[10]
Miskovic, G. Grain size and porosity dependence of titanium dioxide nano–paste on sintering temperature for detection. ISSE, 2015, 2015, 25024958.
[15]
Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal oxide gas sensors: Senitivity and influencing factors; Sensor, 2010, pp. 2088-2106.
[19]
Henrich, V.E.; Cox, P.A. The Surface Science of Metal Oxides; Cambridge University Press: Cambridge, UK, 1994.
[24]
Rout, C.S.; Hegde, M.; Govindaraj, A.; Rao, C.N.R. Ammonia sensors based on metal oxide nanostructures. Nanotechnology, 2007, 18, 9.
[25]
Yunusa, Z.; Hamidon, M.N.; Kaiser, A.; Awang, Z. Gas sensor: A review. Sensor Transducer, 2014, 168(4), 61-75.
[29]
Qiu, Y.; Tan, G.; Xu, P.; Luo, Q.; Lin, X.; Huang, W.; Li, J. Preparation of Cu(OH)2 and ZnO nanoarrays on surface of metal substrates by a simple method and application as ammonia sensors. Appl. Surface Sci., 2015, 347, 548-552.
[33]
El Bouari, A.; Gaddari, A.; Amjoud, M.; Berger, F.; Sanchez, J.B.; Lahcini, M.; Rhouta, B.; Mezzane, D.; Mavon, C.; El Ouatib, R.; Hannache, H.; Krimi, S.; Lamire, M.; Mansouri, I.; Moussa, R.; Aboulayt, A. SnO2 thin films used as ammonia sensing layers at room temperature MATEC Web Conf., 2013, 5, 04010.
[43]
Pawar, A.; Pandey, N.K.; Misra, S. Investigations of Undoped zinc oxide nanomaterials as humidity and gas sensor. IJESRT, 2017, 6, 10.
[46]
Bochenkov, V.E.; Sergeev, G.B. Metal oxide nanostructures and their applications. Metal Oxide Nanoparticles and Their Applications;; Umar, A.; Hahn, Y.B., Eds.; American Scientific Publication: USA, 2010, pp. 31-52.
[52]
Singh, A.; Chaudhary, A.; Sonukusare, A.G.; Paul, A.K.; Tyagi, S. Effect of particle size on ammonia sensing response of zinc oxide. J. Basic Appl. Eng. Res., 2015, 2(15), 1281-1284.
[55]
Sankar Ganesh, R.; Naveneethan, M.; Patil, V.L.; Ponnusamy, S.; Muthamizhchelvan, C.; Kawasaki, S.; Patel, P.S.; Hayakawava, Y. Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nano ellipsoids at low temperature. Sensors and Actuator B, 2018, 255(1), 672-683.
[58]
Bahu, T.B.M.; Kumar, K.; Bahu, T. CuO-ZnO semiconductor gas sensor for ammonia at room temperature. J. Electron Devices, 2012, 14, 1137-1141.
[59]
Yewale, A.K.; Raghuwanshi, F.C.; Belsare, N.G.; Waghmare, R.V.; Joat, R.V. Gas sensitivity of TiO2 based thick film sensor to NH3 gas at room temperature. Int. J. Adv. Eng. Technol., 2011, 2, 226-230.
[60]
Li, R.; Jiang, K.; Chen, S.; Lou, Z.; Huang, T.; Shen, G. SnO2/SnS2 nanotubes for flexible room-temperature NH3 gas sensors. RSC Adv., 2017, 2017, 83.
[61]
Qiu, Y.; Tan, G.; Xu, P.; Luo, Q.; Lin, X.; Huang, W.; Li, J. Preparation of Cu(OH)2 and ZnO nanoarrays on surface of metal substrates by a simple method and application as ammonia sensors. Appl. Surf. Sci., 2015, 347(30), 548-552.
[64]
Singh, N.; Umar, A.; Singh, N.; Fouad, H.; Alothman, O.Y.; Haque, F.Z. Highly Sensitive Ammonia Gas Sensor Based On Sn Doped V2O5 nanoparticles. Mater. Res. Bull., 2018, 108, 266-274.
[71]
Mani, G.K.; Rayappan, J.B.B. A highly selective and wide range ammonia sensor- nanostructured ZnO: Co thin film. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 2015, 191, 41-50.
[84]
Yi, Z.; Zheng, L.; Lili, W.; Zou, B.; Tong, Z.; Weitao, Z. Enhanced ammonia sensing performances of Pd-sensitized flowerlike ZnO nanostructure. Sens. Actuat. B. Chem., 2011, 156, 395-400.
[86]
Grobowska, E. Nobel metal modified TiO2 microspheres: Surface properties of photo catalytic activity under UV-vis and visible light. J. Mol. Catal. A Chem., 2016, 423, 191-206.
[91]
Wang, J.; Yang, P.; Wei, X. The high-performance, room temperature and no impact ammonia sensor based on heterogeneous NiO and ZnO nano crystals. ACS Appl. Mater. Interfaces, 2015, 7(6), 3816-3824.
[92]
Kumar, A.; Sanger, A.; Kumar, A.; Chandra, R. Fast response ammonia sensors based on TiO2 and NiO nanostructured bilayer thin films. RSC Adv., 2016, 2016, 81.
[99]
Wang, Q.; Dong, X.; Pang, Z. Ammonia sensing behabiours of TiO2-PANI/PA6 composite nano fibers. Sensors, 2012, 12(2), 17046-57.
[108]
Ganesh, S.R.; Durgadevi, E.; Navaneethan, M.; Patil, V.L.; Ponnusamy, S.; Muthamizhchelvan, C.; Kawasaki, S.; Patil, P.S.; Hayakawa, Y. Tuning the selectivity of NH3 gas sensing response using Cu-doped ZnO nanostructures. Sensors Actuators A, 2018, 269, 331-341.
[110]
Yun, D.H. Highly sensitive and selective Ammonia gas sensor International Conference on Solid State Sensors and Actuators, 19-19 June;1997 , Chicago, IL, USA.
[112]
Bannov, A.G. Bone, periodontal and dental pulp regeneration in dentistry: A systematic scoping review. Proc. Eng., 2016, 168, 231-234.
[113]
Anisimov, O.V.; Maksimova, N.K.; Chernikov, E.V.; Sevastyanov, E.Y.; Sergeychenko, N.V. Sensitivity to NH3 of SnO2 thin films prepared by magnetron sputtering. Siberian Conference on Control and Communications SIBCON–2009,
[114]
Deshmukh, K.; Pasha, S.K. Room temperature ammonia sensing based on graphene oxide integrated flexible polyvinylidenefluoride/cerium oxide nanocomposite films. Polymer-Plastics Technol. Mater., 2020, 2020, 1429-1446.