Recent Advances in Electrical & Electronic Engineering

Author(s): Hui He*, Rui Zhang, Kaihang Li, Yongjun Jie, Runhai Jiao and Bo Chen

DOI: 10.2174/2352096513999200724174751

Short-term Electricity Price Probabilistic Forecasting Based on Support Vector Quantile Regression Optimized by Simulated Annealing Algorithm

Page: [156 - 170] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Electricity price forecasting is still a challenging issue as it plays an essential role in balancing electricity generation and consumption. Probabilistic electricity price forecasting not only provides deterministic price forecasts but also effectively quantifies the uncertainty of electricity price.

Methods: This paper introduces a new short-term electricity price forecasting approach called SASVQR, which is based on support vector quantile regression (SVQR) optimized by simulated annealing algorithm. In this study, SVQR is employed to obtain the conditional quantiles of the electricity under different quantile points, while the simulated annealing algorithm is applied to optimize each SVR model. Then the kernel density estimation takes these conditional quantiles as inputs and generates the probability density functions for future electricity prices.

Results: The proposed algorithm is assessed in three datasets: the GEFCom 2014, two real electricity price datasets from the PJM market and the Singapore market. Three popular probabilistic forecasting criteria, namely prediction interval coverage probability (PICP), prediction interval normalized average width (PINAW), and coverage width-based criterion (CWC), are utilized to evaluate the numerical experiment results. It shows the promising forecasting performance, robustness, and effectiveness of SASVQR on different datasets.

Conclusion: The SASVQR method can effectively forecast the short-term electricity price compared with other methods.

Keywords: Electricity price, probabilistic forecasting, support vector quantile regression, simulated annealing algorithm, kernel density estimation, quantile regression.

Graphical Abstract

[1]
M. Shafie-khah, and J.P.S. Catalão, "A Stochastic multi-layer agent-based model to study electricity market participants behavior", IEEE Trans. Power Syst., vol. 30, no. 2, pp. 867-881, 2015.
[http://dx.doi.org/10.1109/TPWRS.2014.2335992]
[2]
F. Wang, "multi-objective optimization model of source–load–storage synergetic dispatch for a building energy management system based on TOU price demand response", IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 1017-1028, 2018.
[http://dx.doi.org/10.1109/TIA.2017.2781639]
[3]
L. Wu, and M. Shahidehpour, "A hybrid model for day-ahead price forecasting", IEEE Trans. Power Syst., vol. 25, no. 3, pp. 1519-1530, 2010.
[http://dx.doi.org/10.1109/TPWRS.2009.2039948]
[4]
T. Hong, Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond:, pp. 896-913, 2016.
[http://dx.doi.org/10.1016/j.ijforecast.2016.02.001]
[5]
J. Nowotarski, and R. Weron, "Recent advances in electricity price forecasting: A review of probabilistic forecasting", Renew. Sustain. Energy Rev., vol. 81, pp. 1548-1568, 2018.
[http://dx.doi.org/10.1016/j.rser.2017.05.234]
[6]
D. Liu, J. Wang, and H. Wang, "Short-term wind speed forecasting based on spectral clustering and optimised echo state networks", Renew. Energ., vol. 78, pp. 599-608, 2015.
[http://dx.doi.org/10.1016/j.renene.2015.01.022]
[7]
H. Wang, G. Li, and G. Wang, "Deep learning based ensemble approach for probabilistic wind power forecasting", Appl. Energ., vol. 188, pp. 56-70, 2017.
[http://dx.doi.org/10.1016/j.apenergy.2016.11.111]
[8]
E. Xydas, M. Qadrdan, and C. Marmaras, "Probabilistic wind power forecasting and its application in the scheduling of gas-fired generators", Appl. Energ., vol. 192, pp. 382-394, 2017.
[http://dx.doi.org/10.1016/j.apenergy.2016.10.019]
[9]
Y. Wang, D. Gan, and M. Sun, "Probabilistic individual load forecasting using pinball loss guided LSTM", Appl. Energ., vol. 235, pp. 10-20, 2019.
[http://dx.doi.org/10.1016/j.apenergy.2018.10.078]
[10]
M. Shepero, D. van der Meer, and J. Munkhammar, "Residential probabilistic load forecasting: A method using Gaussian process designed for electric load data", Appl. Energ., vol. 218, pp. 159-172, 2018.
[http://dx.doi.org/10.1016/j.apenergy.2018.02.165]
[11]
D.W. van der Meer, M. Shepero, and A. Svensson, "Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian Processes", Appl. Energ., vol. 213, pp. 195-207, 2018.
[http://dx.doi.org/10.1016/j.apenergy.2017.12.104]
[12]
R. Koenker, and K.F. Hallock, "Quantile regression", J. Econ. Perspect., vol. 15, no. 4, pp. 143-156, 2001.
[http://dx.doi.org/10.1257/jep.15.4.143]
[13]
P. Gaillard, Y. Goude, and R. Nedellec, "Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting", Int. J. Forecast., vol. 32, no. 3, pp. 1038-1050, 2016.
[http://dx.doi.org/10.1016/j.ijforecast.2015.12.001]
[14]
K. Maciejowska, and J. Nowotarski, "A hybrid model for GEFCom2014 probabilistic electricity price forecasting", Int. J. Forecast., vol. 32, no. 3, pp. 1051-1056, 2016.
[http://dx.doi.org/10.1016/j.ijforecast.2015.11.008]
[15]
G. Dudek, "Multilayer perceptron for GEFCom2014 probabilistic electricity price forecasting", Int. J. Forecast., vol. 32, no. 3, pp. 1057-1060, 2016.
[http://dx.doi.org/10.1016/j.ijforecast.2015.11.009]
[16]
R. Juban, H. Ohlsson, and M. Maasoumy, "A multiple quantile regression approach to the wind, solar, and price tracks of GEFCom2014", Int. J. Forecast., vol. 32, no. 3, pp. 1094-1102, 2016.
[http://dx.doi.org/10.1016/j.ijforecast.2015.12.002]
[17]
R. Weron, "Electricity price forecasting: A review of the state-of-the-art with a look into the future", Int. J. Forecast., vol. 30, no. 4, pp. 1030-1081, 2014.
[http://dx.doi.org/10.1016/j.ijforecast.2014.08.008]
[18]
A. Misiorek, S. Trueck, and R. Weron, "Point and interval forecasting of spot electricity prices: Linear vs. non-linear time series models", Stud. Nonlinear Dyn. Econom., vol. 10, no. 3, 2006.
[19]
M. Zhou, Z. Yan, and Y.X. Ni, "Electricity price forecasting with confidence-interval estimation through an extended ARIMA approach", IEEE Proceedings-Generation, Transmission and Distribution, vol. 153, no. 2, pp. 187-195, 2006.
[http://dx.doi.org/10.1049/ip-gtd:20045131]
[20]
C. Huurman, F. Ravazzolo, and C. Zhou, "The power of weather", Comput. Stat. Data Anal., vol. 56, no. 11, pp. 3793-3807, 2012.
[http://dx.doi.org/10.1016/j.csda.2010.06.021]
[21]
L. Zhang, P.B. Luh, and K. Kasiviswanathan, "Energy clearing price prediction and confidence interval estimation with cascaded neural networks", IEEE Trans. Power Syst., vol. 18, no. 1, pp. 99-105, 2003.
[http://dx.doi.org/10.1109/TPWRS.2002.807062]
[22]
J.H. Zhao, Z.Y. Dong, and Z. Xu, "A statistical approach for interval forecasting of the electricity price", IEEE Trans. Power Syst., vol. 23, no. 2, pp. 267-276, 2008.
[http://dx.doi.org/10.1109/TPWRS.2008.919309]
[23]
X. Chen, Z.Y. Dong, and K. Meng, "Electricity price forecasting with extreme learning machine and bootstrapping", IEEE Trans. Power Syst., vol. 27, no. 4, pp. 2055-2062, 2012.
[http://dx.doi.org/10.1109/TPWRS.2012.2190627]
[24]
C. Wan, Z. Xu, and Y. Wang, "A hybrid approach for probabilistic forecasting of electricity price", IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 463-470, 2014.
[http://dx.doi.org/10.1109/TSG.2013.2274465]
[25]
A. Khosravi, S. Nahavandi, and D. Creighton, "Quantifying uncertainties of neural network-based electricity price forecasts", Appl. Energ., vol. 112, pp. 120-129, 2013.
[http://dx.doi.org/10.1016/j.apenergy.2013.05.075]
[26]
L. Xiao, W. Shao, and C. Wang, "Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting", Appl. Energ., vol. 180, pp. 213-233, 2016.
[http://dx.doi.org/10.1016/j.apenergy.2016.07.113]
[27]
D. Liu, D. Niu, and H. Wang, "Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm", Renew. Energ., vol. 62, pp. 592-597, 2014.
[http://dx.doi.org/10.1016/j.renene.2013.08.011]
[28]
L. Xiao, W. Shao, and M. Yu, "Research and application of a hybrid wavelet neural network model with the improved cuckoo search algorithm for electrical power system forecasting", Appl. Energ., vol. 198, pp. 203-222, 2017.
[http://dx.doi.org/10.1016/j.apenergy.2017.04.039]
[29]
A. Ghasemi, H. Shayeghi, and M. Moradzadeh, "A novel hybrid algorithm for electricity price and load forecasting in smart grids with demand-side management", Appl. Energ., vol. 177, pp. 40-59, 2016.
[http://dx.doi.org/10.1016/j.apenergy.2016.05.083]
[30]
C. Cortes, and V. Vapnik, "Support-vector networks", Mach. Learn., vol. 20, no. 3, pp. 273-297, 1995.
[http://dx.doi.org/10.1007/BF00994018]
[31]
Y. He, R. Liu, and H. Li, "Short-term power load probability density forecasting method using kernel-based support vector quantile regression and Copula theory", Appl. Energ., vol. 185, pp. 254-266, 2017.
[http://dx.doi.org/10.1016/j.apenergy.2016.10.079]
[32]
I. Takeuchi, Q.V. Le, and T.D. Sears, "Nonparametric quantile estimation", J. Mach. Learn. Res., vol. 7, no. Jul, pp. 1231-1264, 2006.
[33]
S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, "Optimization by simulated annealing", Science, vol. 220, no. 4598, pp. 671-680, 1983.
[http://dx.doi.org/10.1126/science.220.4598.671]
[35]
J.W. Taylor, "A quantile regression neural network approach to estimating the conditional density of multiperiod returns", J. Forecast., vol. 19, no. 4, pp. 299-311, 2000.
[http://dx.doi.org/10.1002/1099-131X(200007)19:4<299::AIDFOR775>3.0.CO;2-V]