PEGylated Nanoliposomes Potentiated Oral Combination Therapy for Effective Cancer Treatment

Page: [728 - 735] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

The conventional treatment regimen for cancer with a single chemotherapeutic agent is far behind the clinical expectations due to the complexity of cancer biology and is also associated with poor Quality of Life (QOL) due to off-site toxicity and multidrug resistance. In recent years, nanopotentiated combination therapy has shown significant improvement in cancer treatment via a synergistic approach. However, being synthetic in nature, nanocarriers have been associated with the activation of the Complement (C) activation system resulting in serious hypersensitivity reactions known as CActivation Related Pseudoallergy (CARPA) effect once given via intravenous injection. On the other hand, nanopotentiated oral drug delivery offers several advantages for the effective and safe delivery of the drug to the target site. This hypothesis aims to put forward wherein Exemestane (chemotherapeutic agent) and lycopene (herbal bioactive) co-laden into PEGylated liposomes and delivered to the breast cancer via the oral route. PEGylation of the liposomes would prevent both molecules from the harsh microenvironment of the Gastrointestinal Tract (GIT) and would eventually promote their intestinal absorption via the lymphatic pathway to the systemic circulation. Lycopene being a potent antioxidant and anti-cancer herbal bioactive would promote the therapeutic efficacy of the Exemestane via a synergistic approach. This nanopotentiated oral combination therapy would pave the path for the safe and effective treatment of cancer.

Keywords: PEGylated liposome, combination therapy, oral drug delivery, breast cancer, exemestane, lycopene.

Graphical Abstract

[1]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018 ] [PMID: 25813885]
[2]
Misra, R.; Acharya, S.; Sahoo, S.K. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov. Today, 2010, 15(19-20), 842-850.
[http://dx.doi.org/10.1016/j.drudis.2010.08.006 ] [PMID: 20727417]
[3]
Bray, F.; Jemal, A.; Grey, N.; Ferlay, J.; Forman, D. Global cancer transitions according to the human development index (2008-2030): a population-based study. Lancet Oncol., 2012, 13(8), 790-801.
[http://dx.doi.org/10.1016/S1470-2045(12)70211-5 ] [PMID: 22658655]
[4]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492 ] [PMID: 30207593]
[5]
Shafi, S.; Khan, S.; Hoda, F.; Fayaz, F.; Singh, A.; Khan, M.A.; Ali, R.; Pottoo, F.H.; Tariq, S.; Najmi, A.K. Decoding novel mechanisms and emerging therapeutic strategies in breast cancer resistance. Curr. Drug Metab., 2020, 21(3), 199-210.
[http://dx.doi.org/10.2174/1389200221666200303124946 ] [PMID: 32124694]
[6]
Torre, L.A.; Islami, F.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer in women: burden and trends. Cancer Epidemiol. Biomarkers Prev., 2017, 26(4), 444-457.
[http://dx.doi.org/10.1158/1055-9965.EPI-16-0858 ] [PMID: 28223433]
[7]
Mangla, B.; Neupane, Y.R.; Singh, A.; Kohli, K. Tamoxifen and sulphoraphane for the breast cancer management: a synergistic nanomedicine approach. Med. Hypotheses, 2019, 132, 109379.
[http://dx.doi.org/10.1016/j.mehy.2019.109379 ] [PMID: 31454641]
[8]
Ruddy, K.; Mayer, E.; Partridge, A. Patient adherence and persistence with oral anticancer treatment. CA Cancer J. Clin., 2009, 59(1), 56-66.
[http://dx.doi.org/10.3322/caac.20004 ] [PMID: 19147869]
[9]
O’Neill, V.J.; Twelves, C.J. Oral cancer treatment: developments in chemotherapy and beyond. Br. J. Cancer, 2002, 87(9), 933-937.
[http://dx.doi.org/10.1038/sj.bjc.6600591 ] [PMID: 12434279]
[10]
Thanki, K.; Gangwal, R.P.; Sangamwar, A.T.; Jain, S. Oral delivery of anticancer drugs: challenges and opportunities. J. Control. Release, 2013, 170(1), 15-40.
[http://dx.doi.org/10.1016/j.jconrel.2013.04.020 ] [PMID: 23648832]
[11]
Wood, L. A review on adherence management in patients on oral cancer therapies. Eur. J. Oncol. Nurs., 2012, 16(4), 432-438.
[http://dx.doi.org/10.1016/j.ejon.2011.10.002 ] [PMID: 22051845]
[12]
Scott, L.J.; Wiseman, L.R. Exemestane. Drugs, 1999, 58(4), 675-680.
[http://dx.doi.org/10.2165/00003495-199958040-00007 ] [PMID: 10551437]
[13]
Jaafar, H.; Abdullah, S.; Murtey, M.D.; Idris, F.M. Expression of Bax and Bcl-2 in tumour cells and blood vessels of breast cancer and their association with angiogenesis and hormonal receptors. Asian Pac. J. Cancer Prev., 2012, 13(8), 3857-3862.
[http://dx.doi.org/10.7314/APJCP.2012.13.8.3857 ] [PMID: 23098483]
[14]
Shen, Y.; Du, Y.; Zhang, Y.; Pan, Y. Synergistic effects of combined treatment with simvastatin and exemestane on MCF-7 human breast cancer cells. Mol. Med. Rep., 2015, 12(1), 456-462.
[http://dx.doi.org/10.3892/mmr.2015.3406 ] [PMID: 25738757]
[15]
Valle, M.; Di Salle, E.; Jannuzzo, M.G.; Poggesi, I.; Rocchetti, M.; Spinelli, R.; Verotta, D. A predictive model for exemestane pharmacokinetics/pharmacodynamics incorporating the effect of food and formulation. Br. J. Clin. Pharmacol., 2005, 59(3), 355-364.
[http://dx.doi.org/10.1111/j.1365-2125.2005.02335.x ] [PMID: 15752382]
[16]
Block, K.I.; Koch, A.C.; Mead, M.N.; Tothy, P.K.; Newman, R.A.; Gyllenhaal, C. Impact of antioxidant supplementation on chemotherapeutic toxicity: a systematic review of the evidence from randomized controlled trials. Int. J. Cancer, 2008, 123(6), 1227-1239.
[http://dx.doi.org/10.1002/ijc.23754 ] [PMID: 18623084]
[17]
Holzapfel, N.P.; Holzapfel, B.M.; Champ, S.; Feldthusen, J.; Clements, J.; Hutmacher, D.W. The potential role of lycopene for the prevention and therapy of prostate cancer: from molecular mechanisms to clinical evidence. Int. J. Mol. Sci., 2013, 14(7), 14620-14646.
[http://dx.doi.org/10.3390/ijms140714620 ] [PMID: 23857058]
[18]
Di Mascio, P.; Kaiser, S.; Sies, H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys., 1989, 274(2), 532-538.
[http://dx.doi.org/10.1016/0003-9861(89)90467-0 ] [PMID: 2802626]
[19]
Liang, X.; Ma, C.; Yan, X.; Liu, X.; Liu, F. Advances in research on bioactivity, metabolism, stability and delivery systems of lycopene. Trends Food Sci. Technol., 2019, 93, 185-196.
[http://dx.doi.org/10.1016/j.tifs.2019.08.019]
[20]
Sharoni, Y.; Linnewiel-Hermoni, K.; Zango, G.; Khanin, M.; Salman, H.; Veprik, A.; Danilenko, M.; Levy, J. The role of lycopene and its derivatives in the regulation of transcription systems: implications for cancer prevention. Am. J. Clin. Nutr., 2012, 96(5), 1173S-1178S.
[http://dx.doi.org/10.3945/ajcn.112.034645 ] [PMID: 23053550]
[21]
Peng, S.J.; Li, J.; Zhou, Y.; Tuo, M.; Qin, X.X.; Yu, Q.; Cheng, H.; Li, Y.M. In vitro effects and mechanisms of lycopene in MCF-7 human breast cancer cells. Genet. Mol. Res., 2017, 16(2), 13.
[http://dx.doi.org/10.4238/gmr16029434 ] [PMID: 28407181]
[22]
Jain, S.; Spandana, G.; Agrawal, A.K.; Kushwah, V.; Thanki, K. Enhanced antitumor efficacy and reduced toxicity of docetaxel loaded estradiol functionalized stealth polymeric nanoparticles. Mol. Pharm., 2015, 12(11), 3871-3884.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00281 ] [PMID: 26375023]
[23]
Lao, J.; Madani, J.; Puértolas, T.; Álvarez, M.; Hernández, A.; Pazo-Cid, R.; Artal, A.; Antón Torres, A. Liposomal doxorubicin in the treatment of breast cancer patients: a review. J. Drug Deliv., 2013, 2013, 456409.
[http://dx.doi.org/10.1155/2013/456409 ] [PMID: 23634302]
[24]
Dass, C.R. Drug delivery in cancer using liposomes. Methods Mol. Biol., 2008, 437, 177-182.
[http://dx.doi.org/10.1007/978-1-59745-210-6_9 ] [PMID: 18369969]
[25]
Weinstein, J.N.; Leserman, L.D. Liposomes as drug carriers in cancer chemotherapy. Pharmacol. Ther., 1984, 24(2), 207-233.
[http://dx.doi.org/10.1016/0163-7258(84)90035-4 ] [PMID: 6379684]
[26]
Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30(11), 592-599.
[http://dx.doi.org/10.1016/j.tips.2009.08.004 ] [PMID: 19837467]
[27]
He, H.; Lu, Y.; Qi, J.; Zhu, Q.; Chen, Z.; Wu, W. Adapting liposomes for oral drug delivery. Acta Pharm. Sin. B, 2019, 9(1), 36-48.
[http://dx.doi.org/10.1016/j.apsb.2018.06.005 ] [PMID: 30766776]
[28]
Roger, E.; Lagarce, F.; Garcion, E.; Benoit, J.P. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine (Lond.), 2010, 5(2), 287-306.
[http://dx.doi.org/10.2217/nnm.09.110 ] [PMID: 20148639]
[29]
Li, H.; Song, J.H.; Park, J.S.; Han, K. Polyethylene glycol-coated liposomes for oral delivery of recombinant human epidermal growth factor. Int. J. Pharm., 2003, 258(1-2), 11-19.
[http://dx.doi.org/10.1016/S0378-5173(03)00158-3 ] [PMID: 12753749]
[30]
Khan, I.; Gothwal, A.; Sharma, A.K.; Qayum, A.; Singh, S.K.; Gupta, U. Biodegradable nano-architectural PEGylated approach for the improved stability and anticancer efficacy of bendamustine. Int. J. Biol. Macromol., 2016, 92, 1242-1251.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.08.004 ] [PMID: 27527691]
[31]
Singh, A.; Neupane, Y.R.; Shafi, S.; Mangla, B.; Kohli, K. PEGylated liposomes as an emerging therapeutic platform for oral nanomedicine in cancer therapy: in vitro and in vivo assessment. J. Mol. Liq., 2020, 303, 112649.
[http://dx.doi.org/10.1016/j.molliq.2020.112649]
[32]
Saravanan, S.; Malathi, S.; Sesh, P.S.L.; Selvasubramanian, S.; Balasubramanian, S.; Pandiyan, V. Hydrophilic poly (ethylene glycol) capped poly (lactic-co-glycolic) acid nanoparticles for subcutaneous delivery of insulin in diabetic rats. Int. J. Biol. Macromol., 2017, 95, 1190-1198.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.009 ] [PMID: 27825822]
[33]
Mishra, P.; Nayak, B.; Dey, R.K. PEGylation in anti-cancer therapy: an overview. Asian J. Pharm. Sci., 2016, 11(3), 337-348.
[http://dx.doi.org/10.1016/j.ajps.2015.08.011]
[34]
Minato, S.; Iwanaga, K.; Kakemi, M.; Yamashita, S.; Oku, N. Application of polyethyleneglycol (PEG)-modified liposomes for oral vaccine: effect of lipid dose on systemic and mucosal immunity. J. Control. Release, 2003, 89(2), 189-197.
[http://dx.doi.org/10.1016/S0168-3659(03)00093-2 ] [PMID: 12711443]
[35]
Feeney, O.M.; Williams, H.D.; Pouton, C.W.; Porter, C.J.H. ‘Stealth’ lipid-based formulations: poly(ethylene glycol)-mediated digestion inhibition improves oral bioavailability of a model poorly water soluble drug. J. Control. Release, 2014, 192, 219-227.
[http://dx.doi.org/10.1016/j.jconrel.2014.07.037 ] [PMID: 25058571]
[36]
Khan, N.; Afaq, F.; Mukhtar, H. Cancer chemoprevention through dietary antioxidants: progress and promise. Antioxid. Redox Signal., 2008, 10(3), 475-510.
[http://dx.doi.org/10.1089/ars.2007.1740 ] [PMID: 18154485]
[37]
Gupta, S.C.; Hevia, D.; Patchva, S.; Park, B.; Koh, W.; Aggarwal, B.B. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid. Redox Signal., 2012, 16(11), 1295-1322.
[http://dx.doi.org/10.1089/ars.2011.4414 ] [PMID: 22117137]
[38]
Jain, A.; Sharma, G.; Kushwah, V.; Garg, N.K.; Kesharwani, P.; Ghoshal, G.; Singh, B.; Shivhare, U.S.; Jain, S.; Katare, O.P. Methotrexate and beta-carotene loaded-lipid polymer hybrid nanoparticles: a preclinical study for breast cancer. Nanomedicine (Lond.), 2017, 12(15), 1851-1872.
[http://dx.doi.org/10.2217/nnm-2017-0011 ] [PMID: 28703643]
[39]
Trejo-Solís, C.; Pedraza-Chaverrí, J.; Torres-Ramos, M.; Jiménez-Farfán, D.; Cruz Salgado, A.; Serrano-García, N.; Osorio-Rico, L.; Sotelo, J. Multiple molecular and cellular mechanisms of action of lycopene in cancer inhibition. Evid. Based Complement. Alternat. Med., 2013, 2013, 705121.
[http://dx.doi.org/10.1155/2013/705121 ] [PMID: 23970935]
[40]
Krinsky, N.I. The antioxidant and biological properties of the carotenoids. Ann. N. Y. Acad. Sci., 1998, 854(1), 443-447.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb09923.x ] [PMID: 9928451]
[41]
Scolastici, C.; Alves de Lima, R.O.; Barbisan, L.F.; Ferreira, A.L.A.; Ribeiro, D.A.; Salvadori, D.M.F. Antigenotoxicity and antimutagenicity of lycopene in HepG2 cell line evaluated by the comet assay and micronucleus test. Toxicol. In Vitro, 2008, 22(2), 510-514.
[http://dx.doi.org/10.1016/j.tiv.2007.11.002 ] [PMID: 18077131]
[42]
Astorg, P.; Gradelet, S.; Bergès, R.; Suschetet, M. Dietary lycopene decreases the initiation of liver preneoplastic foci by diethylnitrosamine in the rat. Nutr. Cancer, 1997, 29(1), 60-68.
[http://dx.doi.org/10.1080/01635589709514603 ] [PMID: 9383786]
[43]
Singh, A.; Neupane, Y.R.; Panda, B.P.; Kohli, K. Lipid Based nanoformulation of lycopene improves oral delivery: formulation optimization, ex vivo assessment and its efficacy against breast cancer. J. Microencapsul., 2017, 34(4), 416-429.
[http://dx.doi.org/10.1080/02652048.2017.1340355 ] [PMID: 28595495]
[44]
Kuznetsova, N.; Kandyba, A.; Vostrov, I.; Kadykov, V.; Gaenko, G.; Molotkovsky, J.; Vodovozova, E. Liposomes loaded with lipophilic prodrugs of methotrexate and melphalan as convenient drug delivery vehicles. J. Drug Deliv. Sci. Technol., 2009, 19(1), 51-59.
[http://dx.doi.org/10.1016/S1773-2247(09)50007-X]
[45]
Neupane, Y.R.; Sabir, M.D.; Ahmad, N.; Ali, M.; Kohli, K. Lipid drug conjugate nanoparticle as a novel lipid nanocarrier for the oral delivery of decitabine: ex vivo gut permeation studies. Nanotechnology, 2013, 24(41), 415102.
[http://dx.doi.org/10.1088/0957-4484/24/41/415102]
[46]
Ahmad, N.; Amin, S.; Neupane, Y.R.; Kohli, K. Anal fissure nanocarrier of lercanidipine for enhanced transdermal delivery: formulation optimization, ex vivo and in vivo assessment. Expert Opin. Drug Deliv., 2014, 11(4), 467-478.
[http://dx.doi.org/10.1517/17425247.2014.876004 ] [PMID: 24386935]
[47]
Neupane, Y.R.; Soni, K.; Kohli, K.; Srivastava, M.; Gyenwalee, S.; Ahmad, N. Solid lipid nanoparticles for oral delivery of decitabine: formulation optimization, characterization, stability and ex-vivo gut permeation studies bioavailability enhancement of decitabine. Sci. Adv. Mater., 2015, 7(3), 433-445.
[http://dx.doi.org/10.1166/sam.2015.2133]
[48]
Jain, A.; Kesharwani, P.; Garg, N.K.; Jain, A.; Jain, S.A.; Jain, A.K.; Nirbhavane, P.; Ghanghoria, R.; Tyagi, R.K.; Katare, O.P. Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin. Colloids Surf. B Biointerfaces, 2015, 134, 47-58.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.027 ] [PMID: 26142628]
[49]
Jain, A.; Agarwal, A.; Majumder, S.; Lariya, N.; Khaya, A.; Agrawal, H.; Majumdar, S.; Agrawal, G.P. Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug. J. Control. Release, 2010, 148(3), 359-367.
[http://dx.doi.org/10.1016/j.jconrel.2010.09.003 ] [PMID: 20854859]
[50]
Jain, A.K.; Jain, A.; Garg, N.K.; Agarwal, A.; Jain, A.; Jain, S.A.; Tyagi, R.K.; Jain, R.K.; Agrawal, H.; Agrawal, G.P. Adapalene loaded solid lipid nanoparticles gel: an effective approach for acne treatment. Colloids Surf. B Biointerfaces, 2014, 121, 222-229.
[http://dx.doi.org/10.1016/j.colsurfb.2014.05.041 ] [PMID: 25016424]
[51]
Singh, A.; Neupane, Y.R.; Mangla, B.; Kohli, K. Nanostructured lipid carriers for oral bioavailability enhancement of exemestane: formulation design, in vitro, ex vivo, and in vivo studies. J. Pharm. Sci., 2019, 108(10), 3382-3395.
[http://dx.doi.org/10.1016/j.xphs.2019.06.003 ] [PMID: 31201904]
[52]
Neupane, Y.R.; Srivastava, M.; Ahmad, N.; Kumar, N.; Bhatnagar, A.; Kohli, K. Lipid based nanocarrier system for the potential oral delivery of decitabine: formulation design, characterization, ex vivo, and in vivo assessment. Int. J. Pharm., 2014, 477(1-2), 601-612.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.001 ] [PMID: 25445972]
[53]
Anwar, M.; Akhter, S.; Mallick, N.; Mohapatra, S.; Zafar, S.; Rizvi, M.M.A.; Ali, A.; Ahmad, F.J. Enhanced anti-tumor efficacy of paclitaxel with PEGylated lipidic nanocapsules in presence of curcumin and poloxamer: in vitro and in vivo studies. In: Pharmacol. Res; , 2016; 113, pp. (Pt A)146-165.
[http://dx.doi.org/10.1016/j.phrs.2016.08.025]
[54]
Liu, Q.; Li, J.; Pu, G.; Zhang, F.; Liu, H.; Zhang, Y. Co-delivery of baicalein and doxorubicin by hyaluronic acid decorated nanostructured lipid carriers for breast cancer therapy. Drug Deliv., 2016, 23(4), 1364-1368.
[http://dx.doi.org/10.3109/10717544.2015.1031295 ] [PMID: 25874959]
[55]
Soni, P.; Kaur, J.; Tikoo, K. Dual drug-loaded paclitaxel-thymoquinone nanoparticles for effective breast cancer therapy. J. Nanopart. Res., 2015, 17(1), 1-12.
[http://dx.doi.org/10.1007/s11051-014-2821-4]
[56]
Jiang, H.; Geng, D.; Liu, H.; Li, Z.; Cao, J. Co-delivery of etoposide and curcumin by lipid nanoparticulate drug delivery system for the treatment of gastric tumors. Drug Deliv., 2016, 23(9), 3665-3673.
[http://dx.doi.org/10.1080/10717544.2016.1217954 ] [PMID: 27749102]
[57]
Hong, Y.; Che, S.; Hui, B.; Yang, Y.; Wang, X.; Zhang, X.; Qiang, Y.; Ma, H. Lung cancer therapy using doxorubicin and curcumin combination: targeted prodrug based, pH sensitive nanomedicine. Biomed. Pharmacother., 2019, 112, 108614.
[http://dx.doi.org/10.1016/j.biopha.2019.108614 ] [PMID: 30798129]
[58]
Li, X.; Jia, X.; Niu, H. Nanostructured lipid carriers co-delivering lapachone and doxorubicin for overcoming multidrug resistance in breast cancer therapy. Int. J. Nanomedicine, 2018, 13, 4107-4119.
[http://dx.doi.org/10.2147/IJN.S163929 ] [PMID: 30034236]
[59]
Jain, A.K.; Thanki, K.; Jain, S. Co-encapsulation of tamoxifen and quercetin in polymeric nanoparticles: implications on oral bioavailability, antitumor efficacy, and drug-induced toxicity. Mol. Pharm., 2013, 10(9), 3459-3474.
[http://dx.doi.org/10.1021/mp400311j ] [PMID: 23927416]
[60]
Hajigholami, S.; Veisi Malekshahi, Z.; Bodaghabadi, N.; Najafi, F.; Shirzad, H.; Sadeghizadeh, M. Nano packaged tamoxifen and curcumin; effective formulation against sensitive and resistant MCF-7 cells. Iran. J. Pharm. Res., 2018, 17(1), 1-10.
[http://dx.doi.org/10.22037/ijpr.2018.1965 ] [PMID: 29755534]
[61]
Fan, Y.; Zhang, Q. Development of liposomal formulations: from concept to clinical investigations. Asian J. Pharm. Sci., 2013, 8(2), 81-87.
[http://dx.doi.org/10.1016/j.ajps.2013.07.010]
[62]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632 ] [PMID: 15688077]
[63]
Rowland, R.N.; Woodley, J.F. The stability of liposomes in vitro to pH, bile salts and pancreatic lipase. Biochim. Biophys. Acta, 1980, 620(3), 400-409.
[http://dx.doi.org/10.1016/0005-2760(80)90131-9 ] [PMID: 7016185]
[64]
Hirpara, M.R.; Manikkath, J.; Sivakumar, K.; Managuli, R.S.; Gourishetti, K.; Krishnadas, N.; Shenoy, R.R.; Jayaprakash, B.; Rao, C.M.; Mutalik, S. Long circulating PEGylated-chitosan nanoparticles of rosuvastatin calcium: development and in vitro and in vivo evaluations. Int. J. Biol. Macromol., 2018, 107(Pt B), 2190-2200.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.086] [PMID: 29042279]
[65]
Iwanaga, K.; Ono, S.; Narioka, K.; Morimoto, K.; Kakemi, M.; Yamashita, S.; Nango, M.; Oku, N. Oral delivery of insulin by using surface coating liposomes. Improvement of stability of insulin in GI Tract. Int. J. Pharm., 1997, 157(1), 73-80.
[http://dx.doi.org/10.1016/S0378-5173(97)00237-8]
[66]
Sun, Y.; Zhao, Y. Enhanced pharmacokinetics and anti-tumor efficacy of PEGylated liposomal rhaponticin and plasma protein binding ability of rhaponticin. J. Nanosci. Nanotechnol., 2012, 12(10), 7677-7684.
[http://dx.doi.org/10.1166/jnn.2012.6599 ] [PMID: 23421127]
[67]
Yuan, P.; Condello, C.; Keene, C.D.; Wang, Y.; Bird, T.D.; Paul, S.M.; Luo, W.; Colonna, M.; Baddeley, D.; Grutzendler, J. TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron, 2016, 90(4), 724-739.
[http://dx.doi.org/10.1016/j.neuron.2016.05.003 ] [PMID: 27196974]
[68]
Yoncheva, K.; Lizarraga, E.; Irache, J.M. Pegylated nanoparticles based on poly(methyl vinyl ether-co-maleic anhydride): preparation and evaluation of their bioadhesive properties. Eur. J. Pharm. Sci., 2005, 24(5), 411-419.
[http://dx.doi.org/10.1016/j.ejps.2004.12.002 ] [PMID: 15784331]
[69]
Hugger, E.D.; Audus, K.L.; Borchardt, R.T. Effects of poly(ethylene glycol) on efflux transporter activity in Caco-2 cell monolayers. J. Pharm. Sci., 2002, 91(9), 1980-1990.
[http://dx.doi.org/10.1002/jps.10175 ] [PMID: 12210045]
[70]
Johnson, B.M.; Charman, W.N.; Porter, C.J.H. An in vitro examination of the impact of polyethylene glycol 400, Pluronic P85, and vitamin E d-alpha-tocopheryl polyethylene glycol 1000 succinate on P-glycoprotein efflux and enterocyte-based metabolism in excised rat intestine. AAPS PharmSci, 2002, 4(4), E40.
[http://dx.doi.org/10.1208/ps040440 ] [PMID: 12646011]
[71]
Jelovac, D.; Macedo, L.; Goloubeva, O.G.; Handratta, V.; Brodie, A.M.H. Additive antitumor effect of aromatase inhibitor letrozole and antiestrogen fulvestrant in a postmenopausal breast cancer model. Cancer Res., 2005, 65(12), 5439-5444.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2782 ] [PMID: 15958593]