] [PMID: 23632482]
[166]
Milenic, D.E.; Garmestani, K.; Brady, E.D.; Albert, P.S.; Abdulla, A.; Flynn, J.; Brechbiel, M.W. Potentiation of high-LET radiation by gemcitabine: targeting HER2 with trastuzumab to treat disseminated peritoneal disease. Clin. Cancer Res., 2007, 13(6), 1926-1935.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2300] [PMID: 17363549]
[167]
Crow, D.M.; Williams, L.; Colcher, D.; Wong, J.Y.; Raubitschek, A.; Shively, J.E. Combined radioimmunotherapy and chemotherapy of breast tumors with Y-90-labeled anti-Her2 and anti-CEA antibodies with taxol. Bioconjug. Chem., 2005, 16(5), 1117-1125.
[http://dx.doi.org/10.1021/bc0500948] [PMID: 16173788]
[168]
DeNardo, S.J.; Kukis, D.L.; Kroger, L.A.; O’Donnell, R.T.; Lamborn, K.R.; Miers, L.A.; DeNardo, D.G.; Meares, C.F.; DeNardo, G.L. Synergy of Taxol and radioimmunotherapy with yttrium-90-labeled chimeric L6 antibody: efficacy and toxicity in breast cancer xenografts. Proc. Natl. Acad. Sci. USA, 1997, 94(8), 4000-4004.
[http://dx.doi.org/10.1073/pnas.94.8.4000] [PMID: 9108094]
[169]
Milas, L.; Kishi, K.; Hunter, N.; Mason, K.; Masferrer, J.L.; Tofilon, P.J. Enhancement of tumor response to γ-radiation by an inhibitor of cyclooxygenase-2 enzyme. J. Natl. Cancer Inst., 1999, 91(17), 1501-1504.
[http://dx.doi.org/10.1093/jnci/91.17.1501] [PMID: 10469752]
[170]
O’Donnell, R.T.; DeNardo, S.J.; Miers, L.A.; Lamborn, K.R.; Kukis, D.L.; DeNardo, G.L.; Meyers, F.J. Combined modality radioim-munotherapy for human prostate cancer xenografts with taxanes and 90yttrium-DOTA-peptide-ChL6. Prostate, 2002, 50(1), 27-37.
[http://dx.doi.org/10.1002/pros.10029] [PMID: 11757033]
[171]
More, S.S.; Itsara, M.; Yang, X.; Geier, E.G.; Tadano, M.K.; Seo, Y.; Vanbrocklin, H.F.; Weiss, W.A.; Mueller, S.; Haas-Kogan, D.A.; Dubois, S.G.; Matthay, K.K.; Giacomini, K.M. Vorinostat increases expression of functional norepinephrine transporter in neuroblastoma in vitro and in vivo model systems. Clin. Cancer Res., 2011, 17(8), 2339-2349.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2949] [PMID: 21421857]
[172]
DuBois, S.G.; Groshen, S.; Park, J.R.; Haas-Kogan, D.A.; Yang, X.; Geier, E.; Chen, E.; Giacomini, K.; Weiss, B.; Cohn, S.L.; Granger, M.M.; Yanik, G.A.; Hawkins, R.; Courtier, J.; Jackson, H.; Goodarzian, F.; Shimada, H.; Czarnecki, S.; Tsao-Wei, D.; Villa-blanca, J.G.; Marachelian, A.; Matthay, K.K. Phase I study of vorinostat as a radiation sensitizer with 131I-Metaiodobenzylguanidine (131I-MIBG) for patients with relapsed or refractory neuroblastoma. Clin. Cancer Res., 2015, 21(12), 2715-2721.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3240] [PMID: 25695691]
[173]
Li, M.; Liu, D.; Lee, D.; Kapoor, S.; Gibson-Corley, K.N.; Quinn, T.P.; Sagastume, E.A.; Mott, S.L.; Walsh, S.A.; Acevedo, M.R.; Johnson, F.L.; Schultz, M.K. Enhancing the efficacy of Melanocortin 1 receptor-targeted radiotherapy by pharmacologically upregulating the receptor in metastatic melanoma. Mol. Pharm., 2019, 16(9), 3904-3915.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00512] [PMID: 31318566]
[174]
Marks, L.B.; Yorke, E.D.; Jackson, A.; Ten Haken, R.K.; Constine, L.S.; Eisbruch, A.; Bentzen, S.M.; Nam, J.; Deasy, J.O. Use of normal tissue complication probability models in the clinic. Int. J. Radiat. Oncol. Biol. Phys., 2010, 76(3)(Suppl.), S10-S19.
[http://dx.doi.org/10.1016/j.ijrobp.2009.07.1754] [PMID: 20171502]
[175]
Emami, B.; Lyman, J.; Brown, A.; Coia, L.; Goitein, M.; Munzenrider, J.E.; Shank, B.; Solin, L.J.; Wesson, M. Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys., 1991, 21(1), 109-122.
[http://dx.doi.org/10.1016/0360-3016(91)90171-Y] [PMID: 2032882]
[176]
Nath, R.; Biggs, P.J.; Bova, F.J.; Ling, C.C.; Purdy, J.A.; Van de Geijn, J.; Weinhous, M.S. AAPM code of practice for radiotherapy accelerators: Report of AAPM Radiation Therapy Task Group No. 45 1994, 21(7), 1093-1121.
[http://dx.doi.org/10.1118/1.597398] [PMID: 7968843]
[177]
Kinsey, R. National Nuclear Data Center. Nuclear Data from Nubat at Brookhaven National, 1979.
[178]
Jabbari, K. Review of fast monte carlo codes for dose calculation in radiation therapy treatment planning. J. Med. Signals Sens., 2011, 1(1), 73-86.
[http://dx.doi.org/10.4103/2228-7477.83522] [PMID: 22606661]
[179]
Ahnesjö, A. Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med. Phys., 1989, 16(4), 577-592.
[http://dx.doi.org/10.1118/1.596360] [PMID: 2770632]
[180]
Vassiliev, O.N.; Wareing, T.A.; McGhee, J.; Failla, G.; Salehpour, M.R.; Mourtada, F. Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams. Phys. Med. Biol., 2010, 55(3), 581-598.
[http://dx.doi.org/10.1088/0031-9155/55/3/002] [PMID: 20057008]
[181]
Bucci, M.K.; Bevan, A.; Roach, M., III Advances in radiation therapy: conventional to 3D, to IMRT, to 4D, and beyond. CA Cancer J. Clin., 2005, 55(2), 117-134.
[http://dx.doi.org/10.3322/canjclin.55.2.117] [PMID: 15761080]
[182]
Bolch, W.E.; Bouchet, L.G.; Robertson, J.S.; Wessels, B.W.; Siegel, J.A.; Howell, R.W.; Erdi, A.K.; Aydogan, B.; Costes, S.; Watson, E.E.; Brill, A.B.; Charkes, N.D.; Fisher, D.R.; Hays, M.T.; Thomas, S.R. Medical internal radiation dose committee. MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions--radionuclide S values at the voxel level. J. Nucl. Med., 1999, 40(1), 11S-36S.
[PMID: 9935083]
[183]
Bolch, W.E.; Eckerman, K.F.; Sgouros, G.; Thomas, S.R. MIRD pamphlet No. 21: a generalized schema for radiopharmaceutical do-simetry--standardization of nomenclature. J. Nucl. Med., 2009, 50(3), 477-484.
[http://dx.doi.org/10.2967/jnumed.108.056036] [PMID: 19258258]
[184]
Loevinger, R.; Budinger, T.F.; Watson, E.E. MIRD primer for absorbed dose calculations; Society of Nuclear Medicine, 1988.
[185]
Han, E.Y.; Bolch, W.E.; Eckerman, K.F. Revisions to the ORNL series of adult and pediatric computational phantoms for use with the MIRD schema. Health Phys., 2006, 90(4), 337-356.
[http://dx.doi.org/10.1097/01.HP.0000192318.13190.c4] [PMID: 16538139]
[186]
Zhang, J.; Na, Y.H.; Caracappa, P.F.; Xu, X.G. RPI-AM and RPI-AF, a pair of mesh-based, size-adjustable adult male and female computational phantoms using ICRP-89 parameters and their calculations for organ doses from monoenergetic photon beams. Phys. Med. Biol., 2009, 54(19), 5885-5908.
[http://dx.doi.org/10.1088/0031-9155/54/19/015] [PMID: 19759412]
[187]
Stabin, M.G.; Sparks, R.B.; Crowe, E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J. Nucl. Med., 2005, 46(6), 1023-1027.
[PMID: 15937315]
[188]
Stabin, M.G.; Siegel, J.A. RADAR dose estimate report: a compendium of radiopharmaceutical dose estimates based on OLINDA/EXM version 2.0. J. Nucl. Med., 2018, 59(1), 154-160.
[http://dx.doi.org/10.2967/jnumed.117.196261] [PMID: 28887400]
[189]
Stabin, M.G. MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J. Nucl. Med., 1996, 37(3), 538-546.
[PMID: 8772664]
[190]
Graves, S.; Tiwari, A.; Menda, Y.; Madsen, M.; Sunderland, J. Toward best practice voxel-wise 177Lu dosimetry: kernel generation, scanner characterization, and convolution-based dose calculation. J. Nucl. Med., 2019, 60(Suppl. 1), 119-119.
[191]
Chiavassa, S.; Bardiès, M.; Guiraud-Vitaux, F.; Bruel, D.; Jourdain, J-R.; Franck, D.; Aubineau-Lanièce, I. OEDIPE: a personalized dosimetric tool associating voxel-based models with MCNPX. Cancer Biother. Radiopharm., 2005, 20(3), 325-332.
[http://dx.doi.org/10.1089/cbr.2005.20.325] [PMID: 15989479]
[192]
Guy, M.J.; Flux, G.D.; Papavasileiou, P.; Flower, M.A.; Ott, R.J. RMDP: a dedicated package for 131I SPECT quantification, registra-tion and patient-specific dosimetry. Cancer Biother. Radiopharm., 2003, 18(1), 61-69.
[http://dx.doi.org/10.1089/108497803321269331] [PMID: 12667309]
[193]
Mirando, D.; Dewaraja, Y.; Kruzer, A.; Nelson, A. Personalized therapy planning for 177Lu-DOTATATE using a kidney-driven dose optimization method. J. Nucl. Med., 2019, 60(Suppl. 1), 270-270.
[194]
Mirzadeh, S.; Kumar, K.; Gansow, O.A. The chemical fate of 212Bi-DOTA formed by β-decay of 212Pb (DOTA) 2. Radiochim. Acta, 1993, 60(1), 1-10.
[http://dx.doi.org/10.1524/ract.1993.60.1.1]
[195]
Russ, G.A.; Bigler, R.E.; Tilbury, R.S.; Woodard, H.Q.; Laughlin, J.S. Metabolic studies with radiobismuth. I. Retention and distribution of 206Bi in the normal rat. Radiat. Res., 1975, 63(3), 443-454.
[http://dx.doi.org/10.2307/3574096] [PMID: 1162032]
[196]
Slikkerveer, A.; de Wolff, F.A. Pharmacokinetics and toxicity of bismuth compounds. Med. Toxicol., 1989, 4(5), 303-323.
[http://dx.doi.org/10.1007/BF03259915] [PMID: 2682129]
[197]
Szymanska, J.A.; Mogilnicka, E.M.; Kaszper, B.W. Binding of bismuth in the kidneys of the rat: the role of metallothionein-like proteins. Biochem. Pharmacol., 1977, 26(3), 257-258.
[http://dx.doi.org/10.1016/0006-2952(77)90314-8] [PMID: 843396]
[198]
Bodei, L.; Cremonesi, M.; Grana, C.; Rocca, P.; Bartolomei, M.; Chinol, M.; Paganelli, G. Receptor radionuclide therapy with 90Y-[DOTA]0-Tyr3-octreotide (90Y-DOTATOC) in neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging, 2004, 31(7), 1038-1046.
[http://dx.doi.org/10.1007/s00259-004-1571-4] [PMID: 15150675]
[199]
Dewaraja, Y.K.; Frey, E.C.; Sgouros, G.; Brill, A.B.; Roberson, P.; Zanzonico, P.B.; Ljungberg, M. MIRD pamphlet No. 23: quantita-tive SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J. Nucl. Med., 2012, 53(8), 1310-1325.
[http://dx.doi.org/10.2967/jnumed.111.100123] [PMID: 22743252]
[200]
Ljungberg, M.; Celler, A.; Konijnenberg, M.W.; Eckerman, K.F.; Dewaraja, Y.K.; Sjögreen-Gleisner, K.; Bolch, W.E.; Brill, A.B.; Fahey, F.; Fisher, D.R.; Hobbs, R.; Howell, R.W.; Meredith, R.F.; Sgouros, G.; Zanzonico, P.; Bacher, K.; Chiesa, C.; Flux, G.; Lass-mann, M.; Strigari, L.; Walrand, S. SNMMI MIRD Committee. EANM Dosimetry Committee. EANM Dosimetry Committee. MIRD pamphlet no. 26: joint EANM/MIRD guidelines for quantitative 177Lu SPECT applied for dosimetry of radiopharmaceutical therapy. J. Nucl. Med., 2016, 57(1), 151-162.
[http://dx.doi.org/10.2967/jnumed.115.159012] [PMID: 26471692]
[201]
Lee, D.; Li, M.; Bednarz, B.; Schultz, M.K. Modeling cell and tumor-metastasis dosimetry with the particle and heavy ion transport code system (PHITS) software for targeted alpha-particle radionuclide therapy. Radiat. Res., 2018, 190(3), 236-247.
[http://dx.doi.org/10.1667/RR15081.1] [PMID: 29944461]
[202]
Frankenberg-Schwager, M.; Frankenberg, D.; Harbich, R. Repair of DNA double-strand breaks as a determinant of RBE of alpha par-ticles. Br. J. Cancer Suppl., 1984, 6, 169-173.
[PMID: 6365139]
[203]
Hobbs, R.F.; Song, H.; Huso, D.L.; Sundel, M.H.; Sgouros, G. A nephron-based model of the kidneys for macro-to-micro α-particle dosimetry. Phys. Med. Biol., 2012, 57(13), 4403-4424.
[http://dx.doi.org/10.1088/0031-9155/57/13/4403] [PMID: 22705986]
[204]
Sgouros, G.; Hobbs, R.; Josefsson, A. Dosimetry and radiobiology of alpha-particle emitting radionuclides. Curr. Radiopharm., 2018, 11(3), 209-214.
[http://dx.doi.org/10.2174/1874471011666180426130058] [PMID: 29697036]
[205]
Miller, B.W.; Gregory, S.J.; Fuller, E.S.; Barrett, H.H.; Barber, H.B.; Furenlid, L.R. The iQID camera: An ionizing-radiation quantum imaging detector. Detectors and Associated Equipment, 2014, 767, 146-152.
[http://dx.doi.org/10.1016/j.nima.2014.05.070] [PMID: 26166921]
[206]
Valentin, J. Relative biological effectiveness (RBE), quality factor (Q), and radiation weighting factor (wR): ICRP Publication 92. Ann. ICRP, 2003, 33(4), 1-121.
[http://dx.doi.org/10.1016/S0146-6453(03)00024-1] [PMID: 14614921]