Melia azedarach Activated Carbon and its novel TiO2 Nanocomposite for Chemisorption and Photodecoloration of Reactive Orange 16: Isotherm and Kinetic Modeling

Page: [107 - 119] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Bulk generated textile wastewater loaded with dyes is posing a stern threat to aquatic health, especially when dumped without prior treatment. Lignocellulosic waste based activated carbon (AC) and Titania (TiO2) suspension can constitute the emerging technological solution.

Objectives: Best lignocellulosic precursor biomass, Melia azedarach (Darek sawdust - DSD), was selected for ortho-phosphoric acid impregnated AC production and novel AC-DSD-TiO2 nanocomposite was developed. AC-DSD and AC-DSD-TiO2 nanocomposites were employed for reactive orange 16 (RO16) dye adsorption in batch and decoloration in photocatalytic reactors, respectively.

Methods: Materials were characterized by Scanning electron microscope (SEM), energy dispersion X-ray (EDX) spectroscopy and Fourier transform infrared spectroscopy (FTIR). For AC-DSD production, the raw powdered biomass of DSD impregnated (value = 2) with H3PO4 at room temperature and after shaking, was placed in a muffle furnace at 100°C for 12 h in glass tubes and subsequently carbonized at a high temperature of 400°C for 30 min. Batch reactor parameters for the ACDSD- RO16 system were optimized as a function of contact time, adsorbent dose, temperature, initial dye concentration and pH. For AC-DSD-TiO2 nanocomposite synthesis, AC-DSD and TiO2 paste was dried in the furnace at 90°C and calcined at 300°C and stored in a desiccator.

Results: AC-DSD exhibited RO16 adsorption capacity of 92.84 mg/g. The experimental data were best described by Langmuir and Dubinin-Radushkevich isotherms with high R2 of 0.9995 and 0.9895 and closeness of predicted adsorption capacities of 94.15 and 88.58 mg/g respectively. This determines the chemisorption nature for RO16 adsorption onto AC-DSD. The experimental data was well explained by the pseudo-second order kinetic model. Thermodynamic parameters also suggest the endothermic, chemisorption and spontaneous adsorption reaction. Photocatalytic studies of novel AC-DSD-TiO2 revealed the higher Kc = 0.1833 value over Kad= 0.0572.

Conclusion: Melia azedarach AC-DSD and its novel AC-DSD-TiO2 nanocomposite prove that these materials could provide an optimal solution for treating textile dye solutions effectively as the good adsorbent and photocatalyst.

Keywords: Activated carbon, adsorption, isotherm and kinetics, Melia azedarach, nanocomposite, reactive orange 16, thermodynamics.

Graphical Abstract

[1]
Ghaedi, M.; Hajati, S.; Barazesh, B.; Karimi, F.; Ghezelbash, G. Saccharomyces cerevisiae for the biosorption of basic dyes from binary component systems and the high order derivative spectrophotometric method for simultaneous analysis of Brilliant green and Methylene blue. J. Ind. Eng. Chem., 2013, 19, 227-233.
[http://dx.doi.org/10.1016/j.jiec.2012.08.006]
[2]
Rangabhashiyam, S.; Lata, S.; Balasubramanian, P. Biosorption characteristics of methylene blue and malachite green from simulated wastewater onto Carica papaya wood biosorbent. Surf. Interfaces, 2018, 10, 197-215.
[http://dx.doi.org/10.1016/j.surfin.2017.09.011]
[3]
Verma, Y. Acute toxicity assessment of textile dyes and textile and dye industrial effluents using Daphnia magna bioassay. Toxicol. Ind. Health, 2008, 24(7), 491-500.
[http://dx.doi.org/10.1177/0748233708095769] [PMID: 19028775]
[4]
Tigini, V.; Giansanti, P.; Mangiavillano, A.; Pannocchia, A.; Varese, G.C. Evaluation of toxicity, genotoxicity and environmental risk of simulated textile and tannery wastewaters with a battery of biotests. Ecotoxicol. Environ. Saf., 2011, 74(4), 866-873.
[http://dx.doi.org/10.1016/j.ecoenv.2010.12.001] [PMID: 21176963]
[5]
Shen, C.; Pan, Y.; Wu, D.; Liu, Y.; Ma, C.; Li, F.; Ma, H.; Zhang, Y. A crosslinking-induced precipitation process for the simultaneous removal of poly(vinyl alcohol) and reactive dye: The importance of covalent bond forming and magnesium coagulation. Chem. Eng. J., 2019, 374, 904-913.
[http://dx.doi.org/10.1016/j.cej.2019.05.203]
[6]
Darmograi, G.; Prelot, B.; Geneste, A.; De Menorval, L-C.; Zajac, J. Removal of three anionic orange-type dyes and Cr(VI) oxyanion from aqueous solutions onto strongly basic anion-exchange resin. The effect of single-component and competitive adsorption. Colloids Surf. A Physicochem. Eng. Asp., 2016, 508, 240-250.
[http://dx.doi.org/10.1016/j.colsurfa.2016.08.063]
[7]
Liu, C-H.; Wu, J-S.; Chiu, H-C.; Suen, S-Y.; Chu, K.H. Removal of anionic reactive dyes from water using anion exchange membranes as adsorbers. Water Res., 2007, 41(7), 1491-1500.
[http://dx.doi.org/10.1016/j.watres.2007.01.023] [PMID: 17328938]
[8]
Kim, T-H.; Park, C.; Kim, S. Water recycling from desalination and purification process of reactive dye manufacturing industry by combined membrane filtration. J. Clean. Prod., 2005, 13, 779-786.
[http://dx.doi.org/10.1016/j.jclepro.2004.02.044]
[9]
Gupta, V.K.; Saravanan, R.; Agarwal, S.; Gracia, F.; Khan, M.M.; Qin, J.; Mangalaraja, R. Degradation of azo dyes under different wavelengths of UV light with chitosan-SnO2 nanocomposites. J. Mol. Liq., 2017, 232, 423-430.
[http://dx.doi.org/10.1016/j.molliq.2017.02.095]
[10]
Alinsafi, A.; Khemis, M.; Pons, M-N.; Leclerc, J-P.; Yaacoubi, A.; Benhammou, A.; Nejmeddine, A. Electro-coagulation of reactive textile dyes and textile wastewater. Chem. Eng. Process. Process Intensificat., 2005, 44, 461-470.
[11]
Saratale, R.G.; Saratale, G.D.; Chang, J-S.; Govindwar, S.P. Ecofriendly degradation of sulfonated diazo dye C.I. Reactive Green 19A using micrococcus glutamicus NCIM-2168. Bioresour. Technol., 2009, 100(17), 3897-3905.
[http://dx.doi.org/10.1016/j.biortech.2009.03.051] [PMID: 19375909]
[12]
Fanchiang, J-M.; Tseng, D-H. Degradation of anthraquinone dye C.I. Reactive Blue 19 in aqueous solution by ozonation. Chemosphere, 2009, 77(2), 214-221.
[http://dx.doi.org/10.1016/j.chemosphere.2009.07.038] [PMID: 19683783]
[13]
Al-Hamadani, Y.A.J.; Chu, K.H.; Flora, J.R.V.; Kim, D.H.; Jang, M.; Sohn, J.; Joo, W.; Yoon, Y. Sonocatalytical degradation enhancement for ibuprofen and sulfamethoxazole in the presence of glass beads and single-walled carbon nanotubes. Ultrason. Sonochem., 2016, 32, 440-448.
[http://dx.doi.org/10.1016/j.ultsonch.2016.03.030] [PMID: 27150790]
[14]
Heo, J.; Boateng, L.K.; Flora, J.R.V.; Lee, H.; Her, N.; Park, Y-G.; Yoon, Y. Comparison of flux behavior and synthetic organic compound removal by forward osmosis and reverse osmosis membranes. J. Membr. Sci., 2013, 443, 69-82.
[http://dx.doi.org/10.1016/j.memsci.2013.04.063]
[15]
Chu, K.H.; Fathizadeh, M.; Yu, M.; Flora, J.R.V.; Jang, A.; Jang, M.; Park, C.M.; Yoo, S.S.; Her, N.; Yoon, Y. Evaluation of removal mechanisms in a graphene oxide-coated ceramic ultrafiltration membrane for retention of natural organic matter, pharmaceuticals, and inorganic salts. ACS Appl. Mater. Interfaces, 2017, 9(46), 40369-40377.
[http://dx.doi.org/10.1021/acsami.7b14217] [PMID: 29111662]
[16]
Park, C.M.; Heo, J.; Wang, D.; Su, C.; Yoon, Y. Heterogeneous activation of persulfate by reduced graphene oxide-elemental silver/magnetite nanohybrids for the oxidative degradation of pharmaceuticals and endocrine disrupting compounds in water. Appl. Catal. B, 2018, 225, 91-99.
[http://dx.doi.org/10.1016/j.apcatb.2017.11.058]
[17]
Cardoso, N.F.; Lima, E.C.; Calvete, T.; Pinto, I.S.; Amavisca, C.V.; Fernandes, T.H.M.; Pinto, R.B.; Alencar, W.S. Application of aqai stalks as biosorbents for the removal of the dyes reactive black 5 and reactive orange 16 from aqueous solution. J. Chem. Eng. Data, 2011, 56, 1857-1868.
[http://dx.doi.org/10.1021/je100866c]
[18]
Marques, B.S.; Frantz, T.S.; Sant’Anna Cadaval, T.R. Junior; de Almeida Pinto, L.A.; Dotto, G.L. Adsorption of a textile dye onto piaçava fibers: Kinetic, equilibrium, thermodynamics, and application in simulated effluents. Environ. Sci. Pollut. Res. Int., 2018, 26(28), 28584-28592.
[PMID: 30377973]
[19]
Fettouche, S.; Tahiri, M.; Madhouni, R.; Cherkaoui, O. Removal of reactive dyes from aqueous solution by adsorption onto alfa fibers powder. J. Mater. Environ. Sci, 2015, 6, 129-137.
[20]
Ashori, A.; Hamzeh, Y.; Ziapour, A. Application of soybean stalk for the removal of hazardous dyes from aqueous solutions. Polym. Eng. Sci., 2014, 54, 239-245.
[http://dx.doi.org/10.1002/pen.23695]
[21]
Honorio, J.F.; Veit, M.T. Gonçalves, Gda.C.; de Campos, E.A.; Fagundes-Klen, M.R. Adsorption of reactive blue BF-5G dye by soybean hulls: Kinetics, equilibrium and influencing factors. Water Sci. Technol., 2016, 73(5), 1166-1174.
[http://dx.doi.org/10.2166/wst.2015.589] [PMID: 26942540]
[22]
Cardoso, N.F.; Pinto, R.B.; Lima, E.C.; Calvete, T.; Amavisca, C.V.; Royer, B.; Cunha, M.L.; Fernandes, T.H.M.; Pinto, I.S. Removal of remazol black B textile dye from aqueous solution by adsorption. Desalination, 2011, 269, 92-103.
[http://dx.doi.org/10.1016/j.desal.2010.10.047]
[23]
Cardoso, N.F.; Lima, E.C.; Pinto, I.S.; Amavisca, C.V.; Royer, B.; Pinto, R.B.; Alencar, W.S.; Pereira, S.F.P. Application of cupuassu shell as biosorbent for the removal of textile dyes from aqueous solution. J. Environ. Manage., 2011, 92(4), 1237-1247.
[http://dx.doi.org/10.1016/j.jenvman.2010.12.010] [PMID: 21195535]
[24]
Aljeboree, A.M.; Alshirifi, A.N.; Alkaim, A.F. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab. J. Chem., 2017, 10, S3381-S3393.
[http://dx.doi.org/10.1016/j.arabjc.2014.01.020]
[25]
Li, P. G.; Bono, A.; Krishnaiah, D.; Collin, J.G. Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: A review paper. J. Hazard. Mater., 2008, 157(2-3), 209-219.
[http://dx.doi.org/10.1016/j.jhazmat.2008.01.040] [PMID: 18313842]
[26]
da Silva, C.G.; Faria, J.L. Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation. J. Photochem. Photobiol. Chem., 2003, 155, 133-143.
[http://dx.doi.org/10.1016/S1010-6030(02)00374-X]
[27]
Gao, Y.; Liu, H. Preparation and catalytic property study of a novel kind of suspended photocatalyst of TiO2-activated carbon immobilized on silicone rubber film. Mater. Chem. Phys., 2005, 92, 604-608.
[http://dx.doi.org/10.1016/j.matchemphys.2005.02.018]
[28]
Matos, J.; Laine, J.; Herrmann, J-M. Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Appl. Catal. B, 1998, 18, 281-291.
[http://dx.doi.org/10.1016/S0926-3373(98)00051-4]
[29]
Rehman, S.; Adil, A.; Shaikh, A.J.; Shah, J.A.; Arshad, M.; Ali, M.A.; Bilal, M. Role of sorption energy and chemisorption in batch methylene blue and Cu2+ adsorption by novel thuja cone carbon in binary component system: linear and nonlinear modeling. Environ. Sci. Pollut. Res. Int., 2018, 25(31), 31579-31592.
[http://dx.doi.org/10.1007/s11356-018-2958-2] [PMID: 30206830]
[30]
Vaghetti, J.C.; Lima, E.C.; Royer, B.; da Cunha, B.M.; Cardoso, N.F.; Brasil, J.L.; Dias, S.L. Pecan nutshell as biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solutions. J. Hazard. Mater., 2009, 162(1), 270-280.
[http://dx.doi.org/10.1016/j.jhazmat.2008.05.039] [PMID: 18565650]
[31]
Solum, M.; Pugmire, R.; Jagtoyen, M.; Derbyshire, F. Evolution of carbon structure in chemically activated wood. Carbon, 1995, 33, 1247-1254.
[http://dx.doi.org/10.1016/0008-6223(95)00067-N]
[32]
Weitkamp, J.; Karge, H.G. Characterization II; Springer-Verlag Berlin Heidelberg, 2007.
[33]
Giri, S.; Ghosh, D.; Das, C.K. One pot synthesis of ilmenite-type NiMnO3-“nitrogen-doped” graphene nanocomposite as next generation supercapacitors. Dalton Trans., 2013, 42(40), 14361-14364.
[http://dx.doi.org/10.1039/c3dt51807h] [PMID: 23999950]
[34]
Fan, M.; Dai, D.; Huang, B. Fourier transform infrared spectroscopy for natural fibres. Fourier Transform-Mater. Anal., 2012, 3, 45-68.
[http://dx.doi.org/10.5772/35482]
[35]
Coates, J. Interpretation of infrared spectra, a practical approach. In: Encyclopedia of analytical chemistry: Applications, theory and instrumentation; , 2006.
[http://dx.doi.org/10.1002/9780470027318.a5606]
[36]
Hussain Gardazi, S.M.; Ashfaq Butt, T.; Rashid, N.; Pervez, A.; Mahmood, Q.; Maroof Shah, M.; Bilal, M. Effective adsorption of cationic dye from aqueous solution using low-cost corncob in batch and column studies. Desalination Water Treat., 2016, 57, 28981-28998.
[http://dx.doi.org/10.1080/19443994.2016.1188730]
[37]
Daoud, M.; Benturki, O.; Kecira, Z.; Girods, P.; Donnot, A. Removal of reactive dye (BEZAKTIV Red S-MAX) from aqueous solution by adsorption onto activated carbons prepared from date palm rachis and jujube stones. J. Mol. Liq., 2017, 243, 799-809.
[http://dx.doi.org/10.1016/j.molliq.2017.08.093]
[38]
Gardazi, S.M.H.; Shah, J.A.; Ashfaq, T.; Sherazi, T.A.; Ali, M.A.; Pervez, A.; Rashid, N.; Iqbal, J.; Amin, B.A.Z.; Bilal, M. Equilibrium, kinetics and thermodynamic study of the adsorptive removal of methylene blue from industrial wastewater by white cedar sawdust. Environ. Prot. Eng., 2019, 1, 45.
[http://dx.doi.org/10.37190/epe190301]
[39]
Obaid, M.K.; Abdullah, L.C.; Idan, I.J. Removal of reactive orange 16 dye from aqueous solution by using modified kenaf core fiber. J. Chem., 2016, 2016, 7.
[http://dx.doi.org/10.1155/2016/4262578]
[40]
Al-Degs, Y.S.; El-Barghouthi, M.I.; El-Sheikh, A.H.; Walker, G.M. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigments, 2008, 77, 16-23.
[http://dx.doi.org/10.1016/j.dyepig.2007.03.001]
[41]
Wang, Z.; Xiang, B.; Cheng, R.; Li, Y. Behaviors and mechanism of acid dyes sorption onto diethylenetriamine-modified native and enzymatic hydrolysis starch. J. Hazard. Mater., 2010, 183(1-3), 224-232.
[http://dx.doi.org/10.1016/j.jhazmat.2010.07.015] [PMID: 20675047]
[42]
Liu, X.; He, C.; Yu, X.; Bai, Y.; Ye, L.; Wang, B.; Zhang, L. Net-like porous activated carbon materials from shrimp shell by solution-processed carbonization and H3PO4 activation for methylene blue adsorption. Powder Technol., 2018, 326, 181-189.
[http://dx.doi.org/10.1016/j.powtec.2017.12.034]
[43]
Munagapati, V.S.; Wen, J-C.; Pan, C-L.; Gutha, Y.; Wen, J-H. Enhanced adsorption performance of reactive red 120 azo dye from aqueous solution using quaternary amine modified orange peel powder. J. Mol. Liq., 2019, 285, 375-385.
[http://dx.doi.org/10.1016/j.molliq.2019.04.081]
[44]
Aksakal, O.; Ucun, H. Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L. J. Hazard. Mater., 2010, 181(1-3), 666-672.
[http://dx.doi.org/10.1016/j.jhazmat.2010.05.064] [PMID: 20541317]
[45]
Marrakchi, F.; Ahmed, M.J.; Khanday, W.; Asif, M.; Hameed, B. Mesoporous carbonaceous material from fish scales as low-cost adsorbent for reactive orange 16 adsorption. J. Taiwan Inst. Chem. Eng., 2017, 71, 47-54.
[http://dx.doi.org/10.1016/j.jtice.2016.12.026]
[46]
Xu, J.; Cao, Z.; Zhang, Y.; Yuan, Z.; Lou, Z.; Xu, X.; Wang, X. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere, 2018, 195, 351-364.
[http://dx.doi.org/10.1016/j.chemosphere.2017.12.061] [PMID: 29272803]
[47]
Kumar, S.; Nair, R.R.; Pillai, P.B.; Gupta, S.N.; Iyengar, M.A.R.; Sood, A.K. Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl. Mater. Interfaces, 2014, 6(20), 17426-17436.
[http://dx.doi.org/10.1021/am504826q] [PMID: 25222124]
[48]
Dural, M.U.; Cavas, L.; Papageorgiou, S.K.; Katsaros, F.K. Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves: Kinetics and equilibrium studies. Chem. Eng. J., 2011, 168, 77-85.
[http://dx.doi.org/10.1016/j.cej.2010.12.038]
[49]
Frantz, T.S.; Silveira, N., Jr; Quadro, M.S.; Andreazza, R.; Barcelos, A.A.; Cadaval, T.R.S., Jr; Pinto, L.A.A. Cu(II) adsorption from copper mine water by chitosan films and the matrix effects. Environ. Sci. Pollut. Res. Int., 2017, 24(6), 5908-5917.
[http://dx.doi.org/10.1007/s11356-016-8344-z] [PMID: 28064395]
[50]
Bayrak, Y.; Uzgör, R. Removal of Remazol Black B textile dye from aqueous solution by adsorption: Equilibrium and thermodynamic studies. J. Dispers. Sci. Technol., 2013, 34, 828-833.
[http://dx.doi.org/10.1080/01932691.2012.704749]
[51]
Sun, D.; Zhang, X.; Wu, Y.; Liu, X. Adsorption of anionic dyes from aqueous solution on fly ash. J. Hazard. Mater., 2010, 181(1-3), 335-342.
[http://dx.doi.org/10.1016/j.jhazmat.2010.05.015] [PMID: 20570045]
[52]
Elmorsi, T.M. Equilibrium isotherms and kinetic studies of removal of methylene blue dye by adsorption onto miswak leaves as a natural adsorbent. J. Environ. Prot. (Irvine Calif.), 2011, 2, 817.
[http://dx.doi.org/10.4236/jep.2011.26093]
[53]
Günay, A.; Arslankaya, E.; Tosun, I. Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. J. Hazard. Mater., 2007, 146(1-2), 362-371.
[http://dx.doi.org/10.1016/j.jhazmat.2006.12.034] [PMID: 17261347]
[54]
Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and interpretation of adsorption isotherms. J. Chem., 2017, 2017, 11.
[http://dx.doi.org/10.1155/2017/3039817]
[55]
Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 1918, 40, 1361-1403.
[http://dx.doi.org/10.1021/ja02242a004]
[56]
Çelebi, O.; Uzüm, C.; Shahwan, T.; Erten, H.N. A radiotracer study of the adsorption behavior of aqueous Ba(2+) ions on nanoparticles of zero-valent iron. J. Hazard. Mater., 2007, 148(3), 761-767.
[http://dx.doi.org/10.1016/j.jhazmat.2007.06.122] [PMID: 17686578]
[57]
Theivarasu, C.; Mylsamy, S. Removal of malachite green from aqueous solution by activated carbon developed from cocoa (Theobroma cacao) Shell - A kinetic and equilibrium studies. E-J. Chem., 2011, 8, 1.
[http://dx.doi.org/10.1155/2011/714808]
[58]
Gardazi, S.M.H.; Ali, M.; Rehman, S.; Ashfaq, T.; Bilal, M. Process optimization of hazardous malachite green (MG) adsorption onto white cedar waste: Isotherms, kinetics and thermodynamic studies. Curr. Anal. Chem., 2017, 13, 305-316.
[59]
Halsey, G.D. The role of surface heterogeneity in adsorption. Advances in catalysis; Elsevier, 1952, Vol. 4, pp. 259-269.
[60]
Gholitabar, S.; Tahermansouri, H. Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound. Carbon Letters (Carbon Lett.), 2017, 22, 14-24.
[61]
Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem., 1999, 34, 451-465.
[http://dx.doi.org/10.1016/S0032-9592(98)00112-5]
[62]
Weber, W.; Morris, J. Advances in water pollution research. Proceed. First Int. Confer. Water Pollut. Res., 1962, 2, 231.
[63]
Weber, W.J.; Morris, J.C. Equilibria and capacities for adsorption on carbon. J. Sanit. Engrg. Div., 1964, 90, 79-108.
[64]
Song, J.; Wang, X.; Chen, O-P.; Chen, C-K.; Chang, C-T. Photocatalytic degradation of reactive Black-5 dye with novel graphene-titanium nanotube composite. Sep. Sci. Technol., 2015, 50, 1394-1402.
[http://dx.doi.org/10.1080/01496395.2014.969377]