Dysfunctional High-density Lipoprotein: The Role of Myeloperoxidase and Paraoxonase-1

Page: [2842 - 2850] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Low circulating high-density lipoproteins (HDL) are not only defining criteria for metabolic syndrome, but are more generally associated with atherosclerotic cardiovascular disease (ASCVD) and other chronic diseases. Oxidative stress, a hallmark of cardio-metabolic disease, further influences HDL activity by suppressing their function. Especially the leukocyte- derived enzyme myeloperoxidase (MPO) has recently attracted great interest as it catalyzes the formation of oxidizing reactive species that modify the structure and function of HDL, ultimately increasing cardiovascular risk. Contrariwise, paraoxonase-1 (PON1) is an HDL-associated enzyme that protects HDL from lipid oxidation and then acts as a protective factor against ASCVD. It is noteworthy that recent studies have demonstrated how MPO, PON1 and HDL form a functional complex in which PON1 partially inhibits the MPO activity, while MPO in turn partially inactivates PON1.In line with that, a high MPO/PON1 ratio characterizes patients with ASCVD and metabolic syndrome and has been suggested as a potential marker of dysfunctional HDL as well as a predictor of ASCVD. In this review, we summarize the evidence on the interactions between MPO and PON1 with regard to their structure, function and interaction with HDL activity. We also provide an overview of in vitro and experimental animal models, finally focusing on clinical evidence from a cohort of patients with ASCVD and metabolic syndrome.

Keywords: High-density lipoprotein, Myeloperoxidase, Paraoxonase, Atherosclerosis, metabolic syndrome, HDL activity.

[1]
Assmann, G.; Nofer, J.R. Atheroprotective effects of high-density lipoproteins. Annu. Rev. Med., 2003, 54, 321-341.
[http://dx.doi.org/10.1146/annurev.med.54.101601.152409] [PMID: 12414916]
[2]
Genest, J.J. Jr.; Bard, J.M.; Fruchart, J.C.; Ordovas, J.M.; Wilson, P.F.; Schaefer, E.J. Plasma apolipoprotein A-I, A-II, B, E and C-III containing particles in men with premature coronary artery disease. Atherosclerosis, 1991, 90(2-3), 149-157.
[http://dx.doi.org/10.1016/0021-9150(91)90109-G] [PMID: 1684707]
[3]
Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; Graham, I.M.; Halliday, A.; Landmesser, U.; Mihaylova, B.; Pedersen, T.R.; Riccardi, G.; Richter, D.J.; Sabatine, M.S.; Taskinen, M.R.; Tokgozoglu, L.; Wiklund, O.; Group, E.S.C.S.D. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur. Heart J., 2020, 41(1), 111-188.
[http://dx.doi.org/10.1093/eurheartj/ehz455] [PMID: 31504418]
[4]
Cameron, S.J.; Morrell, C.N.; Bao, C.; Swaim, A.F.; Rodriguez, A.; Lowenstein, C.J. A novel anti-inflammatory effect for high density lipoprotein. PLoS One, 2015, 10(12), e0144372.
[http://dx.doi.org/10.1371/journal.pone.0144372] [PMID: 26680360]
[5]
Negre-Salvayre, A.; Dousset, N.; Ferretti, G.; Bacchetti, T.; Curatola, G.; Salvayre, R. Antioxidant and cytoprotective properties of high-density lipoproteins in vascular cells. Free Radic. Biol. Med., 2006, 41(7), 1031-1040.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.07.006] [PMID: 16962927]
[6]
Rached, F.H.; Chapman, M.J.; Kontush, A. HDL particle subpopulations: focus on biological function. Biofactors, 2015, 41(2), 67-77.
[http://dx.doi.org/10.1002/biof.1202] [PMID: 25809447]
[7]
Soran, H.; Schofield, J.D.; Durrington, P.N. Antioxidant properties of HDL. Front. Pharmacol., 2015, 6, 222.
[http://dx.doi.org/10.3389/fphar.2015.00222] [PMID: 26528181]
[8]
Rosenblat, M.; Aviram, M. Paraoxonases role in the prevention of cardiovascular diseases. Biofactors, 2009, 35(1), 98-104.
[http://dx.doi.org/10.1002/biof.16] [PMID: 19319852]
[9]
Mackness, M.I.; Arrol, S.; Durrington, P.N. Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett., 1991, 286(1-2), 152-154.
[http://dx.doi.org/10.1016/0014-5793(91)80962-3] [PMID: 1650712]
[10]
Aviram, M.; Rosenblat, M.; Bisgaier, C.L.; Newton, R.S.; Primo-Parmo, S.L.; La Du, B.N. Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. J. Clin. Invest., 1998, 101(8), 1581-1590.
[http://dx.doi.org/10.1172/JCI1649] [PMID: 9541487]
[11]
Watson, A.D.; Berliner, J.A.; Hama, S.Y.; La Du, B.N.; Faull, K.F.; Fogelman, A.M.; Navab, M. Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. J. Clin. Invest., 1995, 96(6), 2882-2891.
[http://dx.doi.org/10.1172/JCI118359] [PMID: 8675659]
[12]
Besler, C.; Heinrich, K.; Rohrer, L.; Doerries, C.; Riwanto, M.; Shih, D.M.; Chroni, A.; Yonekawa, K.; Stein, S.; Schaefer, N.; Mueller, M.; Akhmedov, A.; Daniil, G.; Manes, C.; Templin, C.; Wyss, C.; Maier, W.; Tanner, F.C.; Matter, C.M.; Corti, R.; Furlong, C.; Lusis, A.J.; von Eckardstein, A.; Fogelman, A.M.; Lüscher, T.F.; Landmesser, U. Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J. Clin. Invest., 2011, 121(7), 2693-2708.
[http://dx.doi.org/10.1172/JCI42946] [PMID: 21701070]
[13]
Ikhlef, S.; Berrougui, H.; Kamtchueng Simo, O.; Zerif, E.; Khalil, A. Human paraoxonase 1 overexpression in mice stimulates HDL cholesterol efflux and reverse cholesterol transport. PLoS One, 2017, 12(3), e0173385.
[http://dx.doi.org/10.1371/journal.pone.0173385] [PMID: 28278274]
[14]
Draganov, D.I.; Teiber, J.F.; Speelman, A.; Osawa, Y.; Sunahara, R.; La Du, B.N. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J. Lipid Res., 2005, 46(6), 1239-1247.
[http://dx.doi.org/10.1194/jlr.M400511-JLR200] [PMID: 15772423]
[15]
Ferretti, G.; Bacchetti, T.; Sahebkar, A. Effect of statin therapy on paraoxonase-1 status: a systematic review and meta-analysis of 25 clinical trials. Prog. Lipid Res., 2015, 60, 50-73.
[http://dx.doi.org/10.1016/j.plipres.2015.08.003] [PMID: 26416579]
[16]
Ferretti, G.; Bacchetti, T.; Busni, D.; Rabini, R.A.; Curatola, G. Protective effect of paraoxonase activity in high-density lipoproteins against erythrocyte membranes peroxidation: a comparison between healthy subjects and type 1 diabetic patients. J. Clin. Endocrinol. Metab., 2004, 89(6), 2957-2962.
[http://dx.doi.org/10.1210/jc.2003-031897] [PMID: 15181084]
[17]
Ferretti, G.; Bacchetti, T.; Moroni, C.; Savino, S.; Liuzzi, A.; Balzola, F.; Bicchiega, V. Paraoxonase activity in high-density lipoproteins: a comparison between healthy and obese females. J. Clin. Endocrinol. Metab., 2005, 90(3), 1728-1733.
[http://dx.doi.org/10.1210/jc.2004-0486] [PMID: 15613429]
[18]
Aviram, M.; Hardak, E.; Vaya, J.; Mahmood, S.; Milo, S.; Hoffman, A.; Billicke, S.; Draganov, D.; Rosenblat, M. Human serum paraoxonases (PON1) Q and R selectively decrease lipid peroxides in human coronary and carotid atherosclerotic lesions: PON1 esterase and peroxidase-like activities. Circulation, 2000, 101(21), 2510-2517.
[http://dx.doi.org/10.1161/01.CIR.101.21.2510] [PMID: 10831526]
[19]
Eren, E.; Yilmaz, N.; Aydin, O. High density lipoprotein and it’s dysfunction. Open Biochem. J., 2012, 6, 78-93.
[http://dx.doi.org/10.2174/1874091X01206010078] [PMID: 22888373]
[20]
Ferretti, G.; Bacchetti, T.; Nègre-Salvayre, A.; Salvayre, R.; Dousset, N.; Curatola, G. Structural modifications of HDL and functional consequences. Atherosclerosis, 2006, 184(1), 1-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.08.008] [PMID: 16157342]
[21]
Bergt, C.; Reicher, H.; Malle, E.; Sattler, W. Hypochlorite modification of high density lipoprotein: effects on cholesterol efflux from J774 macrophages. FEBS Lett., 1999, 452(3), 295-300.
[http://dx.doi.org/10.1016/S0014-5793(99)00677-8] [PMID: 10386609]
[22]
Zheng, L.; Nukuna, B.; Brennan, M.L.; Sun, M.; Goormastic, M.; Settle, M.; Schmitt, D.; Fu, X.; Thomson, L.; Fox, P.L.; Ischiropoulos, H.; Smith, J.D.; Kinter, M.; Hazen, S.L. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J. Clin. Invest., 2004, 114(4), 529-541.
[http://dx.doi.org/10.1172/JCI200421109] [PMID: 15314690]
[23]
Shao, B.; Tang, C.; Heinecke, J.W.; Oram, J.F. Oxidation of apolipoprotein A-I by myeloperoxidase impairs the initial interactions with ABCA1 required for signaling and cholesterol export. J. Lipid Res., 2010, 51(7), 1849-1858.
[http://dx.doi.org/10.1194/jlr.M004085] [PMID: 20064972]
[24]
Undurti, A.; Huang, Y.; Lupica, J.A.; Smith, J.D.; DiDonato, J.A.; Hazen, S.L. Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. J. Biol. Chem., 2009, 284(45), 30825-30835.
[http://dx.doi.org/10.1074/jbc.M109.047605] [PMID: 19726691]
[25]
Sorrentino, S.A.; Besler, C.; Rohrer, L.; Meyer, M.; Heinrich, K.; Bahlmann, F.H.; Mueller, M.; Horváth, T.; Doerries, C.; Heinemann, M.; Flemmer, S.; Markowski, A.; Manes, C.; Bahr, M.J.; Haller, H.; von Eckardstein, A.; Drexler, H.; Landmesser, U. Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation, 2010, 121(1), 110-122.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.836346] [PMID: 20026785]
[26]
Marsche, G.; Furtmüller, P.G.; Obinger, C.; Sattler, W.; Malle, E. Hypochlorite-modified high-density lipoprotein acts as a sink for myeloperoxidase in vitro. Cardiovasc. Res., 2008, 79(1), 187-194.
[http://dx.doi.org/10.1093/cvr/cvn051] [PMID: 18296711]
[27]
Pennathur, S.; Bergt, C.; Shao, B.; Byun, J.; Kassim, S.Y.; Singh, P.; Green, P.S.; McDonald, T.O.; Brunzell, J.; Chait, A.; Oram, J.F.; O’brien, K.; Geary, R.L.; Heinecke, J.W. Human atherosclerotic intima and blood of patients with established coronary artery disease contain high density lipoprotein damaged by reactive nitrogen species. J. Biol. Chem., 2004, 279(41), 42977-42983.
[http://dx.doi.org/10.1074/jbc.M406762200] [PMID: 15292228]
[28]
Shao, B.; Cavigiolio, G.; Brot, N.; Oda, M.N.; Heinecke, J.W. Methionine oxidation impairs reverse cholesterol transport by apolipoprotein A-I. Proc. Natl. Acad. Sci. USA, 2008, 105(34), 12224-12229.
[http://dx.doi.org/10.1073/pnas.0802025105] [PMID: 18719109]
[29]
Winterbourn, C.C.; Kettle, A.J. Biomarkers of myeloperoxidase-derived hypochlorous acid. Free Radic. Biol. Med., 2000, 29(5), 403-409.
[http://dx.doi.org/10.1016/S0891-5849(00)00204-5] [PMID: 11020661]
[30]
Shao, B.; Bergt, C.; Fu, X.; Green, P.; Voss, J.C.; Oda, M.N.; Oram, J.F.; Heinecke, J.W. Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport. J. Biol. Chem., 2005, 280(7), 5983-5993.
[http://dx.doi.org/10.1074/jbc.M411484200] [PMID: 15574409]
[31]
Shao, B.; Oda, M.N.; Bergt, C.; Fu, X.; Green, P.S.; Brot, N.; Oram, J.F.; Heinecke, J.W. Myeloperoxidase impairs ABCA1-dependent cholesterol efflux through methionine oxidation and site-specific tyrosine chlorination of apolipoprotein A-I. J. Biol. Chem., 2006, 281(14), 9001-9004.
[http://dx.doi.org/10.1074/jbc.C600011200] [PMID: 16497665]
[32]
Shao, B. Site-specific oxidation of apolipoprotein A-I impairs cholesterol export by ABCA1, a key cardioprotective function of HDL. Biochim. Biophys. Acta, 2012, 1821(3), 490-501.
[http://dx.doi.org/10.1016/j.bbalip.2011.11.011] [PMID: 22178192]
[33]
Huang, Y.; Wu, Z.; Riwanto, M.; Gao, S.; Levison, B.S.; Gu, X.; Fu, X.; Wagner, M.A.; Besler, C.; Gerstenecker, G.; Zhang, R.; Li, X.M.; DiDonato, A.J.; Gogonea, V.; Tang, W.H.; Smith, J.D.; Plow, E.F.; Fox, P.L.; Shih, D.M.; Lusis, A.J.; Fisher, E.A.; DiDonato, J.A.; Landmesser, U.; Hazen, S.L. Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex. J. Clin. Invest., 2013, 123(9), 3815-3828.
[http://dx.doi.org/10.1172/JCI67478] [PMID: 23908111]
[34]
Panzenboeck, U.; Raitmayer, S.; Reicher, H.; Lindner, H.; Glatter, O.; Malle, E.; Sattler, W. Effects of reagent and enzymatically generated hypochlorite on physicochemical and metabolic properties of high density lipoproteins. J. Biol. Chem., 1997, 272(47), 29711-29720.
[http://dx.doi.org/10.1074/jbc.272.47.29711] [PMID: 9368040]
[35]
van Dalen, C.J.; Whitehouse, M.W.; Winterbourn, C.C.; Kettle, A.J. Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem. J., 1997, 327(Pt 2), 487-492.
[http://dx.doi.org/10.1042/bj3270487] [PMID: 9359420]
[36]
Holzer, M.; Gauster, M.; Pfeifer, T.; Wadsack, C.; Fauler, G.; Stiegler, P.; Koefeler, H.; Beubler, E.; Schuligoi, R.; Heinemann, A.; Marsche, G. Protein carbamylation renders high-density lipoprotein dysfunctional. Antioxid. Redox Signal., 2011, 14(12), 2337-2346.
[http://dx.doi.org/10.1089/ars.2010.3640] [PMID: 21235354]
[37]
Wang, Z.; Nicholls, S.J.; Rodriguez, E.R.; Kummu, O.; Hörkkö, S.; Barnard, J.; Reynolds, W.F.; Topol, E.J.; DiDonato, J.A.; Hazen, S.L. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat. Med., 2007, 13(10), 1176-1184.
[http://dx.doi.org/10.1038/nm1637] [PMID: 17828273]
[38]
Gaidukov, L.; Tawfik, D.S. High affinity, stability, and lactonase activity of serum paraoxonase PON1 anchored on HDL with ApoA-I. Biochemistry, 2005, 44(35), 11843-11854.
[http://dx.doi.org/10.1021/bi050862i] [PMID: 16128586]
[39]
Haraguchi, Y.; Toh, R.; Hasokawa, M.; Nakajima, H.; Honjo, T.; Otsui, K.; Mori, K.; Miyamoto-Sasaki, M.; Shinohara, M.; Nishimura, K.; Ishida, T.; Hirata, K. Serum myeloperoxidase/paraoxonase 1 ratio as potential indicator of dysfunctional high-density lipoprotein and risk stratification in coronary artery disease. Atherosclerosis, 2014, 234(2), 288-294.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.03.009] [PMID: 24704632]
[40]
Pirillo, A.; Uboldi, P.; Catapano, A.L. Dual effect of hypochlorite in the modification of high density lipoproteins. Biochem. Biophys. Res. Commun., 2010, 403(3-4), 447-451.
[http://dx.doi.org/10.1016/j.bbrc.2010.11.053] [PMID: 21094143]
[41]
Kameda, T.; Ohkawa, R.; Yano, K.; Usami, Y.; Miyazaki, A.; Matsuda, K.; Kawasaki, K.; Sugano, M.; Kubota, T.; Tozuka, M. Effects of myeloperoxidase-induced oxidation on antiatherogenic functions of high-density lipoprotein. J. Lipids, 2015, 2015, 592594.
[http://dx.doi.org/10.1155/2015/592594] [PMID: 26257958]
[42]
Lu, N.; Xie, S.; Li, J.; Tian, R.; Peng, Y.Y. Myeloperoxidase-mediated oxidation targets serum apolipoprotein A-I in diabetic patients and represents a potential mechanism leading to impaired anti-apoptotic activity of high density lipoprotein. Clin. Chim. Acta, 2015, 441, 163-170.
[http://dx.doi.org/10.1016/j.cca.2014.12.014] [PMID: 25528002]
[43]
Zhang, R.; Brennan, M.L.; Fu, X.; Aviles, R.J.; Pearce, G.L.; Penn, M.S.; Topol, E.J.; Sprecher, D.L.; Hazen, S.L. Association between myeloperoxidase levels and risk of coronary artery disease. JAMA, 2001, 286(17), 2136-2142.
[http://dx.doi.org/10.1001/jama.286.17.2136] [PMID: 11694155]
[44]
Bergt, C.; Pennathur, S.; Fu, X.; Byun, J.; O’Brien, K.; McDonald, T.O.; Singh, P.; Anantharamaiah, G.M.; Chait, A.; Brunzell, J.; Geary, R.L.; Oram, J.F.; Heinecke, J.W. The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc. Natl. Acad. Sci. USA, 2004, 101(35), 13032-13037.
[http://dx.doi.org/10.1073/pnas.0405292101] [PMID: 15326314]
[45]
Holzer, M.; Zangger, K.; El-Gamal, D.; Binder, V.; Curcic, S.; Konya, V.; Schuligoi, R.; Heinemann, A.; Marsche, G. Myeloperoxidase-derived chlorinating species induce protein carbamylation through decomposition of thiocyanate and urea: novel pathways generating dysfunctional high-density lipoprotein. Antioxid. Redox Signal., 2012, 17(8), 1043-1052.
[http://dx.doi.org/10.1089/ars.2011.4403] [PMID: 22462773]
[46]
Jornayvaz, F.R.; Brulhart-Meynet, M.C.; James, R.W. Myeloperoxidase and paraoxonase-1 in type 2 diabetic patients. Nutr. Metab. Cardiovasc. Dis., 2009, 19(9), 613-619.
[http://dx.doi.org/10.1016/j.numecd.2008.12.005] [PMID: 19201174]
[47]
Emami Razavi, A.; Basati, G.; Varshosaz, J.; Abdi, S. Association between HDL particles size and myeloperoxidase/paraoxonase-1 (MPO/PON1) ratio in patients with acute coronary syndrome. Acta Med. Iran., 2013, 51(6), 365-371.
[PMID: 23852840]
[48]
Yunoki, K.; Naruko, T.; Inaba, M.; Inoue, T.; Nakagawa, M.; Sugioka, K.; Ohsawa, M.; Iwasa, Y.; Komatsu, R.; Itoh, A.; Haze, K.; Yoshiyama, M.; Becker, A.E.; Ueda, M. Gender-specific correlation between plasma myeloperoxidase levels and serum high-density lipoprotein-associated paraoxonase-1 levels in patients with stable and unstable coronary artery disease. Atherosclerosis, 2013, 231(2), 308-314.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.08.037] [PMID: 24267244]
[49]
Zsíros, N.; Koncsos, P.; Lőrincz, H.; Seres, I.; Katkó, M.; Szentpéteri, A.; Varga, V.E.; Fülöp, P.; Paragh, G.; Harangi, M. Paraoxonase-1 arylesterase activity is an independent predictor of myeloperoxidase levels in overweight patients with or without cardiovascular complications. Clin. Biochem., 2016, 49(12), 862-867.
[http://dx.doi.org/10.1016/j.clinbiochem.2016.03.011] [PMID: 27129797]
[50]
Szentpéteri, A.; Zsíros, N.; Varga, V.E.; Lőrincz, H.; Katkó, M.; Seres, I.; Fülöp, P.; Paragh, G.; Harangi, M. Paraoxonase-1 and myeloperoxidase correlate with vascular biomarkers in overweight patients with newly diagnosed untreated hyperlipidaemia. Vasa, 2017, 46(5), 370-376.
[http://dx.doi.org/10.1024/0301-1526/a000643] [PMID: 28602123]
[51]
Variji, A.; Shokri, Y.; Fallahpour, S.; Zargari, M.; Bagheri, B.; Abediankenari, S.; Alizadeh, A.; Mahrooz, A. The combined utility of myeloperoxidase (MPO) and paraoxonase 1 (PON1) as two important HDL-associated enzymes in coronary artery disease: which has a stronger predictive role? Atherosclerosis, 2019, 280, 7-13.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.11.004] [PMID: 30448568]
[52]
Khine, H.W.; Teiber, J.F.; Haley, R.W.; Khera, A.; Ayers, C.R.; Rohatgi, A. Association of the serum myeloperoxidase/high-density lipoprotein particle ratio and incident cardiovascular events in a multi-ethnic population: observations from the Dallas Heart Study. Atherosclerosis, 2017, 263, 156-162.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.06.007] [PMID: 28645072]
[53]
Tziomalos, K.; Katrini, K.; Papagianni, M.; Christou, K.; Gkolfinopoulou, C.; Angelopoulou, S.M.; Sofogianni, A.; Savopoulos, C.; Hatzitolios, A.I.; Chroni, A. Impaired antioxidative activity of high-density lipoprotein is associated with more severe acute ischemic stroke. Metabolism, 2019, 98, 49-52.
[http://dx.doi.org/10.1016/j.metabol.2019.06.004] [PMID: 31202834]
[54]
Bacchetti, T.; Simonetti, O.; Ricotti, F.; Offidani, A.; Ferretti, G. Plasma oxidation status and antioxidant capacity in psoriatic children. Arch. Dermatol. Res., 2020, 312(1), 33-39.
[http://dx.doi.org/10.1007/s00403-019-01976-z] [PMID: 31531730]
[55]
Gkolfinopoulou, C.; Stratikos, E.; Theofilatos, D.; Kardassis, D.; Voulgari, P.V.; Drosos, A.A.; Chroni, A. Impaired antiatherogenic functions of high-density lipoprotein in patients with ankylosing spondylitis. J. Rheumatol., 2015, 42(9), 1652-1660.
[http://dx.doi.org/10.3899/jrheum.141532] [PMID: 26233507]
[56]
Neşelioglu, S.; Pekcan, G.; Gök, G.; Yurt, E.F. Investigation of dysfunctional HDL using myeloperoxidase/paraoxonase ratio in lymphoma. Harran Üniversitesi Tıp Fakültesi Dergisi, 2019, 16(2), 358-364.
[http://dx.doi.org/10.35440/hutfd.579011]
[57]
Jelić-Knezović, N.; Galijašević, S.; Lovrić, M.; Vasilj, M.; Selak, S.; Mikulić, I. Levels of nitric oxide metabolites and myeloperoxidase in subjects with type 2 diabetes mellitus on metformin therapy. Exp. Clin. Endocrinol. Diabetes, 2019, 127(1), 56-61.
[http://dx.doi.org/10.1055/a-0577-7776] [PMID: 29529688]
[58]
Gómez García, A.; Rivera Rodríguez, M.; Gómez Alonso, C.; Rodríguez Ochoa, D.Y.; Alvarez Aguilar, C. Myeloperoxidase is associated with insulin resistance and inflammation in overweight subjects with first-degree relatives with type 2 diabetes mellitus. Diabetes Metab. J., 2015, 39(1), 59-65.
[http://dx.doi.org/10.4093/dmj.2015.39.1.59] [PMID: 25729714]
[59]
Shiu, S.W.; Xiao, S.M.; Wong, Y.; Chow, W.S.; Lam, K.S.; Tan, K.C. Carbamylation of LDL and its relationship with myeloperoxidase in type 2 diabetes mellitus. Clin. Sci. (Lond.), 2014, 126(2), 175-181.
[http://dx.doi.org/10.1042/CS20130369] [PMID: 23905837]
[60]
Farbstein, D.; Levy, A.P. HDL dysfunction in diabetes: causes and possible treatments. Expert Rev. Cardiovasc. Ther., 2012, 10(3), 353-361.
[http://dx.doi.org/10.1586/erc.11.182] [PMID: 22390807]
[61]
Hermo, R.; Mier, C.; Mazzotta, M.; Tsuji, M.; Kimura, S.; Gugliucci, A. Circulating levels of nitrated apolipoprotein A-I are increased in type 2 diabetic patients. Clin. Chem. Lab. Med., 2005, 43(6), 601-606.
[http://dx.doi.org/10.1515/CCLM.2005.104] [PMID: 16006255]
[62]
Gugliucci, A.; Hermo, R.; Tsuji, M.; Kimura, S. Lower serum paraoxonase-1 activity in type 2 diabetic patients correlates with nitrated apolipoprotein A-I levels. Clin. Chim. Acta, 2006, 368(1-2), 201-202.
[http://dx.doi.org/10.1016/j.cca.2006.01.011] [PMID: 16500635]
[63]
Song, P.; Xu, J.; Song, Y.; Jiang, S.; Yuan, H.; Zhang, X. Association of plasma myeloperoxidase level with risk of coronary artery disease in patients with type 2 diabetes. Dis. Markers, 2015, 2015, 761939.
[http://dx.doi.org/10.1155/2015/761939] [PMID: 26451069]
[64]
Ferretti, G.; Bacchetti, T.; Masciangelo, S.; Grugni, G.; Bicchiega, V. Altered inflammation, paraoxonase-1 activity and HDL physicochemical properties in obese humans with and without Prader-Willi syndrome. Dis. Model. Mech., 2012, 5(5), 698-705.
[http://dx.doi.org/10.1242/dmm.009209] [PMID: 22822045]
[65]
Zur, B.; Look, M.; Holdenrieder, S.; Stoffel-Wagner, B. Elevated plasma myeloperoxidase concentration in adults with obesity. Clin. Chim. Acta, 2011, 412(19-20), 1891-1892.
[http://dx.doi.org/10.1016/j.cca.2011.06.010] [PMID: 21693110]
[66]
Heinecke, J.W.; Goldberg, I.J. Myeloperoxidase: a therapeutic target for preventing insulin resistance and the metabolic sequelae of obesity? Diabetes, 2014, 63(12), 4001-4003.
[http://dx.doi.org/10.2337/db14-1273] [PMID: 25414015]
[67]
Andrade, V.L.; Petruceli, E.; Belo, V.A.; Andrade-Fernandes, C.M.; Caetano Russi, C.V.; Bosco, A.A.; Tanus-Santos, J.E.; Sandrim, V.C. Evaluation of plasmatic MMP-8, MMP-9, TIMP-1 and MPO levels in obese and lean women. Clin. Biochem., 2012, 45(6), 412-415.
[http://dx.doi.org/10.1016/j.clinbiochem.2012.01.008] [PMID: 22285381]
[68]
Vazquez, E.; Sethi, A.A.; Freeman, L.; Zalos, G.; Chaudhry, H.; Haser, E.; Aicher, B.O.; Aponte, A.; Gucek, M.; Kato, G.J.; Waclawiw, M.A.; Remaley, A.T.; Cannon, R.O. III. High-density lipoprotein cholesterol efflux, nitration of apolipoprotein A-I, and endothelial function in obese women. Am. J. Cardiol., 2012, 109(4), 527-532.
[http://dx.doi.org/10.1016/j.amjcard.2011.10.008] [PMID: 22105786]
[69]
Mathew, A.V.; Li, L.; Byun, J.; Guo, Y.; Michailidis, G.; Jaiswal, M.; Chen, Y.E.; Pop-Busui, R.; Pennathur, S. Therapeutic lifestyle changes improve HDL function by inhibiting myeloperoxidase-mediated oxidation in patients with metabolic syndrome. Diabetes Care, 2018, 41(11), 2431-2437.
[http://dx.doi.org/10.2337/dc18-0049] [PMID: 30201848]