Andrographolide Inhibits Proliferation of Colon Cancer SW-480 Cells via Downregulating Notch Signaling Pathway

Page: [487 - 497] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Recently, the Notch signaling pathway has gained attention as a potential therapeutic target for chemotherapeutic intervention. However, the efficacy of previously known Notch inhibitors in colon cancer is still unclear. The purpose of this study was to investigate the effect of andrographolide on aberrantly activated Notch signaling in SW-480 cells in vitro.

Methods: The cytostatic potential of andrographolide on SW-480 cells was evaluated by 3-(4,5-dimethylthiazol- 2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay, morphology assessment, and colony formation assay. The apoptotic activity was evaluated by FITC Annexin V assay, 4′,6-diamidino-2-phenylindole (DAPI), Hoechst, Rhodamine 123, and Mito Tracker CMXRos staining. Scratch assay was conducted for migratory potential assessment. 7’-Dichlorodihydrofluorescein Diacetate (DCFH-DA) staining was used to evaluate the Reactive Oxygen Species (ROS) generation. Relative mRNA expression of Bax, Bcl2, NOTCH 1, and JAGGED 1 was estimated by Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). Cell cycle phase distribution was evaluated by Annexin V-FITC/PI staining.

Results: MTT assay demonstrated the dose and time-dependent cytotoxicity of andrographolide on SW-480 cells. It also inhibited the migratory and colony forming potential of SW-480 cells. Furthermore, andrographolide also showed disruption of mitochondrial membrane potential and induced apoptosis through nuclear condensation. Flow cytometric evaluation showed that andrographolide enhanced early and late apoptotic cells and induced upregulation of pro-apoptotic (Bax and Bad) and downregulation of anti-apoptotic Bcl2 in treated SW- 480 cells. Andrographolide augmented intracellular ROS generation and induced G0/G1 phase cell cycle arrest in colon cancer SW-480 cells. Furthermore, andrographolide repressed the Notch signaling by decreasing the expression of NOTCH 1 and JAGGED 1.

Conclusion: The findings suggested that andrographolide constraint the growth of SW-480 cells through the inhibition of the Notch signaling pathway.

Keywords: Andrographis, cell cytotoxicity, apoptosis, cell cycle, flow cytometry, NOTCH-1, JAGGED-1, gene expression.

Graphical Abstract

[1]
Bray, S.J. Notch signalling: A simple pathway becomes complex. Nat. Rev. Mol. Cell Biol., 2006, 7(9), 678-689.
[http://dx.doi.org/10.1038/nrm2009] [PMID: 16921404]
[2]
Zagouras, P.; Stifani, S.; Blaumueller, C.M.; Carcangiu, M.L.; Artavanis-Tsakonas, S. Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc. Natl. Acad. Sci. USA, 1995, 92(14), 6414-6418.
[http://dx.doi.org/10.1073/pnas.92.14.6414] [PMID: 7604005]
[3]
Reedijk, M.; Odorcic, S.; Zhang, H.; Chetty, R.; Tennert, C.; Dickson, B.C.; Lockwood, G.; Gallinger, S.; Egan, S.E. Activation of Notch signaling in human colon adenocarcinoma. Int. J. Oncol., 2008, 33(6), 1223-1229.
[PMID: 19020755]
[4]
Leow, C.C.; Romero, M.S.; Ross, S.; Polakis, P.; Gao, W-Q. Hath1, down-regulated in colon adenocarcinomas, inhibits proliferation and tumorigenesis of colon cancer cells. Cancer Res., 2004, 64(17), 6050-6057.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0290] [PMID: 15342386]
[5]
Fernández-Majada, V.; Aguilera, C.; Villanueva, A.; Vilardell, F.; Robert-Moreno, A.; Aytés, A.; Real, F.X.; Capella, G.; Mayo, M.W.; Espinosa, L.; Bigas, A. Nuclear IKK activity leads to dysregulated notch-dependent gene expression in colorectal cancer. Proc. Natl. Acad. Sci. USA, 2007, 104(1), 276-281.
[http://dx.doi.org/10.1073/pnas.0606476104] [PMID: 17190815]
[6]
Tournigand, C.; André, T.; Bonnetain, F.; Chibaudel, B.; Lledo, G.; Hickish, T.; Tabernero, J.; Boni, C.; Bachet, J.B.; Teixeira, L.; de Gramont, A. Adjuvant therapy with fluorouracil and oxaliplatin in stage II and elderly patients (between ages 70 and 75 years) with colon cancer: subgroup analyses of the Multicenter International Study of oxaliplatin, fluorouracil, and leucovorin in the adjuvant treatment of colon cancer trial. J. Clin. Oncol., 2012, 30(27), 3353-3360.
[http://dx.doi.org/10.1200/JCO.2012.42.5645] [PMID: 22915656]
[7]
Focaccetti, C.; Bruno, A.; Magnani, E.; Bartolini, D.; Principi, E.; Dallaglio, K.; Bucci, E.O.; Finzi, G.; Sessa, F.; Noonan, D.M.; Albini, A. Effects of 5-fluorouracil on morphology, cell cycle, proliferation, apoptosis, autophagy and ROS production in endothelial cells and cardiomyocytes. PLoS One, 2015, 10(2)e0115686
[http://dx.doi.org/10.1371/journal.pone.0115686] [PMID: 25671635]
[8]
Zhang, Q-Y.; Wang, F-X.; Jia, K-K.; Kong, L-D. Natural product interventions for chemotherapy and radiotherapy-induced side effects. Front. Pharmacol., 2018, 9, 1253-1253.
[http://dx.doi.org/10.3389/fphar.2018.01253] [PMID: 30459615]
[9]
Khan, I.; Yusuf, M.A.; Ansari, I.A.; Akhtar, M.S. Anticancer potential of andrographolide, a diterpenoid lactone from andrographis paniculata: A nature’s treasure for chemoprevention and therapeutics.In: Anticancer Plants: Mechanisms and Molecular Interactions: Volume 4, Akhtar, M.S.; Swamy, M.K., Eds.; Springer: Singapore, 2018, pp. 143-163;
[http://dx.doi.org/10.1007/978-981-10-8417-1_6]
[10]
Khan, I.; Khan, F.; Farooqui, A.; Ansari, I.A. Andrographolide exhibits anticancer potential against human colon cancer cells by inducing cell cycle arrest and programmed cell death via augmentation of intracellular reactive oxygen species level. Nutr. Cancer, 2018, 70(5), 787-803.
[http://dx.doi.org/10.1080/01635581.2018.1470649] [PMID: 29781715]
[11]
Kim, T.G.; Hwi, K.K.; Hung, C.S. Morphological and biochemical changes of andrographolide-induced cell death in human prostatic adenocarcinoma PC-3 cells. In Vivo, 2005, 19(3), 551-557.
[PMID: 15875775]
[12]
Hossain, M.S.; Urbi, Z.; Sule, A.; Hafizur Rahman, K.M. Andrographis paniculata (Burm. f.) Wall. ex Nees: A review of ethnobotany, phytochemistry, and pharmacology. Sci World J.,, 2014, 2014274905
[http://dx.doi.org/10.1155/2014/274905] [PMID: 25950015]
[13]
Misra, P.; Pal, N.L.; Guru, P.Y.; Katiyar, J.C.; Srivastava, V.; Tandon, J.S. Antimalarial activity of Andrographis paniculata (Kalmegh) against Plasmodium berghei NK 65 in mastomys natalensis. Int. J. Pharmacol., 1992, 30(4), 263-274.
[http://dx.doi.org/10.3109/13880209209054010]
[14]
Saltz, L.B.; Clarke, S.; Díaz-Rubio, E.; Scheithauer, W.; Figer, A.; Wong, R.; Koski, S.; Lichinitser, M.; Yang, T-S.; Rivera, F.; Couture, F.; Sirzén, F.; Cassidy, J. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: A randomized phase III study. J. Clin. Oncol., 2008, 26(12), 2013-2019.
[http://dx.doi.org/10.1200/JCO.2007.14.9930] [PMID: 18421054]
[15]
Tol, J.; Punt, C.J. Monoclonal antibodies in the treatment of metastatic colorectal cancer: A review. Clin. Ther., 2010, 32(3), 437-453.
[http://dx.doi.org/10.1016/j.clinthera.2010.03.012] [PMID: 20399983]
[16]
Taixiang, W.; Munro, A.J.; Guanjian, L. Chinese medical herbs for chemotherapy side effects in colorectal cancer patients. Cochrane Database Syst. Rev., 2005, 1CD004540
[PMID: 15674951]
[17]
Harlozinska, A. Progress in molecular mechanisms of tumor metastasis and angiogenesis. Anticancer Res., 2005, 25(5), 3327-3333.
[PMID: 16101146]
[18]
Ahamad, M.S.; Siddiqui, S.; Jafri, A.; Ahmad, S.; Afzal, M.; Arshad, M. Induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS generation and cell cycle arrest. PLoS One, 2014, 9(10)e110003
[http://dx.doi.org/10.1371/journal.pone.0110003] [PMID: 25330158]
[19]
Saraste, A.; Pulkki, K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc. Res., 2000, 45(3), 528-537.
[http://dx.doi.org/10.1016/S0008-6363(99)00384-3] [PMID: 10728374]
[20]
Shakibaei, M.; Mobasheri, A.; Lueders, C.; Busch, F.; Shayan, P.; Goel, A. Curcumin enhances the effect of chemotherapy against colorectal cancer cells by inhibition of NF-κB and Src protein kinase signaling pathways. PLoS One, 2013, 8(2), e57218-e57218.
[http://dx.doi.org/10.1371/journal.pone.0057218] [PMID: 23451189]
[21]
Shen, Y-C.; Chen, C-F.; Chiou, W-F. Andrographolide prevents oxygen radical production by human neutrophils: Possible mechanism(s) involved in its anti-inflammatory effect. Br. J. Pharmacol., 2002, 135(2), 399-406.
[http://dx.doi.org/10.1038/sj.bjp.0704493] [PMID: 11815375]
[22]
Poon, I.K.; Hulett, M.D.; Parish, C.R. Molecular mechanisms of late apoptotic/necrotic cell clearance. Cell Death Differ., 2010, 17(3), 381-397.
[http://dx.doi.org/10.1038/cdd.2009.195] [PMID: 20019744]
[23]
Dartsch, D.C.; Schaefer, A.; Boldt, S.; Kolch, W.; Marquardt, H. Comparison of anthracycline-induced death of human leukemia cells: Programmed cell death versus necrosis. Apoptosis, 2002, 7(6), 537-548.
[http://dx.doi.org/10.1023/A:1020647211557] [PMID: 12370496]
[24]
Khazaei, S.; Esa, N.M.; Ramachandran, V.; Hamid, R.A.; Pandurangan, A.K.; Etemad, A.; Ismail, P. In vitro antiproliferative and apoptosis inducing effect of Allium atroviolaceum bulb extract on breast, cervical, and liver cancer cells. Front. Pharmacol., 2017, 8(5), 5.
[http://dx.doi.org/10.3389/fphar.2017.00005] [PMID: 28197098]
[25]
Cheung, H.Y.; Cheung, C.S.; Kong, C.K. Determination of bioactive diterpenoids from Andrographis paniculata by micellar electrokinetic chromatography. J. Chromatogr. A, 2001, 930(1-2), 171-176.
[http://dx.doi.org/10.1016/S0021-9673(01)01160-8] [PMID: 11681575]
[26]
Zhou, J.; Zhang, S.; Ong, C.N.; Shen, H.M. Critical role of pro-apoptotic Bcl-2 family members in andrographolide-induced apoptosis in human cancer cells. Biochem. Pharmacol., 2006, 72(2), 132-144.
[http://dx.doi.org/10.1016/j.bcp.2006.04.019] [PMID: 16740251]
[27]
Chen, Y-Y.; Hsu, M-J.; Sheu, J-R.; Lee, L-W.; Hsieh, C-Y. Andrographolide, a Novel NF-κB inhibitor, induces vascular smooth muscle cell apoptosis via a Ceramide-p47phox-ROS signaling cascade. Evid. Based Complement. Alternat. Med., 2013, 2013, 821813-821813.
[http://dx.doi.org/10.1155/2013/821813] [PMID: 24489592]
[28]
Rodrigues, N.R.; Rowan, A.; Smith, M.E.; Kerr, I.B.; Bodmer, W.F.; Gannon, J.V.; Lane, D.P. p53 mutations in colorectal cancer. Proc. Natl. Acad. Sci. USA, 1990, 87(19), 7555-7559.
[http://dx.doi.org/10.1073/pnas.87.19.7555] [PMID: 1699228]
[29]
Shen, P.; Wang, H-G.; Li, M-M.; Ma, Q-Y.; Zhou, C-W.; Pan, F.; Xie, R. Isofraxidin inhibited proliferation and induced apoptosis via blockage of Akt pathway in human colorectal cancer cells. Biomed. Pharmacother., 2017, 92, 78-85.
[http://dx.doi.org/10.1016/j.biopha.2017.05.065] [PMID: 28531803]
[30]
Wang, J.; Wang, X.F.; Zhang, L.G.; Xie, S.Y.; Li, Z.L.; Li, Y.J.; Li, H.H.; Jiao, F. Involvement of the mitochondrial pathway in p53- independent apoptosis induced by p28GANK knockdown in Hep3B cells. Cytogenet. Genome Res., 2009, 125(2), 87-97..
[http://dx.doi.org/10.1159/000227831] [PMID: 19729910]
[31]
Lan, H.; Yuan, H.; Lin, C. Sulforaphane induces p53 deficient SW480 cell apoptosis via the ROS MAPK signaling pathway. Mol. Med. Rep., 2017, 16(5), 7796-7804.
[http://dx.doi.org/10.3892/mmr.2017.7558] [PMID: 28944886]
[32]
Bortner, C.D.; Oldenburg, N.B.; Cidlowski, J.A. The role of DNA fragmentation in apoptosis. Trends Cell Biol., 1995, 5(1), 21-26.
[http://dx.doi.org/10.1016/S0962-8924(00)88932-1] [PMID: 14731429]
[33]
Sukardiman, H.; Widyawaruyanti, A. Sismindari; Zaini, N.C. Apoptosis inducing effect of andrographolide on TD-47 human breast cancer cell line. Afr. J. Tradit. Complement. Altern. Med., 2007, 4(3), 345-351.
[PMID: 20161898]
[34]
Mir, H.; Kapur, N.; Singh, R.; Sonpavde, G.; Lillard, J.W., Jr; Singh, S. Andrographolide inhibits prostate cancer by targeting cell cycle regulators, CXCR3 and CXCR7 chemokine receptors. Cell Cycle, 2016, 15(6), 819-826.
[http://dx.doi.org/10.1080/15384101.2016.1148836] [PMID: 27029529]
[35]
Cheung, H.Y.; Cheung, S.H.; Li, J.; Cheung, C.S.; Lai, W.P.; Fong, W.F.; Leung, F.M. Andrographolide isolated from Andrographis paniculata induces cell cycle arrest and mitochondrial-mediated apoptosis in human leukemic HL-60 cells. Planta Med., 2005, 71(12), 1106-1111.
[http://dx.doi.org/10.1055/s-2005-873128] [PMID: 16395645]
[36]
Li, J.; Cheung, H.Y.; Zhang, Z.; Chan, G.K.; Fong, W.F. Andrographolide induces cell cycle arrest at G2/M phase and cell death in HepG2 cells via alteration of reactive oxygen species. Eur. J. Pharmacol., 2007, 568(1-3), 31-44.
[http://dx.doi.org/10.1016/j.ejphar.2007.04.027] [PMID: 17512926]
[37]
Satyanarayana, C.; Deevi, D.S.; Rajagopalan, R.; Srinivas, N.; Rajagopal, S. DRF 3188 a novel semi-synthetic analog of andrographolide: Cellular response to MCF 7 breast cancer cells. BMC Cancer, 2004, 4, 26.
[http://dx.doi.org/10.1186/1471-2407-4-26] [PMID: 15207007]
[38]
Dai, Y.; Wilson, G.; Huang, B.; Peng, M.; Teng, G.; Zhang, D.; Zhang, R.; Ebert, M.P.A.; Chen, J.; Wong, B.C.Y.; Chan, K.W.; George, J.; Qiao, L. Silencing of Jagged1 inhibits cell growth and invasion in colorectal cancer. Cell Death Dis., 2014, 5(4), e1170-e1170.
[http://dx.doi.org/10.1038/cddis.2014.137] [PMID: 24722295]