Anti-Cancer Agents in Medicinal Chemistry

Author(s): Li Li, Mi Yang, Rutian Li, Jing Hu, Lixia Yu and Xiaoping Qian*

DOI: 10.2174/1871520620666200721134919

iRGD Co-Administration with Paclitaxel-Loaded PLGA Nanoparticles Enhance Targeting and Antitumor Effect in Colorectal Cancer Treatment

Page: [910 - 918] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Objective: To explore the targeting effect of PLGA-NP and iRGD co-administration with PTXPLGA NP (PTX-PLGA + iRGD) on colorectal cancer.

Methods: Whether PLGA-NP co-administration with iRGD peptide could show effective tumor-targeting ability in contrast to with PLGA-NP in colorectal cancer mice models was evaluated. Moreover, the chemotherapeutics Paclitaxel (PTX) was loaded into the PLGA-NP to impart anti-tumor efficiency to the PTX-PLGA. Whether iRGD co-administration with PTX-PLGA NP (PTX-PLGA + iRGD) in colorectal cancer models enabled PTX to achieve better anti-tumor efficiency and biocompatibility was further assessed.

Results: The targeting ability of PLGA-NP was enhanced in cell experiment and colorectal cancer mice models by co-administration of iRGD. As a result, PTX-PLGA + iRGD achieved better anti-tumor efficacy than PTX and PTX-PLGA.

Conlusion: The nanocarrier based on PLGA with specific targeting ability could promote the clinical application of various chemotherapeutics similar to PTX. The combination of drug-loaded nanoparticles and iRGD could develop into a promising drug delivery system.

Keywords: Nanocarrier, paclitaxel, targeting ability, anti-tumor efficiency, colorectal cancer, iRGD.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Loree, J.M.; Sha, A.; Soleimani, M.; Kennecke, H.F.; Ho, M.Y.; Cheung, W.Y.; Mulder, K.E.; Abadi, S.; Spratlin, J.L.; Gill, S. Survival Impact of CAPOX versus FOLFOX in the adjuvant treatment of stage III colon cancer. Clin. Colorectal Cancer, 2018, 17(2), 156-163.
[http://dx.doi.org/10.1016/j.clcc.2018.01.010] [PMID: 29486916]
[3]
Martini, G.; Troiani, T.; Cardone, C.; Vitiello, P.; Sforza, V.; Ciardiello, D.; Napolitano, S.; Della Corte, C.M.; Morgillo, F.; Raucci, A.; Cuomo, A.; Selvaggi, F.; Ciardiello, F.; Martinelli, E. Present and future of metastatic colorectal cancer treatment: A review of new candidate targets. World J. Gastroenterol., 2017, 23(26), 4675-4688.
[http://dx.doi.org/10.3748/wjg.v23.i26.4675] [PMID: 28765689]
[4]
Ristamäki, R.; Ålgars, A. Principles of oncologic drug therapy following surgery for bowel cancer. Duodecim, 2016, 132(12), 1155-1159.
[PMID: 27483631]
[5]
Singla, A.K.; Garg, A.; Aggarwal, D. Paclitaxel and its formulations. Int. J. Pharm., 2002, 235(1-2), 179-192.
[http://dx.doi.org/10.1016/S0378-5173(01)00986-3] [PMID: 11879753]
[6]
Horwitz, S.B. Mechanism of action of taxol. Trends Pharmacol. Sci., 1992, 13(4), 134-136.
[http://dx.doi.org/10.1016/0165-6147(92)90048-B] [PMID: 1350385]
[7]
Bernabeu, E.; Cagel, M.; Lagomarsino, E.; Moretton, M.; Chiappetta, D.A. Paclitaxel: What has been done and the challenges remain ahead. Int. J. Pharm., 2017, 526(1-2), 474-495.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.016] [PMID: 28501439]
[8]
Jiang, X.; Xin, H.; Sha, X.; Gu, J.; Jiang, Y.; Law, K.; Chen, Y.; Chen, L.; Wang, X.; Fang, X. PEGylated poly(trimethylene carbonate) nanoparticles loaded with paclitaxel for the treatment of advanced glioma: In vitro and in vivo evaluation. Int. J. Pharm., 2011, 420(2), 385-394.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.052] [PMID: 21920419]
[9]
Han, X.; Dong, X.; Li, J.; Wang, M.; Luo, L.; Li, Z.; Lu, X.; He, R.; Xu, R.; Gong, M. Free paclitaxel-loaded E-selectin binding peptide modified micelle self-assembled from hyaluronic acid-paclitaxel conjugate inhibit breast cancer metastasis in a murine model. Int. J. Pharm., 2017, 528(1-2), 33-46.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.063] [PMID: 28576551]
[10]
Monteiro, L.O.F.; Malachias, A.; Pound-Lana, G.; Magalhães-Paniago, R.; Mosqueira, V.C.F.; Oliveira, M.C.; de Barros, A.L.B.; Leite, E.A. Paclitaxel-loaded pH-sensitive liposome: New insights on structural and physicochemical characterization. Langmuir, 2018, 34(20), 5728-5737.
[http://dx.doi.org/10.1021/acs.langmuir.8b00411] [PMID: 29676924]
[11]
Maeda, H.; Bharate, G.Y.; Daruwalla, J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm., 2009, 71(3), 409-419.
[http://dx.doi.org/10.1016/j.ejpb.2008.11.010] [PMID: 19070661]
[12]
Iyer, A.K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today, 2006, 11(17-18), 812-818.
[http://dx.doi.org/10.1016/j.drudis.2006.07.005] [PMID: 16935749]
[13]
Tietjen, G.T.; Saltzman, W.M. Nanomedicine gets personal. Sci. Transl. Med., 2015, 7(314), 314fs47.
[http://dx.doi.org/10.1126/scitranslmed.aad6645]] [PMID: 26582895]
[14]
Grottkau, B.E.; Cai, X.; Wang, J.; Yang, X.; Lin, Y. Polymeric nanoparticles for a drug delivery system. Curr. Drug Metab., 2013, 14(8), 840-846.
[http://dx.doi.org/10.2174/138920021131400105] [PMID: 24016112]
[15]
Sugahara, K.N.; Teesalu, T.; Karmali, P.P.; Kotamraju, V.R.; Agemy, L.; Girard, O.M.; Hanahan, D.; Mattrey, R.F.; Ruoslahti, E. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell, 2009, 16(6), 510-520.
[http://dx.doi.org/10.1016/j.ccr.2009.10.013] [PMID: 19962669]
[16]
Sugahara, K.N.; Teesalu, T.; Karmali, P.P.; Kotamraju, V.R.; Agemy, L.; Greenwald, D.R.; Ruoslahti, E. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science, 2010, 328(5981), 1031-1035.
[http://dx.doi.org/10.1126/science.1183057] [PMID: 20378772]
[17]
Wang, K.; Zhang, X.; Liu, Y.; Liu, C.; Jiang, B.; Jiang, Y. Tumor penetrability and anti-angiogenesis using iRGD-mediated delivery of doxorubicin-polymer conjugates. Biomaterials, 2014, 35(30), 8735-8747.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.042] [PMID: 25023394]
[18]
Mao, X.; Liu, J.; Gong, Z.; Zhang, H.; Lu, Y.; Zou, H.; Yu, Y.; Chen, Y.; Sun, Z.; Li, W.; Li, B.; Gao, J.; Zhong, Y. iRGD-conjugated DSPE-PEG2000 nanomicelles for targeted delivery of salinomycin for treatment of both liver cancer cells and cancer stem cells. Nanomedicine (Lond.), 2015, 10(17), 2677-2695.
[http://dx.doi.org/10.2217/nnm.15.106] [PMID: 26355733]
[19]
Simón-Gracia, L.; Hunt, H.; Scodeller, P.; Gaitzsch, J.; Kotamraju, V.R.; Sugahara, K.N.; Tammik, O.; Ruoslahti, E.; Battaglia, G.; Teesalu, T. iRGD peptide conjugation potentiates intraperitoneal tumor delivery of paclitaxel with polymersomes. Biomaterials, 2016, 104, 247-257.
[http://dx.doi.org/10.1016/j.biomaterials.2016.07.023] [PMID: 27472162]
[20]
Yu, H.; Tang, Z.; Song, W.; Zhang, D.; Zhang, Y.; Chen, X. Co-administration of iRGD enhancing the anticancer efficacy of cisplatin-loaded polypeptide nanoparticles. J. Control. Release, 2015, 213, e145-e146.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.246] [PMID: 27005108]
[21]
Esmaeili, F.; Hosseini-Nasr, M.; Rad-Malekshahi, M.; Samadi, N.; Atyabi, F.; Dinarvand, R. Preparation and antibacterial activity evaluation of rifampicin-loaded poly lactide-co-glycolide nanoparticles. Nanomedicine (Lond.), 2007, 3(2), 161-167.
[http://dx.doi.org/10.1016/j.nano.2007.03.003] [PMID: 17468055]
[22]
Ren, W.; Sha, H.; Yan, J.; Wu, P.; Yang, J.; Li, R.; Zhang, H.; Yu, L.; Qian, H.; Liu, B. Enhancement of radiotherapeutic efficacy for esophageal cancer by paclitaxel-loaded red blood cell membrane nanoparticles modified by the recombinant protein anti-EGFR-iRGD. J. Biomater. Appl., 2018, 33(5), 707-724.
[http://dx.doi.org/10.1177/0885328218809019] [PMID: 30388386]
[23]
Minsky, B.D.; Pajak, T.F.; Ginsberg, R.J.; Pisansky, T.M.; Martenson, J.; Komaki, R.; Okawara, G.; Rosenthal, S.A.; Kelsen, D.P. INT 0123 (Radiation Therapy Oncology Group 94-05) phase III trial of combined-modality therapy for esophageal cancer: High-dose versus standard-dose radiation therapy. J. Clin. Oncol., 2002, 20(5), 1167-1174.
[http://dx.doi.org/10.1200/JCO.2002.20.5.1167] [PMID: 11870157]
[24]
Bradley, J.D.; Paulus, R.; Komaki, R.; Masters, G.; Blumenschein, G.; Schild, S.; Bogart, J.; Hu, C.; Forster, K.; Magliocco, A.; Kavadi, V.; Garces, Y.I.; Narayan, S.; Iyengar, P.; Robinson, C.; Wynn, R.B.; Koprowski, C.; Meng, J.; Beitler, J.; Gaur, R.; Curran, W., Jr; Choy, H. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): A randomised, two-by-two factorial phase 3 study. Lancet Oncol., 2015, 16(2), 187-199.
[http://dx.doi.org/10.1016/S1470-2045(14)71207-0] [PMID: 25601342]
[25]
Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A.; Cremophor, EL The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer, 2001, 37(13), 1590-1598.
[http://dx.doi.org/10.1016/S0959-8049(01)00171-X] [PMID: 11527683]
[26]
Marupudi, N.I.; Han, J.E.; Li, K.W.; Renard, V.M.; Tyler, B.M.; Brem, H. Paclitaxel: A review of adverse toxicities and novel delivery strategies. Expert Opin. Drug Saf., 2007, 6(5), 609-621.
[http://dx.doi.org/10.1517/14740338.6.5.609] [PMID: 17877447]
[27]
Nehate, C.; Jain, S.; Saneja, A.; Khare, V.; Alam, N.; Dubey, R.D.; Gupta, P.N. Paclitaxel formulations: Challenges and novel delivery options. Curr. Drug Deliv., 2014, 11(6), 666-686.
[http://dx.doi.org/10.2174/1567201811666140609154949] [PMID: 24909147]
[28]
Aftab, S.; Shah, A.; Nadhman, A.; Kurbanoglu, S.; Aysıl Ozkan, S.; Dionysiou, D.D.; Shukla, S.S.; Aminabhavi, T.M. Nanomedicine: An effective tool in cancer therapy. Int. J. Pharm., 2018, 540(1-2), 132-149.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.007] [PMID: 29427746]
[29]
Gaucher, G.; Dufresne, M.H.; Sant, V.P.; Kang, N.; Maysinger, D.; Leroux, J.C. Block copolymer micelles: Preparation, characterization and application in drug delivery. J. Control. Release, 2005, 109(1-3), 169-188.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.034] [PMID: 16289422]
[30]
Shin, H.C.; Alani, A.W.; Rao, D.A.; Rockich, N.C.; Kwon, G.S. Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs. J. Control. Release, 2009, 140(3), 294-300.
[http://dx.doi.org/10.1016/j.jconrel.2009.04.024] [PMID: 19409432]
[31]
Hu, Q.; Gao, X.; Gu, G.; Kang, T.; Tu, Y.; Liu, Z.; Song, Q.; Yao, L.; Pang, Z.; Jiang, X.; Chen, H.; Chen, J. Glioma therapy using tumor homing and penetrating peptide-functionalized PEG-PLA nanoparticles loaded with paclitaxel. Biomaterials, 2013, 34(22), 5640-5650.
[http://dx.doi.org/10.1016/j.biomaterials.2013.04.025] [PMID: 23639530]
[32]
Lu, J.; Chuan, X.; Zhang, H.; Dai, W.; Wang, X.; Wang, X.; Zhang, Q. Free paclitaxel loaded PEGylated-paclitaxel nanoparticles: Preparation and comparison with other paclitaxel systems in vitro and in vivo. Int. J. Pharm., 2014, 471(1-2), 525-535.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.032] [PMID: 24858391]
[33]
Teesalu, T.; Sugahara, K.N.; Kotamraju, V.R.; Ruoslahti, E. C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc. Natl. Acad. Sci. USA, 2009, 106(38), 16157-16162.
[http://dx.doi.org/10.1073/pnas.0908201106] [PMID: 19805273]
[34]
Han, H.D.; Mangala, L.S.; Lee, J.W.; Shahzad, M.M.; Kim, H.S.; Shen, D.; Nam, E.J.; Mora, E.M.; Stone, R.L.; Lu, C.; Lee, S.J.; Roh, J.W.; Nick, A.M.; Lopez-Berestein, G.; Sood, A.K. Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin. Cancer Res., 2010, 16(15), 3910-3922.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0005] [PMID: 20538762]
[35]
Haspel, N.; Zanuy, D.; Nussinov, R.; Teesalu, T.; Ruoslahti, E.; Aleman, C. Binding of a C-end rule peptide to the neuropilin-1 receptor: A molecular modeling approach. Biochemistry, 2011, 50(10), 1755-1762.
[http://dx.doi.org/10.1021/bi101662j] [PMID: 21247217]