Nanoscience & Nanotechnology-Asia

Author(s): Dharmendra Kumar*, Rishabha Malviya, Pramod K. Sharma, Akanksha Sharma and Vineet Bhardwaj

DOI: 10.2174/2210681210999200723165456

DownloadDownload PDF Flyer Cite As
Advancement in Nano Pharmaceutical Formulations and their Biomedical Use

Page: [262 - 269] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Nanoparticles and modified nanoparticles are used in biological and medical sciences as liposomes, polymeric micelles, block ionomer complexes, dendrimers, inorganic and organic nanoparticles. Nanoparticles and surface-modified nanoparticles show good stability and water solubility and can be used efficiently as drug delivery carriers. This paper summarizes the advancement in nanoparticles/surface-modified nanoparticles and patents based on them.

Keywords: Nanoparticles, modified nanoparticles, drug discovery, patents, surface modification, grafting.

Graphical Abstract

[1]
Youngman, C.; Riyi, S.; Richard, B. Functionalized mesoporous silica nanoparticles based drug delivery systems to rescue acrolein mediated cell death. Nanomedicine, 2006, 3(4), 507.
[2]
Mohd, A.; Amar, J.D. Therapeutic nanoparticles: State of the art of nanomedicine. Adv. Mat. Rev., 2014, 1(1), 25.
[3]
Mudshinge, S.R.; Deore, A.B.; Patil, S.; Bhalgat, C.M. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm. J., 2011, 19(3), 129-141.
[http://dx.doi.org/10.1016/j.jsps.2011.04.001] [PMID: 23960751]
[4]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18), 3995-4021.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.012] [PMID: 15626447]
[5]
Hans, M.L.; Lowman, A.M. Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mater. Sci., 2002, 6(4), 319-327.
[http://dx.doi.org/10.1016/S1359-0286(02)00117-1]
[6]
Dinarvand, R.; Sepehri, N.; Manoochehri, S.; Rouhani, H.; Atyabi, F. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int. J. Nanomed., 2011, 6, 877-895.
[http://dx.doi.org/10.2147/IJN.S18905] [PMID: 21720501]
[7]
Bahera, A.L.; Patil, S.V.; Sahoo, S.K. Nanosizing of drugs: a promising approach for drug delivery. Pel. Res. Lib., 2010, 1(1), 20.
[8]
Jammel, A.S.M. Drug delivery with nanoparticles. Int. J. N Drug Del., 2011, 3(3), 161.
[PMID: 20465360]
[9]
Abhilas, M. Potential application of nanoparticles. Int. J. Pharm. Bio. Sci., 2011, 1(1), 1.
[10]
Wartlick, H.; Michaelis, K.; Balthasar, S.; Strebhardt, K.; Kreuter, J.; Langer, K. Highly specific HER2-mediated cellular uptake of antibody-modified nanoparticles in tumour cells. J. Drug Target., 2004, 12(7), 461-471.
[http://dx.doi.org/10.1080/10611860400010697] [PMID: 15621671]
[11]
Teng, W.; Qianyu, Z.; Xiaojuan, W.; Jie, Z.; Xingguo, L. MOF-derived surface modified Ni-nanoparticles as an efficient catalyst for the hydrogen evolution reaction. J. Mater. Chem. A Mater. Energy Sustain., 2015, 2015, 32.
[12]
Sarita, K.; Susheel, K.; Annamaria Njuguna James, C.; Youssef, H.; Rajesh, K. Surface modification of inorganic nanoparticles for development of organic inorganic nanocomposites- A review. Prog. Polym. Sci., 2013, 38(8), 1232-1261.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.02.003]
[13]
Bagwe, R.P.; Hilliard, L.R.; Tan, W.; Weihong, T. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir, 2006, 22(9), 4357-4362.
[http://dx.doi.org/10.1021/la052797j] [PMID: 16618187]
[14]
Luca, G.; Alvarez-Puebla, RA; Nicolas, P.P. Surface modification of nanoparticles for stability in biological fluids. Materials, 2018, 11, 7-1154.
[15]
Patel, P.; Hanini, A.; Shah, A.; Patel, S.; Bhatt, P.; Pathak, Y.V. Surface modification of nanoparticles for targeted drug delivery; Springer, 2019, pp. 19-31.
[http://dx.doi.org/10.1007/978-3-030-06115-9_2]
[16]
Chen, Y.; Xianyu, Y.; Jiang, X. Surface modification of gold nanoparticles with small molecules for biochemical analysis. Acc. Chem. Res., 2017, 50(2), 310-319.
[http://dx.doi.org/10.1021/acs.accounts.6b00506] [PMID: 28068053]
[17]
Xiong, W.; Peng, L.; Chen, H. Li, Q Surface modification of MPEG-b-PCL based nanoparticle via oxidative self-polymerization of dopamine for malingnant melanoma thrapy. Int. J. Nanomad., 2015, 10, 2985-2996.
[18]
Kochamann, A.; Porsiel, J.C.; Saadat, R.; Garnmeitner, G. Impact of nanoparticle surface modification on the mechanical properties of polystyrene-based nanocomposites. RSC Adv., 2018, 2018, 20.
[http://dx.doi.org/10.1039/C8RA00052B]
[19]
Qie, Y.; Yuan, H.; von Roemeling, C.A.; Chen, Y.; Liu, X.; Shih, K.D.; Knight, J.A.; Tun, H.W.; Wharen, R.E.; Jiang, W.; Kim, B.Y. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Sci. Rep., 2016, 6, 26269.
[http://dx.doi.org/10.1038/srep26269] [PMID: 27197045]
[20]
Abhilas, K.K.; Solakhia, T.M.; Sikha, A. Chitosan nanoparticles- A drug delivery system. Int. Pharm. Bio. Arch., 2012, 3(4), 737.
[21]
Shi, P.J.; Yu, H.L.; Wang, H.M. Tribiological behavior of surface modified copper nanoparticles as lubricating additives. Phys. Proc., 2013, 50, 461.
[http://dx.doi.org/10.1016/j.phpro.2013.11.072]
[22]
Stephan, S. Epoxy resins modified with elastomers and surface modified silica nanoparticles. Polymer (Guildf.), 2013, 54, 4790.
[http://dx.doi.org/10.1016/j.polymer.2013.06.011]
[23]
Valerio, S.G.; Alves, J.S.; Klein, M.P.; Rodrigues, R.C.; Hertz, P.F. High operational stability of invertase from Saccharomyces cerevisiae immobilized on chitosan nanoparticles. Carbohydr. Polym., 2013, 92(1), 462-468.
[http://dx.doi.org/10.1016/j.carbpol.2012.09.001] [PMID: 23218321]
[24]
Prijic, S.; Prosen, L.; Cemazar, M.; Scancar, J.; Romih, R.; Lavrencak, J.; Bregar, V.B.; Coer, A.; Krzan, M.; Znidarsic, A.; Sersa, G. Surface modified magnetic nanoparticles for immuno-gene therapy of murine mammary adenocarcinoma. Biomaterials, 2012, 33(17), 4379-4391.
[http://dx.doi.org/10.1016/j.biomaterials.2012.02.061] [PMID: 22429983]
[25]
Liang, S.; Wang, Y.; Yu, J.; Zhang, C.; Xia, J.; Yin, D. Surface modified superparamagnetic iron oxide nanoparticles: As a new carrier for bio-magnetically targeted therapy. J. Mater. Sci. Mater. Med., 2007, 18(12), 2297-2302.
[http://dx.doi.org/10.1007/s10856-007-3130-6] [PMID: 17562137]
[26]
Mahdavi, M.; Ahmad, M.B.; Haron, M.J.; Namvar, F.; Nadi, B.; Rahman, M.Z.; Amin, J. Synthesis, surface modification and cha-racterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules, 2013, 18(7), 7533-7548.
[http://dx.doi.org/10.3390/molecules18077533] [PMID: 23807578]
[27]
Huang, G.; Zhang, C.; Li, S.; Khemtong, C.; Yang, S.G.; Tian, R.; Minna, J.D.; Brown, K.C.; Gao, J. A novel strategy forsurface modification of supermagnetic iron oxide nanoparticles for lung cancer imaging. J. Mater. Chem., 2009, 19, 6367-6372.
[http://dx.doi.org/10.1039/b902358e] [PMID: 20505790]
[28]
Abolfazl, A.; Mohammad, S.; Sang, W.J.; Maryam, A. Synthesis characterization and in vitro studies of doxorubicin loaded mag-netic nanoparticles grafted to smart copolymers on a549 lung cancer cell line. J. Nanobiotech., 2012, 10, 46.
[http://dx.doi.org/10.1186/1477-3155-10-46]
[29]
Manoochehri, S.; Darvishi, B.; Kamalinia, G.; Amini, M.; Fallah, M.; Ostad, S.N.; Atyabi, F.; Dinarvand, R. Surface modification of PLGA nanoparticles via human serum albumin conjugation for controlled delivery of docetaxel. Daru, 2013, 21(1), 58.
[http://dx.doi.org/10.1186/2008-2231-21-58] [PMID: 23866721]
[30]
Akbarzadeh, A.; Mikaeili, H.; Zarghami, N.; Mohammad, R.; Barkhordari, A.; Davaran, S. Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4,” magnetic nanoparticles modified with biocompatible copolymers. Int. J. Nanomed., 2012, 7, 511-526.
[PMID: 22334781]
[31]
Youngman, C.; Riyi, S.; Richard, B.B. Functionalized mesoporous silica nanoparticles based drug delivery system to rescue acrolein mediated cell death. Nanomedicine, 2008, 3(4), 507.
[http://dx.doi.org/10.2217/17435889.3.4.507]
[32]
Baisong, C.; Jia, G.; Congying, L. Surface fictionalization of mag-netic mesoporous silica naoparticles for controlled drug release. J. Mater. Chem., 2010, 20, 9941.
[http://dx.doi.org/10.1039/c0jm01237h]
[33]
Wei, W.; Quanguo, H.; Changhong, J. Magnetic iron oxide nanoparticles: Synthesis and surface functionaliation strategies. Nanoscale Res. Lett., 2008, 93, 397.
[34]
Hong, R.Y.; Li, J.H.; Chen, L. Synthesis, surface modification and photocatalytic property of zno nanoparticles. Powder Technol., 2009, 189, 426.
[http://dx.doi.org/10.1016/j.powtec.2008.07.004]
[35]
Lee, P.; Zhang, R.; Li, V.; Liu, X.; Sun, R.W.; Che, C.M.; Wong, K.K. Enhancement of anticancer efficacy using modified lipophilic nanoparticle drug encapsulation. Int. J. Nanomed., 2012, 7, 731-737.
[PMID: 22359452]
[36]
Petra, K; Natasa, O; Mateja, C Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J. Cont. Rel., 2007, 12, 018.
[37]
Arsalani, N.; Fattahi, N.; Nazarpoor, M. Synthesis and charac-terization of PVP functionalized supermagnetic Fe3O4 nanoparticles as an MRI contrast agent. Exp. Poly. Lett., 2010, 4(6), 329.
[http://dx.doi.org/10.3144/expresspolymlett.2010.42]
[38]
Magdalena, S.; Dragan, U. Poly (lactide-co-glycolide) based micro and nanoparticles for the controlled drug delivery of vitamins. Curr. Nanosci., 2009, 5(1), 1.
[http://dx.doi.org/10.2174/157341309787314566]
[39]
Jung, T.P.; Jin, A.S.; Sung, H.A. Surface modification of silica naoparticles with hydrophilic polymers. J. Ind. Eng. Chem., 2010, 16, 517.
[http://dx.doi.org/10.1016/j.jiec.2010.03.030]
[40]
Hui, P.; Xiao, D.W.; Sha, S.X. Preparation and charcaterization of TiO2 nanoparticles surface modified by octadecyltrimethoxysilane. Indian J. Eng. Mater. Sci., 2013, 20, 561.
[41]
Hangyue, Z. Physiological properties of protein modified silver nanoparticles in seawater. Int. Nano Lett., 2013, 3, 54.
[http://dx.doi.org/10.1186/2228-5326-3-54]
[42]
Arabi, S.; Akbari, J.H.; Khoobi, M. Preparation and charac-terization of modified polyethyleneimine magnetic nanoparticles for cancer drug delivery. J. Nanomater., 2016, 2016, 2806407.
[http://dx.doi.org/10.1155/2016/2806407]
[43]
Lin, A.; Liu, Y.; Huang, Y.; Sun, J.; Wu, Z.; Zhang, X.; Ping, Q. Glycyrrhizin surface-modified chitosan nanoparticles for hepatocyte-targeted delivery. Int. J. Pharm., 2008, 359(1-2), 247-253.
[http://dx.doi.org/10.1016/j.ijpharm.2008.03.039] [PMID: 18457928]
[44]
Kanel, S.R.; Nepal, D.; Manning, B. Transport of surface-modified iron nanoparticle in porous media and application to arsenic (III) remediation. J. Nanopart. Res., 2007, 9(5), 725-735.
[http://dx.doi.org/10.1007/s11051-007-9225-7]
[45]
Li, Z.; Zhu, Y. Surface-modification of SiO2 nanoparticles with oleic acid. Appl. Surf. Sci., 2003, 211(1-4), 315-320.
[http://dx.doi.org/10.1016/S0169-4332(03)00259-9]
[46]
Gu, H.; Ho, P.L.; Tong, E. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett., 2003, 3(9), 1261-1263.
[http://dx.doi.org/10.1021/nl034396z]
[47]
Xie, J.; Liu, G.; Eden, H.S.; Ai, H.; Chen, X. Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc. Chem. Res., 2011, 44(10), 883-892.
[http://dx.doi.org/10.1021/ar200044b] [PMID: 21548618]
[48]
Gupta, A.K.; Naregalkar, R.R.; Vaidya, V.D.; Gupta, M. Recent advances on surface engineering of magnetic iron oxide nano-particles and their biomedical applications. Nanomedicine (Lond.), 2007, 2(1), 23-39.
[http://dx.doi.org/10.2217/17435889.2.1.23] [PMID: 17716188]
[49]
Girija, D.; Halehatty, S.B.N.; Vinay, K. Synthesis of functionalized iron oxide nanoprticles with amino pyridine moiety and studies on their catalytic behavior. Ame. Chem. Sci. J., 2011, 1(3), 97.
[http://dx.doi.org/10.9734/ACSJ/2011/437]
[50]
Zhiyuan, Y.; Yanjun, T.; Junhua, Z. Surface modification of caco3 nanoparticles with silane coupling agent for improvement of the interfacial compatibility with styrene butadiene rubber (sbr) latex. Chalco. Lett., 2013, 10(4), 131-141.
[51]
Pnkaj, P. Khirade, Shanker D., A.V.Raut, K.M “ Multiferroic iron deped BaTiO3 nanoceramics synthesized by Sol-gel auto combustion: Influence of iron on physical properties. Ceram. Int., 2016, 42(10)
[52]
Hui, P.; Xiao, D.W.; Shasha, X. Preparation and characterization of TiO2 nanoparticles surface modified by octadecyltrimethoxysilane. Indian J. Eng. Mater. Sci., 2013, 20, 563.
[53]
Boguslawa, G.; Miroslawa, E.F.; Ewa, W. Surface modification of TiO2 and SiO2 nanoparticles for application in polymeric nano-composites. Sci. Tech. Chem., 2011, 65(7), 621.
[54]
Wang, LS; Hong, R.Y. Synthesis, surface modification and characterization of nanoparticles. In: Polymer Composites; Wiley Online Liberary, 2010.
[http://dx.doi.org/10.1002/9783527652372.ch2]
[55]
Camporotondi, D.E.; Foglia, M.L.; Alvarez, G.S. antimicrobial properties of silica modified nanoparticles, microbial pathogens and strategies for combating them. Science Tech. Edu, 2013, 2013, 283.
[56]
Xu, K.; Wang, J.X.; Kang, X.L. Fabrication of antibacterial monodispersed Ag-SiO2 core-shell nanoparticles with high concentration. Mater. Lett., 2009, 63, 31.
[http://dx.doi.org/10.1016/j.matlet.2008.08.039]
[57]
Thurman, R.B.; Gerba, C.P.; Bitton, G. The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit. Rev. Environ. Control, 1989, 18, 295-315.
[http://dx.doi.org/10.1080/10643388909388351]
[58]
Kim, Y.H.; Lee, D.K.; Cha, H.G.; Kim, C.W.; Kang, Y.C.; Kang, Y.S. Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. J. Phys. Chem. B, 2006, 110(49), 24923-24928.
[http://dx.doi.org/10.1021/jp0656779] [PMID: 17149913]
[59]
Kanchana, S.; Teodor, V.; Mereck, N. Surface protected and modi-fied iron based core shell nanoparticles for biological application. New J. Chem., 2008, 32, 203.
[60]
Perez, J.M.; Someone, F.J.; Tsourkas, A. Peroxidase substrate nanosensors for MRI. Nano Lett., 2004, 4, 119.
[http://dx.doi.org/10.1021/nl034983k]
[61]
Oscar, B.M.; Maria, P.M.; Pedro, T. Fe-based nanoparticulate metallic alloys as contrast agents for magnetic resonance imaging. Biomaterials, 2005, 26, 5695.
[http://dx.doi.org/10.1016/j.biomaterials.2005.02.020]
[62]
Gou, M.L.; Qian, Z.Y.; Tang, Y.B. J. Mater. Sci., 2008, 19, 1033.
[63]
Tanaka, H.; Sugita, T.; Yasunaga, Y.J. Efficiency of magnetic liposomal transforming growth factor‐beta 1 in the repair of articular cartilage defects in a rabbit model. J. Biomed. Mater. Res., 2005, 73, 255.
[http://dx.doi.org/10.1002/jbm.a.30187]
[64]
Brahler, M.; Georgieva, R.; Buske, N. Magnetite-loaded carrier erythrocytes as contrast agents for magnetic resonance imaging. Nano Lett., 2006, 6(11), 2505-2509.
[http://dx.doi.org/10.1021/nl0618501] [PMID: 17090081]
[65]
Denis, M.C.; Mahmood, U.; Benoist, C. Imaging inflammation of the pancreatic islets in type 1 diabetes. Proc. Nat. Acad. Sci. Lett., 2004, 101, 12634.
[http://dx.doi.org/10.1073/pnas.0404307101]
[66]
Kar, M.; Vijayakumar, P.S.; Prasad, B.L.; Sen Gupta, S. Synthesis and characterization of poly-L-lysine-grafted silica nanoparticles synthesized via NCA polymerization and click chemistry. Langmuir, 2010, 26(8), 5772-5781.
[http://dx.doi.org/10.1021/la903595x] [PMID: 20337478]
[67]
Jang, J; Kim, Y Fabrication of monodisperse silica polymer core-shell nanoparticles with excellent antimicrobial efficacy. Chem. Comm., 2008, 4016.
[http://dx.doi.org/10.1039/b809137d]
[68]
Wang, J.X.; Wen, L.X.; Wang, Z.H. Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effect. Mater. Chem. Phys., 2006, 96, 90.
[http://dx.doi.org/10.1016/j.matchemphys.2005.06.045]
[69]
Hetrick, E.M.; Shin, J.H.; Paul, H.S.; Schoenfisch, M.H. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials, 2009, 30(14), 2782-2789.
[http://dx.doi.org/10.1016/j.biomaterials.2009.01.052] [PMID: 19233464]
[70]
Xiao, Q.Z.; Shang, W.G.; Yu, Z. prussian blue modified iron oxide magnetic nanoparticles and their hifh peroxidase like acticity. J. Mater. Chem., 2010, 20, 5110-5114.
[http://dx.doi.org/10.1039/c0jm00174k]
[71]
Wei, Q.; Arbor, A; Makoto, M US2014/0170070A1 2014.
[72]
Nathan, E.S.; Guy, D.J.; Michael, D.D. Surface modified zirconia nanoparticles. US Patent, 8829079, 2014.
[73]
Silke, D.M.; Dusseldort, S.E.; Herrsching, A. Pressure Sensitive Adhesives Containing Reactive Surface Modified Nanoparticles. US2013/0035433A1, 2013.
[74]
Jimmie, R.B.; Prescott, A.J.; Michael, D.L. Polymer blends including surface modified nanoparticles and methods for making the same. US8, 618, 202B2, 2013.
[75]
Sperling, R.A.; Parak, W.J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2010, 368(1915), 1333-1383.
[http://dx.doi.org/10.1098/rsta.2009.0273] [PMID: 20156828]
[76]
Adela, G.; Maria, NVM; Geoffrey, A. Ink carriers containing surface modified nanoparticles, phase change inks including same and method for making same. CA2674216C, 2013.
[77]
Woodburry, D.D. Syatem mixed ligand surface modified nanoparticles. US8, 383,682B2, 2013.
[78]
Seoul, K.S.; Jae, W.J. Methods for surface modification of non dispersible metal nanoparticles and modified metal nanoparticles for inkjet by the same method. US8, 173, 210B2, 2012.
[79]
Amal, A.S. Surface modified heavy metals nanoparticles, composition and uses thereof. WO/2012/104831, 2012.
[80]
Chad, A.M.; Nathaniel, L.R.; Shad, C.T. Nucleic acid functionalized nanoparticles for therapeutic application. US8252756B2, 2012.
[81]
Kazuki, F.; James, L.H.; Alshakim, N. Surface modified nanoparticles. method of their preparation and uses thereof gene and drug delivery. US8226985B2, 2012.
[82]
Kristin, L.T.; Wendy, L.T. Resin system comprising dispersed multimodal surface modified nanoparticles. WO2011100289A1, 2011.
[83]
Norbert, R Method for producing a silane modified surface nanocorundum. US807007B2, 2011.
[84]
Christopher, B.W.J.R.; Marc, D.R.; Thomas, P.K. Durable antireflective film with surface modified inorganic nanoparticles. WO2007146686A3, 2010.
[85]
Sascha, G. Surface modified nanoparticles. EP2070521A1, 2009.
[86]
Schlenoff, B. Stabilized silica colloid. US20090202816A1, 2009.
[87]
Neeraj, S.; Chou, C.V. Surface modified nanoparticles. WO2009-1375592A2, 2009.
[88]
Emily, S.G. Resin system including reactive surface modified nanoparticles. WO2008027979A2, 2008.
[89]
Igor, Y.D.; Took, R.W. Surface modified nanoparticles and preparation method of same. US7405001B2, 2008.
[90]
Ronald, L.C.; Silvia, D.L.; Andrew, W.M. Surface modified nanoparticles such as aluminium oxyhydroxides, iron oxyhydroxides, scandium oxyhydroxides and mixtures thereof wherein a controlled amount of one or more organic acids are reacted with the particles, have specific useful properties when used in mixture with liquid as filler in solids. US7244498B2, 2007.
[91]
Jimmie, R.B.J.R.; Oswaldo, J.C. Use of surface modified nanoparticles for oil recovery. US10441721, 2006.
[92]
Jimmie, R.B. Foam including surface modified nanoparticles. EP1358254A2, 2003.
[93]
Gary, L.; Rochester, G. Surface modified NSAID nanoparticles. EP0644755B1, 1997.
[94]
Vinod, D.L.; Robert, J.L.; Cunxian, S.S. Surface modified nanoparticles and method of making and using same. EP0805678A1, 1997.
[95]
Ulrich, N.; Kleve, B. Alferd Surface modified nanoparticles comprising polyoxane modifier, their preparation and use. US7, 641, 972B2, 2010.
[96]
Philip, C.; Kenneth, C.C.; Gary, G.L. Surface Modified NSAID nanoparticles. WO199302510A1, 1993.
[97]
Gary, G.I.; Kenneth, C.C.; John, F.B. Surface Modified Drug Nanoparticles. CA2059432A1, 1992.