Future and Perspectives of the Zika Virus: Drug Repurposing as a Powerful Tool for Treatment Insights

Page: [1917 - 1928] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

The Zika virus (ZIKV) infection is a major public health concern in Brazil and worldwide, being a rapidly spreading disease with possible severe complications for pregnant women and neonates. There is currently no preventative therapy or specific treatment available. Within this context, drug repositioning is a very promising approach for the discovery of new treatment compounds, since old drugs may become new ones. Therefore, this paper aims to perform a literature mini-review to identify promising compounds to combat this virus. The mechanism of action at the molecular level and the structure-activity relationship of prototypes are discussed. Among the candidates identified, we highlight sofosbuvir, chloroquine and suramin, which present a greater quantity of experimental data to draw on for our discussion. The current treatment is palliative; therefore, this study is of paramount importance in identifying drug candidates useful for combating ZIKV.

Keywords: Zika virus, drug repositioning, treatment, medicinal chemistry, infection disease, drug design.

Graphical Abstract

[1]
Alam, A.; Imam, N.; Farooqui, A.; Ali, S.; Malik, M.Z.; Ishrat, R. Recent trends in ZikV research: A step away from cure. Biomed. Pharmacother., 2017, 91, 1152-1159.
[http://dx.doi.org/10.1016/j.biopha.2017.05.045] [PMID: 28531943]
[2]
World Health Organization. Zika strategic response plan quartely update., http://apps.who.int/iris/bitstream/10665/250626/1/WHO-ZIKV-SRF-16.4-eng.pdf?ua=1
[3]
Song, B.H.; Yun, S.I.; Woolley, M.; Lee, Y.M. Zika virus: History, epidemiology, transmission, and clinical presentation. J. Neuroimmunol., 2017, 308, 50-64.
[http://dx.doi.org/10.1016/j.jneuroim.2017.03.001] [PMID: 28285789]
[5]
PAHO/WHO. Zika cases and congenital syndrome associated with Zika Virus reported by countries and territories in the Americas (Cumulative Cases), 2015-2017; Pan American Health Organization/World Health Organization: Washington, DC, USA, 2018.
[6]
Vieira, C.J.D.S.P.; Machado, L.C.; Pena, L.J.; de Morais Bronzoni, R.V.; Wallau, G.L. Spread of two Zika virus lineages in Midwest Brazil. Infect. Genet. Evol., 2019, 751, 03974.
[http://dx.doi.org/10.1016/j.meegid.2019.103974] [PMID: 31340185]
[7]
Brasil, P.; Calvet, G.A.; Siqueira, A.M.; Wakimoto, M.; de Sequeira, P.C.; Nobre, A. Quintana, Mde.S.; Mendonça, M.C.; Lupi, O.; de Souza, R.V.; Romero, C.; Zogbi, H.; Bressan, Cda.S.; Alves, S.S.; Lourenço-de-Oliveira, R.; Nogueira, R.M.; Carvalho, M.S.; de Filippis, A.M.; Jaenisch, T. Zika Virus outbreak in Rio de Janeiro, Brazil: clinical characterization, epidemiological and virological aspects. PLoS Negl. Trop. Dis., 2016, 10(4)e0004636
[http://dx.doi.org/10.1371/journal.pntd.0004636] [PMID: 27070912]
[8]
[9]
Khurshid, Z.; Zafar, M.; Khan, E.; Mali, M.; Latif, M. Human saliva can be a diagnostic tool for Zika virus detection. J. Infect. Public Health, 2019, 12(5), 601-604.
[http://dx.doi.org/10.1016/j.jiph.2019.05.004] [PMID: 31129010]
[10]
Sahibzada, H.A.; Khurshid, Z.; Khan, R.S.; Zafar, M.S.; Siddiqi, K.M. Outbreak of chikungunya virus in Karachi, Pakistan. J. Ayub Med. Coll. Abbottabad, 2018, 30(3), 486-489.
[PMID: 30465393]
[11]
World Health Organization. Zika virus., https://www.who.int/news-room/fact-sheets/detail/zika-virus
[12]
Counotte, M.J.; Meili, K.W.; Taghavi, K.; Calvet, G.; Sejvar, J.; Low, N. Zika virus infection as a cause of congenital brain abnormalities and Guillain-Barré syndrome: A living systematic review. F1000 Res., 2019, 8, 1433.
[http://dx.doi.org/10.12688/f1000research.19918.1] [PMID: 31754425]
[13]
Yun, S.I.; Lee, Y.M. Zika virus: An emerging flavivirus. J. Microbiol., 2017, 55(3), 204-219.
[http://dx.doi.org/10.1007/s12275-017-7063-6] [PMID: 28243937]
[14]
Mottin, M.; Borba, J.V.V.B.; Braga, R.C.; Torres, P.H.M.; Martini, M.C.; Proença-Modena, J.L.; Judice, C.C.; Costa, F.T.M.; Ekins, S.; Perryman, A.L.; Horta Andrade, C. The A-Z of Zika drug discovery. Drug Discov. Today, 2018, 23(11), 1833-1847.
[http://dx.doi.org/10.1016/j.drudis.2018.06.014] [PMID: 29935345]
[15]
Mittal, R.; Nguyen, D.; Debs, L.H.; Patel, A.P.; Liu, G.; Jhaveri, V.M.; Kay, S. S.I.; Mittal, J.; Bandstra, E.S.; Younis, R.T.; Chapagain, P.; Jayaweera, D.T.; Liu, X.Z. Zika Virus: An emerging global health threat. Front. Cell. Infect. Microbiol., 2017, 7, 486.
[http://dx.doi.org/10.3389/fcimb.2017.00486] [PMID: 29276699]
[16]
Basu, R.; Tumban, E. Zika Virus on a Spreading Spree: what we now know that was unknown in the 1950's. Virol. J., 2016, 13(1), 165.
[http://dx.doi.org/10.1186/s12985-016-0623-2] [PMID: 27716242]
[17]
Charlton, R.L.; Rossi-Bergmann, B.; Denny, P.W.; Steel, P.G. Repurposing as a strategy for the discovery of new anti-leishmanials: The-state-of-the-art. Parasitology, 2018, 145(2), 219-236.
[http://dx.doi.org/10.1017/S0031182017000993] [PMID: 28805165]
[18]
Ferreira, A.C.; Zaverucha-do-Valle, C.; Reis, P.A.; Barbosa-Lima, G.; Vieira, Y.R.; Mattos, M.; Silva, P.P.; Sacramento, C.; de Castro Faria Neto, H.C.; Campanati, L.; Tanuri, A.; Brüning, K.; Bozza, F.A.; Bozza, P.T.; Souza, T.M.L. Sofosbuvir protects Zika virus-infected mice from mortality, preventing short- and long-term sequelae. Sci. Rep., 2017, 7(1), 9409.
[http://dx.doi.org/10.1038/s41598-017-09797-8] [PMID: 28842610]
[19]
Cheng, F.; Murray, J.L.; Rubin, D.H. Drug repurposing: New treatments for Zika virus infection? Trends Mol. Med., 2016, 22(11), 919-921.
[http://dx.doi.org/10.1016/j.molmed.2016.09.006] [PMID: 27692879]
[20]
Lawitz, E.; Jacobson, I.M.; Nelson, D.R.; Zeuzem, S.; Sulkowski, M.S.; Esteban, R.; Brainard, D.; McNally, J.; Symonds, W.T.; McHutchison, J.G.; Dieterich, D.; Gane, E. Development of sofosbuvir for the treatment of hepatitis C virus infection. Ann. N. Y. Acad. Sci., 2015, 1358, 56-67.
[http://dx.doi.org/10.1111/nyas.12832] [PMID: 26235748]
[21]
Sacramento, C.Q.; de Melo, G.R.; de Freitas, C.S.; Rocha, N.; Hoelz, L.V.B.; Miranda, M.; Fintelman-Rodrigues, N.; Marttorelli, A.; Ferreira, A.C.; Barbosa-Lima, G.; Abrantes, J.L.; Vieira, Y.R.; Bastos, M.M.; de Mello Volotão, E.; Nunes, E.P.; Tschoeke, D.A.; Leomil, L.; Loiola, E.C.; Trindade, P.; Rehen, S.K.; Bozza, F.A.; Bozza, P.T.; Boechat, N.; Thompson, F.L.; de Filippis, A.M.; Brüning, K.; Souza, T.M.L. The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication. Sci. Rep., 2017, 7, 40920.
[http://dx.doi.org/10.1038/srep40920] [PMID: 28098253]
[22]
Spera, A.M.; Eldin, T.K.; Tosone, G.; Orlando, R. Antiviral therapy for hepatitis C: Has anything changed for pregnant/lactating women? World J. Hepatol., 2016, 8(12), 557-565.
[http://dx.doi.org/10.4254/wjh.v8.i12.557] [PMID: 27134703]
[23]
Bullard-Feibelman, K.M.; Govero, J.; Zhu, Z.; Salazar, V.; Veselinovic, M.; Diamond, M.S.; Geiss, B.J. The FDA-approved drug sofosbuvir inhibits Zika virus infection. Antiviral Res., 2017, 137, 134-140.
[http://dx.doi.org/10.1016/j.antiviral.2016.11.023] [PMID: 27902933]
[24]
Sullivan, D.J., Jr; Gluzman, I.Y.; Russell, D.G.; Goldberg, D.E. On the molecular mechanism of chloroquine’s antimalarial action. Proc. Natl. Acad. Sci. USA, 1996, 93(21), 11865-11870.
[http://dx.doi.org/10.1073/pnas.93.21.11865] [PMID: 8876229]
[25]
Shiryaev, S.A.; Mesci, P.; Pinto, A.; Fernandes, I.; Sheets, N.; Shresta, S.; Farhy, C.; Huang, C.T.; Strongin, A.Y.; Muotri, A.R.; Terskikh, A.V. Repurposing of the anti-malaria drug chloroquine for Zika Virus treatment and prophylaxis. Sci. Rep., 2017, 7(1), 15771.
[http://dx.doi.org/10.1038/s41598-017-15467-6] [PMID: 29150641]
[26]
Barbosa-Lima, G.; da Silveira Pinto, L.S.; Kaiser, C.R.; Wardell, J.L.; De Freitas, C.S.; Vieira, Y.R.; Marttorelli, A.; Cerbino Neto, J.; Bozza, P.T.; Wardell, S.M.S.V.; de Souza, M.V.N.; Souza, T.M.L.N. -(2-(arylmethylimino)ethyl)-7-chloroquinolin-4-amine derivatives, synthesized by thermal and ultrasonic means, are endowed with anti-Zika virus activity. Eur. J. Med. Chem., 2017, 127, 434-441.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.007] [PMID: 28092859]
[27]
McGeary, R.P.; Bennett, A.J.; Tran, Q.B.; Cosgrove, K.L.; Ross, B.P. Suramin: Clinical uses and structure-activity relationships. Mini Rev. Med. Chem., 2008, 8(13), 1384-1394.
[http://dx.doi.org/10.2174/138955708786369573] [PMID: 18991754]
[28]
Ho, Y.J.; Wang, Y.M.; Lu, J.W.; Wu, T.Y.; Lin, L.I.; Kuo, S.C.; Lin, C.C. Suramin inhibits Chikungunya Virus entry and transmission. PLoS One, 2015, 10(7)e0133511
[http://dx.doi.org/10.1371/journal.pone.0133511] [PMID: 26208101]
[29]
Sarrazin, S.; Lamanna, W.C.; Esko, J.D. Heparan sulfate proteoglycans. Cold Spring Harb. Perspect. Biol., 2011, 3(7)a004952
[http://dx.doi.org/10.1101/cshperspect.a004952] [PMID: 21690215]
[30]
Tan, C.W.; Sam, I.C.; Chong, W.L.; Lee, V.S.; Chan, Y.F. Polysulfonate suramin inhibits Zika virus infection. Antiviral Res., 2017, 143, 186-194.
[http://dx.doi.org/10.1016/j.antiviral.2017.04.017] [PMID: 28457855]
[31]
Albulescu, I.C.; Kovacikova, K.; Tas, A.; Snijder, E.J.; van Hemert, M.J. Suramin inhibits Zika virus replication by interfering with virus attachment and release of infectious particles. Antiviral Res., 2017, 143, 230-236.
[http://dx.doi.org/10.1016/j.antiviral.2017.04.016] [PMID: 28461070]
[32]
Chen, W.; Mook, R.A., Jr; Premont, R.T.; Wang, J. Niclosamide: Beyond an antihelminthic drug. Cell. Signal., 2018, 41, 89-96.
[http://dx.doi.org/10.1016/j.cellsig.2017.04.001] [PMID: 28389414]
[33]
Li, Z.; Brecher, M.; Deng, Y.Q.; Zhang, J.; Sakamuru, S.; Liu, B.; Huang, R.; Koetzner, C.A.; Allen, C.A.; Jones, S.A.; Chen, H.; Zhang, N.N.; Tian, M.; Gao, F.; Lin, Q.; Banavali, N.; Zhou, J.; Boles, N.; Xia, M.; Kramer, L.D.; Qin, C.F.; Li, H. Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction. Cell Res., 2017, 27(8), 1046-1064.
[http://dx.doi.org/10.1038/cr.2017.88] [PMID: 28685770]
[34]
Cairns, D.M.; Boorgu, D.S.S.K.; Levin, M.; Kaplan, D.L. Niclosamide rescues microcephaly in a humanized in vivo model of Zika infection using human induced neural stem cells. Biol. Open, 2018, 7(1)031807
[http://dx.doi.org/10.1242/bio.031807] [PMID: 29378701]
[35]
Micewicz, E.D.; Khachatoorian, R.; French, S.W.; Ruchala, P. Identification of novel small-molecule inhibitors of Zika virus infection. Bioorg. Med. Chem. Lett., 2018, 28(3), 452-458.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.019] [PMID: 29258771]
[36]
Barbosa-Lima, G.; Moraes, A.M.; Araújo, A.D.S.; da Silva, E.T.; de Freitas, C.S.; Vieira, Y.R.; Marttorelli, A.; Neto, J.C.; Bozza, P.T.; de Souza, M.V.N.; Souza, T.M.L. 2,8-bis(trifluoromethyl)-quinoline analogs show improved anti-Zika virus activity, compared to mefloquine. Eur. J. Med. Chem., 2017, 127, 334-340.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.058] [PMID: 28068604]
[37]
Saiz, J.C. Therapeutic advances against ZIKV: A quick response, a long way to go. Pharmaceuticals (Basel), 2019, 12(3), 127.
[http://dx.doi.org/10.3390/ph12030127] [PMID: 31480297]
[38]
Balasubramanian, A.; Teramoto, T.; Kulkarni, A.A.; Bhattacharjee, A.K.; Padmanabhan, R. Antiviral activities of selected antimalarials against dengue virus type 2 and Zika virus. Antiviral Res., 2017, 137, 141-150.
[http://dx.doi.org/10.1016/j.antiviral.2016.11.015] [PMID: 27889529]
[39]
Barrows, N.J.; Campos, R.K.; Powell, S.T.; Prasanth, K.R.; Schott-Lerner, G.; Soto-Acosta, R.; Galarza-Muñoz, G.; McGrath, E.L.; Urrabaz-Garza, R.; Gao, J.; Wu, P.; Menon, R.; Saade, G.; Fernandez-Salas, I.; Rossi, S.L.; Vasilakis, N.; Routh, A.; Bradrick, S.S.; Garcia-Blanco, M.A. A screen of FDA-approved drugs for inhibitors of Zika virus infection. Cell Host Microbe, 2016, 20(2), 259-270.
[http://dx.doi.org/10.1016/j.chom.2016.07.004] [PMID: 27476412]
[40]
Pan, T.; Peng, Z.; Tan, L.; Zou, F.; Zhou, N.; Liu, B.; Liang, L.; Chen, C.; Liu, J.; Wu, L.; Liu, G.; Peng, Z.; Liu, W.; Ma, X.; Zhang, J.; Zhu, X.; Liu, T.; Li, M.; Huang, X.; Tao, L.; Zhang, Y.; Zhang, H. Nonsteroidal anti-inflammatory drugs potently inhibit the replication of Zika viruses by inducing the degradation of AXL. J. Virol., 2018, 92(20), e01018-e18.
[http://dx.doi.org/10.1128/JVI.01018-18] [PMID: 30068645]
[41]
Musso, D.; Gubler, D.J. Zika Virus. Clin. Microbiol. Ver., 2016, 29(3), 487-524.
[42]
Baz, M.; Boivin, G. Antiviral agents in development for Zika virus infections. Pharmaceuticals (Basel), 2019, 12(3), 101.
[http://dx.doi.org/10.3390/ph12030101] [PMID: 31261947]
[43]
Moghadasian, M.H. Clinical pharmacology of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Life Sci., 1999, 65(13), 1329-1337.
[http://dx.doi.org/10.1016/S0024-3205(99)00199-X] [PMID: 10503952]
[44]
Gazzerro, P.; Proto, M.C.; Gangemi, G.; Malfitano, A.M.; Ciaglia, E.; Pisanti, S.; Santoro, A.; Laezza, C.; Bifulco, M. Pharmacological actions of statins: A critical appraisal in the management of cancer. Pharmacol. Rev., 2012, 64(1), 102-146.
[http://dx.doi.org/10.1124/pr.111.004994] [PMID: 22106090]
[45]
Chan, D.; Binks, S.; Nicholas, J.M.; Frost, C.; Cardoso, M.J.; Ourselin, S.; Wilkie, D.; Nicholas, R.; Chataway, J. Effect of high-dose simvastatin on cognitive, neuropsychiatric, and health-related quality-of-life measures in secondary progressive multiple sclerosis: secondary analyses from the MS-STAT randomised, placebo-controlled trial. Lancet Neurol., 2017, 16(8), 591-600.
[http://dx.doi.org/10.1016/S1474-4422(17)30113-8] [PMID: 28600189]
[46]
Pascoalino, B.S.; Courtemanche, G.; Cordeiro, M.T.; Gil, L.H.V.G.; Freitas-Junior, L. Zika antiviral chemotherapy: identification of drugs and promising starting points for drug discovery from an FDA-approved library. F1000 Res., 2016, 5, 2523.
[http://dx.doi.org/10.12688/f1000research.9648.1] [PMID: 27909576]
[47]
Españo, E.; Nam, J.H.; Song, E.J.; Song, D.; Lee, C.K.; Kim, J.K. Lipophilic statins inhibit Zika virus production in Vero cells. Sci. Rep., 2019, 9(1), 11461.
[http://dx.doi.org/10.1038/s41598-019-47956-1] [PMID: 31391514]
[48]
Bassi, M.R.; Sempere, R.N.; Meyn, P.; Polacek, C.; Arias, A. Extinction of Zika virus and usutu virus by lethal mutagenesis reveals different patterns of sensitivity to three mutagenic drugs. Antimicrob. Agents Chemother., 2018, 62(9), e00380-e18.
[http://dx.doi.org/10.1128/AAC.00380-18] [PMID: 29914957]
[49]
Vanderlinden, E.; Vrancken, B.; Van Houdt, J.; Rajwanshi, V.K.; Gillemot, S.; Andrei, G.; Lemey, P.; Naesens, L. Distinct effects of T-705 (favipiravir) and ribavirin on Influenza virus replication and viral RNA synthesis. Antimicrob. Agents Chemother., 2016, 60(11), 6679-6691.
[http://dx.doi.org/10.1128/AAC.01156-16] [PMID: 27572398]
[50]
Hercik, K.; Brynda, J.; Nencka, R.; Boura, E. Structural basis of Zika virus methyltransferase inhibition by sinefungin. Arch. Virol., 2017, 162(7), 2091-2096.
[http://dx.doi.org/10.1007/s00705-017-3345-x] [PMID: 28357511]
[51]
Kim, J.A.; Seong, R.K.; Kumar, M.; Shin, O.S. Favipiravir and ribavirin inhibit replication of asian and african strains of zika virus in different cell models. Viruses, 2018, 10(2), 72.
[http://dx.doi.org/10.3390/v10020072] [PMID: 29425176]
[52]
Kamiyama, N.; Soma, R.; Hidano, S.; Watanabe, K.; Umekita, H.; Fukuda, C.; Noguchi, K.; Gendo, Y.; Ozaki, T.; Sonoda, A.; Sachi, N.; Runtuwene, L.R.; Miura, Y.; Matsubara, E.; Tajima, S.; Takasaki, T.; Eshita, Y.; Kobayashi, T. Ribavirin inhibits Zika virus (ZIKV) replication in vitro and suppresses viremia in ZIKV-infected STAT1-deficient mice. Antiviral Res., 2017, 146, 1-11.
[http://dx.doi.org/10.1016/j.antiviral.2017.08.007] [PMID: 28818572]
[53]
Khandelwal, N.; Chander, Y.; Rawat, K.D.; Riyesh, T.; Nishanth, C.; Sharma, S.; Jindal, N.; Tripathi, B.N.; Barua, S.; Kumar, N. Emetine inhibits replication of RNA and DNA viruses without generating drug-resistant virus variants. Antiviral Res., 2017, 144, 196-204.
[http://dx.doi.org/10.1016/j.antiviral.2017.06.006] [PMID: 28624461]
[54]
Low, Y.J.S.; Chen, K.C.; Wu, K.X.; Mah-Lee, N.M.; Chu, H.J.J. Antiviral activity of emetine dihydrochloride against dengue virus infection. J. Antivir. Antiretrovir., 2009, 1(2), 62-71.
[55]
Yang, S.; Xu, M.; Lee, E.M.; Gorshkov, K.; Shiryaev, S.A.; He, S.; Sun, W.; Cheng, Y.S.; Hu, X.; Tharappel, A.M.; Lu, B.; Pinto, A.; Farhy, C.; Huang, C.T.; Zhang, Z.; Zhu, W.; Wu, Y.; Zhou, Y.; Song, G.; Zhu, H.; Shamim, K.; Martínez-Romero, C.; García-Sastre, A.; Preston, R.A.; Jayaweera, D.T.; Huang, R.; Huang, W.; Xia, M.; Simeonov, A.; Ming, G.; Qiu, X.; Terskikh, A.V.; Tang, H.; Song, H.; Zheng, W. Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: Inhibiting viral replication and decreasing viral entry. Cell Discov., 2018, 4, 31.
[http://dx.doi.org/10.1038/s41421-018-0034-1] [PMID: 29872540]
[56]
Senge, M.O.; Brandt, J.C. Temoporfin (Foscan®, 5,10,15,20-tetra(m-hydroxyphenyl)chlorin)--a second-generation photosensitizer. Photochem. Photobiol., 2011, 87(6), 1240-1296.
[http://dx.doi.org/10.1111/j.1751-1097.2011.00986.x] [PMID: 21848905]
[57]
Gorshkov, K.; Shiryaev, S.A.; Fertel, S.; Lin, Y.W.; Huang, C.T.; Pinto, A.; Farhy, C.; Strongin, A.Y.; Zheng, W.; Terskikh, A.V. Zika Virus: Origins, pathological action, and treatment strategies. Front. Microbiol., 2019, 9, 3252.
[http://dx.doi.org/10.3389/fmicb.2018.03252] [PMID: 30666246]
[58]
Xu, M.; Lee, E.M.; Wen, Z.; Cheng, Y.; Huang, W.K.; Qian, X.; Tcw, J.; Kouznetsova, J.; Ogden, S.C.; Hammack, C.; Jacob, F.; Nguyen, H.N.; Itkin, M.; Hanna, C.; Shinn, P.; Allen, C.; Michael, S.G.; Simeonov, A.; Huang, W.; Christian, K.M.; Goate, A.; Brennand, K.J.; Huang, R.; Xia, M.; Ming, G.L.; Zheng, W.; Song, H.; Tang, H. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat. Med., 2016, 22(10), 1101-1107.
[http://dx.doi.org/10.1038/nm.4184] [PMID: 27571349]
[59]
Saiz, J.C.; Martín-Acebes, M.A. The race to find antivirals for Zika Virus. Antimicrob. Agents Chemother., 2017, 61(6), e00411-e00417.
[http://dx.doi.org/10.1128/AAC.00411-17] [PMID: 28348160]
[60]
Rosen, B.D. Alternative ACT with natural botanical active GRAS ingredients for treatment and prevention of the Zika vírus Patent of EUA 9.675.582, 2017.
[61]
Taranto, A.G.; Carneiro, J.W.M.; Araujo, M.T.; Silva, B.M. Estudos sobre o mecanismo de ação da artemisinina e dos endoperóxidos, a mais nova classe de agentes antimaláricos - parte I. Sitientibus, Feira de Santana, 2006, 34, 47-58.
[62]
Tu, Y. Artemisinin-A gift from traditional chinese medicine to the World (Nobel Lecture). Angew. Chem. Int. Ed. Engl., 2016, 55(35), 10210-10226.
[http://dx.doi.org/10.1002/anie.201601967] [PMID: 27488942]
[63]
Khan, W.; Zakai, H.A.; Khan, K.; Kausar, S.; Aqeel, S. Discriminating clinical and biological features in malaria and dengue patients. J. Arthropod Borne Dis., 2018, 12(2), 108-118.
[http://dx.doi.org/10.18502/jad.v12i2.36] [PMID: 30123804]
[64]
Romero, M.R.; Serrano, M.A.; Vallejo, M.; Efferth, T.; Alvarez, M.; Marin, J.J. Antiviral effect of artemisinin from Artemisia annua against a model member of the Flaviviridae family, the bovine viral diarrhoea virus (BVDV). Planta Med., 2006, 72(13), 1169-1174.
[http://dx.doi.org/10.1055/s-2006-947198] [PMID: 16902856]
[65]
Imenshahidi, M.; Hosseinzadeh, H. Berberine and barberry (Berberis vulgaris): A clinical review. Phytother. Res., 2019, 33(3), 504-523.
[http://dx.doi.org/10.1002/ptr.6252] [PMID: 30637820]
[66]
Cicero, A.F.G.; Baggioni, A. Berberine and its role in chronic disease. Adv. Exp. Med. Biol., 2016, 928, 27-45.
[http://dx.doi.org/10.1007/978-3-319-41334-1_2] [PMID: 27671811]
[67]
Wang, K.; Feng, X.; Chai, L.; Cao, S.; Qiu, F. The metabolism of berberine and its contribution to the pharmacological effects. Drug Metab. Rev., 2017, 49(2), 139-157.
[http://dx.doi.org/10.1080/03602532.2017.1306544] [PMID: 28290706]
[68]
Batista, M.N.; Braga, A.C.S.; Campos, G.R.F.; Souza, M.M.; Matos, R.P.A.; Lopes, T.Z.; Candido, N.M.; Lima, M.L.D.; Machado, F.C.; Andrade, S.T.Q.; Bittar, C.; Nogueira, M.L.; Carneiro, B.M.; Mariutti, R.B.; Arni, R.K.; Calmon, M.F.; Rahal, P. Natural products isolated from oriental medicinal herbs inactivate Zika virus. Viruses, 2019, 11(1), 49.
[http://dx.doi.org/10.3390/v11010049] [PMID: 30641880]
[69]
Saxena, S.K.; Elahi, A.; Gadugu, S.; Prasad, A.K. Zika virus outbreak: An overview of the experimental therapeutics and treatment. Virusdisease, 2016, 27(2), 111-115.
[http://dx.doi.org/10.1007/s13337-016-0307-y] [PMID: 27366760]
[70]
Lai, Z-Z.; Ho, Y-J.; Lu, J-W. Cephalotaxine inhibits Zika infection by impeding viral replication and stability. Biochem. Biophys. Res. Commun., 2020, 522(4), 1052-1058.
[http://dx.doi.org/10.1016/j.bbrc.2019.12.012] [PMID: 31818462]
[71]
Ling, T.; Lang, W.H.; Maier, J.; Quintana Centurion, M.; Rivas, F. Cytostatic and cytotoxic natural products against cancer cell models. Molecules, 2019, 24(10), 2012.
[http://dx.doi.org/10.3390/molecules24102012] [PMID: 31130671]
[72]
Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167.
[http://dx.doi.org/10.3390/nu8030167] [PMID: 26999194]
[73]
Behling, E.B.; Sendão, M.C.; Francescato, M.D.C.; Antunes, L.M.G.; Bianchi, M.L.P. Flavonóide quercetina: Aspectos gerais e ações biológicas. Alim. Nutr. Araraquara, 2004, 15(3), 285-292.
[74]
Roy, A.; Lim, L.; Srivastava, S.; Lu, Y.; Song, J. Conformações em solução de Zika NS2B-NS3pro e sua inibição por produtos naturais de plantas comestíveis. PLoS One, 2017, 12(7)e0180632
[http://dx.doi.org/10.1371/journal.pone.0180632] [PMID: 28700665]
[75]
Lines, T.C. Method for treating zika virus infection with quercetincontaining compositions Patent of EUA 62/290.741 2017.
[76]
Rausch, K.; Hackett, B.A.; Weinbren, N.L.; Reeder, S.M.; Sadovsky, Y.; Hunter, C.A.; Schultz, D.C.; Coyne, C.B.; Cherry, S. Screening bioactives reveals nanchangmycin as a broad spectrum antiviral active against zika virus. Cell Rep., 2017, 18(3), 804-815.
[http://dx.doi.org/10.1016/j.celrep.2016.12.068] [PMID: 28099856]